Generic boundary behaviour for harmonic functions in the ball

Yanick Heurteaux

Université Blaise Pascal - Clermont-Ferrand

Île de Porquerolles, September 2015

Joint work with Frédéric Bayart
Introduction

Sets of divergence

Generic behavior

Dimension of measures

Selfsimilar measures

Harmonic measure

The structure function

Quasi Bernoulli measures

Merci !
The beginning of the story

- If \(f \in L^p(\mathbb{T}) \), \(p > 1 \), \(S_n f(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{inx} \) is almost surely convergent (Carleson Theorem) but there are possible divergence points.
- For a given \(\beta \), what is the size of the set of points \(x \) for which \(|S_n f(x)| \gg n^\beta \) i.o. ? (Aubry 2006)
- What is the behaviour of \(S_n f \) for a generic function \(f \in L^p \)?
- Let \(\beta(x) \) be the supremum of the beta such that \(|S_n f(x)| \gg n^\beta \) i.o. and \(E(\beta, f) = \{ x \in \mathbb{T} ; \beta(x) = \beta \} \).
 If \(f \) is a generic function in \(L^p(\mathbb{T}) \),
 \[
 \text{for any } \beta \in [0, 1/p], \quad \dim_H(E(\beta, f)) = 1 - \beta p. \]
 (Bayart, H., 2011)
- Always true when \(p = 1 \) (Bayart, H., 2012)
- What about \(P_r \ast f(x) = \sum_{k=-\infty}^{+\infty} r|k|\hat{f}(k)e^{ikx} \) when \(r \to 1 ? \)
 \(h(re^{ix}) = P_r \ast f(x) \) is harmonic in the unit disk.
 \(r \to 1 \) corresponds to the radial convergence in the disk.
Harmonic functions in the ball B_{d+1}

The Poisson kernel:

$$P(x, \xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

- Bounded harmonic functions

$$h(x) = P[f](x) = \int_{S_d} P(x, \xi) f(\xi) d\sigma(\xi) \quad \text{with} \quad f \in L^\infty(S_d)$$

- Nonnegative harmonic functions

$$h(x) = P[\mu](x) = \int_{S_d} P(x, \xi) d\mu(\xi) \quad \text{with} \quad \mu \in \mathcal{M}^+(S_d)$$

- Harmonic functions with L^1 data

$$h(x) = P[f](x) = \int_{S_d} P(x, \xi) f(\xi) d\sigma(\xi) \quad \text{with} \quad f \in L^1(S_d)$$
Fatou’s Theorem

- Fatou (1906) : if $f \in L^\infty(\mathbb{T})$, then
 \[P_r \ast f(x) \to f(x) \text{ almost surely.} \]

- Generalizations (Hardy-Littlewood, Wiener, Bochner . . .)
 \[P[\mu](ry) \to \frac{d\mu}{d\sigma}(y) \text{ } d\sigma\text{-almost surely when } r \to 1. \]

- Hunt and Wheeden (1970) : If h is a nonnegative harmonic function in a Lipschitz domain $U \subset \mathbb{R}^n$, then h has a non tangential limit at almost every point of the boundary ∂U.
An elementary upper bound for $|P[f](ry)|$ when $r \to 1$:

$$P(x, \xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}} \leq \frac{1 - \|x\|^2}{(1 - \|x\|)^{d+1}} \leq \frac{2}{(1 - \|x\|)^d}$$

$$|P[f](ry)| = \left| \int_{S_d} \frac{1 - \|ry\|^2}{\|ry - \xi\|^{d+1}} f(\xi) d\sigma(\xi) \right| \leq \frac{2\|f\|_1}{(1 - r)^d}$$

Question

Let $0 < \beta \leq d$. What can we say about the size of the set of points y such that $|P[f](ry)| \approx (1 - r)^{-\beta}$ when $r \to 1$?
Hausdorff dimension of exceptional sets

\[0 < \beta < d \]

\[\mathcal{E}(\beta, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{(1 - r)^{-\beta}} = +\infty \right\} \]

Theorem (Bayart, H.)

- For any \(f \in L^1(S_d) \), \(\dim_\mathcal{H}(\mathcal{E}(\beta, f)) \leq d - \beta \).
- If \(E \subset S_d \) is such that \(\dim_\mathcal{H}(E) < d - \beta \), there exists \(f \in L^1(S_d) \) such that \(E \subset \mathcal{E}(\beta, f) \).

The first part was already obtained by Armitage (1981) in the context of the half upper space.
A more precise result

Let τ be a nonnegative nonincreasing function such that

$$\lim_{s \to 0^+} \tau(s) = +\infty, \quad \tau(s) \ll s^{-d} \quad \text{and} \quad \tau(s) \approx \tau(2s).$$

Define

$$\mathcal{E}(\tau, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{\tau(1 - r)} = +\infty \right\}. $$

Let ϕ be the gauge function defined by $\phi(s) = \tau(s)s^d$.

Theorem (Bayart, H.)

