Exercices de calcul intégral (suite)

1. Soient f et g deux fonctions localement intégrables sur \mathbb{R}. On fixe $\alpha, \beta \in \mathbb{R}$ et on pose :

$$F(x) = \alpha + \int_a^x f(t)dt \quad \text{et} \quad G(x) = \beta + \int_a^x g(t)dt .$$

Montrer la formule “d’intégration par parties” :

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x)dx$$

en suivant chacune des deux méthodes suivantes :
- A l’aide du théorème de Fubini
- En approximant convenablement les fonctions f et g par des fonctions continues et en utilisant la formule classique d’intégration par parties.

3. On considère l’opérateur de translation sur $L^2_{2\pi}$ défini par :

$$\tau_af(x) = f(x - a).$$

Décrire les valeur propre de τ_a et les sous espaces propres associés.

4. Soit F une 2π-périodique et lipschitzienne.

 (a) En évaluant de deux façons différentes $\|\tau_kF - F\|_2^2$, Montrer que :

$$\sum_{n \in \mathbb{Z}} n^2 \left| \hat{F}(n) \right|^2 \leq M^2 ,$$

où M est la constante de lipschitz de F. En déduire que la série de Fourier de F converge normalement vers F.

 (b) On pose $f_n(x) = \sum_{k=-n}^{n} ik \hat{F}(k)e^{ikx}$. Montrer que la suite f_n converge dans $L^2_{2\pi}$. On note f sa limite. Montrer que :

$$\forall a, b \in \mathbb{R}, \int_a^b f(t)dt = F(b) - F(a).$$
(c) On cherche à montrer que \(f \in L_{2\pi}^\infty \). Pour cela, on introduit l’approximation de l’unité définie pour \(x \in [-\pi, \pi] \) par :

\[
\theta_n(x) = n\pi \mathbb{1}_{[-1/n, 1/n]}(x).
\]

Constater que \(\|\theta_n * f\|_\infty \leq M \) puis conclure (faites attention au raisonnement...).

5. Si \(f \in L_{2\pi}^2 \) et \(n \in \mathbb{N} \), on pose \(\Lambda_n(f) = \sum_{k=-n}^n \hat{f}(k) \). Montrer que l’ensemble des fonctions \(f \in L_{2\pi}^2 \) telles que \(\Lambda_n(f) \) converge est un sous-espace dense de \(L_{2\pi}^2 \) et qu’il est contenu dans une réunion dénombrable de fermés d’intérieur vide.

6. Soit \(f \) une fonction mesurable additive de \(\mathbb{R} \) dans \(\mathbb{R} \). On pose \(g(x) = e^{i\int f(x)} \). Montrer qu’il existe \(\delta > 0 \) tel que l’intégrale \(\int_0^\delta g(x)dx \) soit non nulle. En déduire que la fonction \(g \) est de classe \(C^\infty \) et vérifie une équation différentielle que l’on précisera (on fera intervenir \(\int_0^{\delta+x} g(t)dt \)). En déduire \(g \) puis montrer que \(f(x) = ax \) pour une certaine \(a \) réel.

7. On reprend l’exercice 6 de la feuille sur la transformée de Fourier. On fixe \(f \in L^1(\mathbb{R}) \) et on regarde l’opérateur :

\[
g \in L^2(\mathbb{R}) \mapsto Tg = f * g \in L^2(\mathbb{R}).
\]

Montrer que le spectre de \(T \) vaut \(A = \{\hat{f}(x) \in \mathbb{R} \} \cup \{0\} \) (si \(\lambda \in A \), montrer qu’il ne peut exister \(\delta > 0 \) tel que pour tout \(h \in L^2 \), \(\|\hat{f} - \hat{\lambda}\|_2 \geq \delta \|h\|_2 \) et utiliser le théorème d’isomorphisme de Banach).

8. A propos des multiplicateurs.

Soient \(F \) et \(G \) deux sous-espaces de \(L_{2\pi}^1 \) et \((a_n)_{n \in \mathbb{Z}} \) une suite de nombres complexes. On dit que la suite \((a_n)_{n \in \mathbb{Z}} \) est un multiplicateur de \(F \) dans \(G \) si pour toute fonction \(f \in F \) il existe \(g \in G \) tel que pour tout \(n \in \mathbb{Z} \), \(\hat{g}(n) = a_n \hat{f}(n) \). Montrer qu’alors \(g \) est unique. On notera \(\Lambda f = g \). On se propose de décrire les multiplicateurs dans diverses situations.

(a) \(F = G = L_{2\pi}^2 \).

Montrer que la suite \((a_n)_{n \in \mathbb{Z}} \) est un multiplicateur de \(L_{2\pi}^2 \) dans lui-même si et seulement si elle est bornée (on pourra utiliser le théorème de Banach-Steinhaus).

(b) \(F = L_{2\pi}^2 \) et \(G = C_{2\pi} \).

i. Montrer que s’il existe \(h \in L_{2\pi}^2 \) avec \(a_n = \hat{h}(n) \) pour tout \(n \), alors la suite \((a_n) \) est un multiplicateur de \(L_{2\pi}^2 \) dans \(C_{2\pi} \).

ii. Montrer que si la suite \((a_n)_{n \in \mathbb{Z}} \) est un multiplicateur de \(L_{2\pi}^2 \) dans \(C_{2\pi} \), l’application \(\Lambda \) est continue (penser au graphe fermé). En déduire qu’il existe \(h \in L_{2\pi}^2 \) tel que pour tout entier \(n \), \(a_n = \hat{h}(n) \) (on pourra considérer l’application \(f \mapsto \Lambda f(0) \)). Explicitier l’opérateur \(\Lambda \).
(c) $F = \mathcal{C}_{2\pi}$ et $G = \mathcal{C}_{2\pi}$.

i. Montrer que l’application Λ est continue. En déduire que la suite a_n est bornée.

ii. On pose $Lf = \Lambda f(0)$. Vérifier que L est une forme linéaire continue sur $\mathcal{C}_{2\pi}$ et que pour tout $n \in \mathbb{Z}$, $L(e^{int}) = a_n$.

iii. Soit μ une mesure positive finie sur $[0, 2\pi]$. Pour $n \in \mathbb{Z}$, on pose :

$$b_n = \int_0^{2\pi} e^{-int} d\mu(t).$$

Montrer que la suite $(b_n)_{n\in\mathbb{Z}}$ est un multiplicateur de $\mathcal{C}_{2\pi}$ dans $\mathcal{C}_{2\pi}$ (écrire Λf en fonction de f et μ).

iv. On note $\mathcal{C}_{2\pi}'$ le dual de $\mathcal{C}_{2\pi}$. Montrer que l’application :

$$L \in \mathcal{C}_{2\pi}' \mapsto \left(L(e^{int})\right)_{n\in\mathbb{Z}} \in \ell^\infty(\mathbb{Z})$$

est non surjective. En déduire qu’il existe une suite $(b_n)_{n\in\mathbb{Z}}$ bornée qui ne soit pas un multiplicateur de $\mathcal{C}_{2\pi}$ dans lui-même.