- For any $f \in L^1(S_d)$, $\mathcal{H}^\phi(\mathcal{E}(\tau, f)) = 0$.
- If $E \subset S_d$ is such that $\mathcal{H}^\phi(E) = 0$, there exists $f \in L^1(S_d)$ such that $E \subset \mathcal{E}(\tau, f)$.
The Hardy-Littlewood maximal inequality

\[P[\mu](x) = \int_{S_d} P(x, \xi) \, d\mu(\xi) \]

\[\sup_{r \in (0,1)} |P[\mu](ry)| \leq \sup_{\delta > 0} \frac{|\mu|(\kappa(y, \delta))}{\sigma(\kappa(y, \delta))} \]

where \(\kappa(y, \delta) = \{ \xi \in S_d; \|\xi - y\| < \delta \} \).
\(\kappa(y, \delta) \) is called a cap.

Lemma (a quantitative improvement - Bayart, H.)

Let \(0 < r < 1 \). There exists \(\delta \geq 1 - r \) such that

\[|P[\mu](ry)| \leq C \frac{|\mu|(\kappa(y, \delta))}{\sigma(\kappa(y, \delta))}, \]

where \(C \) is a constant independent of \(\mu, r \) and \(y \).
Dimension of $\mathcal{E}(\beta, \mu) :$ the upper bound

$$\tau(s) = s^{-\beta}.$$

$$\mathcal{E}(\beta, \mu) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$

$$\mathcal{E}_M = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1 - r)^{-\beta}} > M \right\}.$$

Let $y \in \mathcal{E}_M.$

Using the previous lemma, we can find r_y as close to 1 as we want and a cap $\kappa_y = \kappa(y, \delta_y)$ with $\delta_y \geq 1 - r_y$

$$M(1 - r_y)^{-\beta} < |P[\mu](r_yy)| \leq C \frac{|\mu|(\kappa_y)}{\sigma(\kappa_y)}.$$

δ_y goes to 0 when r_y goes to 1.
Dimension of $\mathcal{E}(\beta, \mu)$: the upper bound

$$(1 - r_y)^{-\beta} \sigma(\kappa_y) < \frac{C}{M} |\mu|_y(\kappa_y).$$

By the Vitali covering lemma, we can find a family of disjoint caps $(\kappa_{y_i})_{j \in \mathbb{N}}$ such that $\mathcal{E}_M \subset \bigcup_i 5\kappa_{y_i}$.

$$\sum_i (1 - r_{y_i})^{-\beta} \sigma(\kappa_{y_i}) \leq \frac{C}{M} \|\mu\|$$

$$\sum_i \delta_{y_i}^{d-\beta} \leq \frac{C}{M} \|\mu\|$$

$$\mathcal{H}^{d-\beta}(\mathcal{E}_M) \leq \frac{C}{M} \|\mu\|$$

$$\mathcal{H}^{d-\beta}(\mathcal{E}(\beta, \mu)) = 0$$
Lower bound for the dimension: an elementary lemma

If \(r > 1/2 \),

\[
\int_{\kappa(N,1-r)} P(rN,\xi) \, d\sigma(\xi) \geq C
\]
Lower bound for the dimension : an elementary lemma

If $r > 1/2$, \[\int_{\kappa(N,1-r)} P(rN,\xi) d\sigma(\xi) \geq C \]
Lower bound for the dimension: the construction

Let E be such that $\mathcal{H}^{d-\beta}(E) = 0$. Let \mathcal{R}_j be a 2^{-j}-covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 2^{-j}.$$

Define

$$C_n = \left\{ \kappa \in \bigcup_j \mathcal{R}_j; \ 2^{-(n+1)} < |\kappa| \leq 2^{-n} \right\}.$$

$E \subset \limsup_n E_n$ where $E_n = \bigcup_{\kappa \in C_n} \kappa$.

$$\sum_{n \geq 1} \sum_{\kappa \in C_n} |\kappa|^{d-\beta} \leq \sum_{j \geq 1} \sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 1.$$

Choose $(\omega_n)_{n \geq 1}$ tending to infinity such that

$$\sum_{n \geq 1} \omega_n \sum_{\kappa \in C_n} |\kappa|^{d-\beta} < +\infty.$$
Lower bound for the dimension: the function f

$$f = \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} \mathbb{1}_{4\kappa}$$

Let $y \in E_n = \bigcup_{\kappa \in C_n} \kappa$. Let $\kappa_0 \in C_n$ such that $y \in \kappa_0$ and $r = 1 - 2^{-n}$.

$$P[f](ry) \geq \omega_n 2^{-n\beta} \int_{4\kappa_0} P(ry, \xi) \, d\sigma(\xi)$$

$$\geq \omega_n 2^{-n\beta} \int_{\kappa(y, 2^{-n})} P(ry, \xi) \, d\sigma(\xi)$$

$$\geq C\omega_n (1 - r)^{-\beta}.$$
The divergence index

Let $f \in L^1(S_d)$ and $y_0 \in S_d$.

$$\beta(y_0) = \sup (\beta \ ; \ y_0 \in E(\beta, f))$$

$$= \inf \left(\beta \ ; \ |P[f](ry_0)| = O((1 - r)^{-\beta}) \right)$$

$$= \limsup_{r \to 1} \frac{\log |P[f](ry_0)|}{-\log(1 - r)} .$$

Level sets :

$$E(\beta, f) = \{ y \in S_d ; \ \beta(y) = \beta \} .$$

The family $(E(\beta, f))_\beta$ is a nonincreasing family of sets and the sets $(E(\beta, f))_\beta$ are disjoints.

Spectrum of singularities :

$$\beta \mapsto \dim_H (E(\beta, f)) .$$
Multifractal behavior of $P[f]$

Of course,

$$\dim_{\mathcal{H}}(E(\beta, f)) \leq d - \beta .$$

Theorem (Bayart, H.)

For quasi-all functions $f \in L^1(S_d)$,

$$\forall \beta \in [0, d], \quad \dim_{\mathcal{H}}(E(\beta, f)) = d - \beta .$$

- Roughly speaking, for any β, $|P[f](ry)| \approx (1 - r)^{-\beta}$ in a set with dimension $d - \beta$.
- “quasi-all” is related to the Baire category theorem.
- For such f we also have $\dim_{\mathcal{H}}(E(\beta, f)) = d - \beta$.
The analogue of dyadic numbers in the sphere S_d

There exists a sequence $(\mathcal{R}_n)_{n \geq 1}$ of finite subsets of S_d satisfying

- $\mathcal{R}_n \subset \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = S_d$;
- $\text{card} (\mathcal{R}_n) \leq C2^{nd}$;
- For any x, y in \mathcal{R}_n, $x \neq y$, then $|x - y| \geq 2^{-n}$.

If $\alpha > 1$, let $N_{n,\alpha} = \lfloor n/\alpha \rfloor + 1$ and

$$D_{n,\alpha} = \bigcup_{x \in \mathcal{R}_{N_{n,\alpha}}} \kappa(x, 2^{-n}).$$

Proposition

$$\mathcal{H}^{d/\alpha} \left(\limsup_{n \to +\infty} D_{n,\alpha} \right) = +\infty.$$

Proof: mass transference principle.

Remark: we can replace n by a subsequence n_k.
In the way of saturating functions

\[f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} 1_{\mathcal{K}(x, 2^{2-n})}. \]

Proposition

\[f_n \in L^1(S_d) \text{ and } \|f_n\|_1 \leq C. \]

Moreover, for any \(\alpha > 1 \), for any \(y \in D_{n, \alpha} \),

\[P[f_n](r_n y) \geq \frac{C}{n} 2^{(n-N_{n, \alpha})d}, \]

where \(1 - r_n = 2^{-n} \), \(N_{n, \alpha} = \lceil n/\alpha \rceil + 1 \) and \(C \) is independent of \(n \) and \(\alpha \).

Remark: \(2^{(n-N_{n, \alpha})d} \approx (1 - r_n)^{-\beta} \) if \(\frac{d}{\alpha} = d - \beta \).
Construction of a dense sequence

Proposition

There exists a dense sequence \((h_n)_{n \geq 1}\) in \(L^1(S_d)\) such that for any \(n \geq 1\), for any \(\alpha > 1\) and any \(y \in D_{n,\alpha}\),

\[
P[h_n](r_n y) \geq \frac{C}{n^2} 2^{(n-N_{n,\alpha})d},
\]

where \(r_n = 1 - 2^{-n}\).

Let \((g_n)_{n \geq 1}\) be a sequence of continuous functions which is dense in \(L^1(S_d)\) ans such that \(\|g_n\|_\infty \leq n\).

\[
h_n = \frac{1}{n} f_n + g_n
\]
The dense $G_δ$ set

The residual set we will consider is the dense $G_δ$-set

$$A = \bigcap_{k \geq 1} \bigcup_{n \geq k} B_{L^1}(h_n, \delta_n).$$

where δ_n is such that

$$\|f\|_1 \leq \delta_n \Rightarrow \|P[f](r_n \cdot)\|_\infty \leq 1.$$

If $\|f - h_n\|_1 < \delta_n$ and $y \in D_{n,\alpha}$,

$$\frac{\log |P[f](r_n y)|}{-\log(1 - r_n)} \geq \left(d - \frac{N_{n,\alpha} d}{n} \right) + o(1).$$

$$d - \frac{N_{n,\alpha} d}{n} \approx d - \frac{d}{\alpha} := \beta \quad \text{if} \quad \frac{d}{\alpha} = d - \beta.$$
The case of nonnegative harmonic functions

The set $\mathcal{H}^+(B_{d+1})$ of nonnegative harmonic functions in the ball B_{d+1} endowed with the topology of the locally uniform convergence is a closed cone in the space of all continuous functions in the ball: it satisfies Baire’s property.

Theorem

For quasi-all nonnegative harmonic functions h in the unit ball B_{d+1}, for any $\beta \in [0, d]$,

$$\dim_{\mathcal{H}} \left(E(\beta, h) \right) = d - \beta$$

where

$$E(\beta, h) = \left\{ y \in S_d ; \limsup_{r \to 1} \frac{\log h(ry)}{-\log(1-r)} = \beta \right\}.$$
Thank you for your attention