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The aim of this review is to describe the mathematical background which might be

helpful in order to appreciate the program of Karl Johann Schmidt. The program is part

of Karl Johann Schmidt’s diploma thesis (see [12]).

Let M be a 3-manifold obtained by Dehn surgery on a two bridge knot. The com-

puter program calculates the representations ρ : π1(M) → SU(2) of the fundamental

group in SU(2) and the Chern-Simons invariants cs(ρ) for the corresponding flat SU(2)-

connections. The calculation is based on the method developed by Paul Kirk and Eric

Klassen (see [10, Section 5] for details). Of course this is not an exact calculation but the

tolerance can be chosen (see [13]).

As a by-product one obtains the SO(3) and SU(2) representation curves for 2-bridge

knot groups investigated by G. Burde and me (see [5] and [8]). Moreover, it is possible

to get the peripheral curve of the knot, i.e. the image of the representation space on the

pillowcase.

The program is written in C++ and was originally implemented on a SUN workstation.

A Macintosh version realized by Alexander Pilz from Siegen is now available. The graphics

are printed on the screen (X-windows) as well as in a Postscript EPS-file.

Each section of this review is dedicated to a feature of the program. Every section

starts with an outline and an (hopefully instructive) example. Further information and

references can be found in the details.

1. What is a 2–bridge knot?

Outline: To each rational number p/q , with p > 0, p odd and p, q coprime, there

is associated the 2–bridge knot b(p, q). In order to draw the knot b(p, q) we choose a

continued fraction

p

q
= c1 +

1

c2 + · · ·+
1

ck
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where |ci| 6= 0. The knot b(p, q) is then given by Conway’s normal form (see figure 1)

where ci indicates |ci| crossing points with sign εi = ci/|ci| . The knots b(3, 1) and b(7, 3)

are shown in figure 2.
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Figure 1. Conway’s normal form of a 2–bridge knot.

Example:

Figure 2. The 2–bridge knots b(3, 1) and b(7, 3).

Details: 2–bridge knots and links – sometimes called 4–plats (Viergeflechte) – were first

investigated by C. Bankwitz and H. G. Schumann (see [2]) where they are shown to be

alternating and invertible. The classification of 2–bridge knots and links is due to H.

Schubert (see [14]). For general information about 2–bridge knots and links see [4], [9]

and [15].

2–bridge knots are classified by their 2-fold branched covering – a method due to H.

Seifert. It is easy to prove (see [4, Chapter 12]) that the 2-fold branched covering space

of b(p, q) ⊂ S3 is the lens spaces L(p, q). Therefore, we obtain a classification of 2-bridge

knots by the classification of lens spaces: b(p, q) ∼= b(p′, q′) if and only if p′ = p and

q′ ≡ q±1 mod p .
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2. SU(2)- and SO(3)-representations of 2–bridge knot groups

Outline: Equivalence classes of SU(2)- and SO(3)-representations of 2–bridge knot

groups are determined by two real parameters. The space of equivalence classes of such

representations is a semi-algebraic set in R2 . For a given 2–bridge knot the program

draws these semi-algebraic sets.

Example:
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Figure 3. The SO(3)-representation curves Ĉ7,3 , Ĉ7,5 and the SU(2)-

representation curves C7,3 and C7,5 .

Details: Given b(p, q) ⊂ S3 we denote the fundamental group of its complement by

G(p, q). Using the normal form of the 2–bridge knots we can get a Wirtinger presentation:

G(p, q) = 〈S, T | LSS = TLS〉, LS = Sε1T ε2 . . . Sεp−2T εp−1

where εi = (−1)[iq/p] (for every real x let [x] be the greatest integer n such that n ≤ x).
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Notice that SU(2) is the same as the unit quaternions Sp(1) ⊂ H ; the identification is

given by (
a b

−b̄ ā

)
7→ a+ bj.

The set of pure quaternions will be denoted by E ∼= R3 . Every q ∈ Sp(1) can be written

in polar coordinates q = cos ϕ
2

+ sin ϕ
2
Q where 0 ≤ ϕ ≤ 2π and Q ∈ Sp(1) ∩ E is a pure

unit quaternion. Let (Q,ϕ) be short for cos ϕ
2

+ sin ϕ
2
Q .

There is a twofold covering δ : Sp(1)→ SO(3) given by (P, ϕ) 7→ δ(P, ϕ). The element

δ(P, ϕ) ∈ SO(3) is a rotation of angle ϕ with axis P .

Let G = G(p, q) be a given 2–bridge knot group. We now consider non-abelian repre-

sentations % : G→ SU(2) resp. %̂ : G→ SO(3).

% :

S 7→ (P, ϕ)

T 7→ (Q,ϕ)
resp. %̂ :

S 7→ δ(P, ϕ)

T 7→ δ(Q,ϕ)
(P 6= Q)(1)

which assign the same angle ϕ to S and T . Every representation %̂ : G→ SO(3) factors

through SU(2) (see [5]). Moreover, S and T are conjugate in G(p, q) and so S 7→ (P, ϕ)

and T 7→ (Q,ϕ) holds for every representation % : G→ SU(2).

The equivalence class of % (resp. %̂), given by (1), is determined by the parameters

τ := 〈P,Q〉 = cosψ , ψ = ^(P,Q) and γ = cot ϕ
2

(resp. η := γ2 ). Here 〈P,Q〉 denotes

the scalar product in E (for details see [5]).

There is a restriction of the parameters and we denote by D ⊆ R2 and D̂ ⊆ R2 the

following subsets of R2

D := {(τ, γ) ∈ R2 | −1 < τ < 1}, D̂ := {(τ, η) ∈ R2 | η ≥ 0, −1 < τ < 1}.

Theorem 1. (G. Burde) Given G(p, q), there exists a polynomial zp,q(τ, η) ∈ Z[τ, η],

deg zp,q = (p − 1)/2, such that a pair (τ0, γ0) ∈ D (resp. (τ0, η0) ∈ D̂) determines an

equivalence class of SU(2)- (resp. SO(3)-) representations, given by (1), if and only if

zp,q(τ0, γ
2
0) = 0 (resp. zp,q(τ0, η0) = 0).

Proof. An algorithm for calculating zp,q(τ, η) is given by G. Burde in [5].

Definition 1. We call the affine real algebraic sets

Cp,q = {(τ, γ) ∈ R2 | zp,q(τ, γ2) = 0} resp. Ĉp,q = {(τ, η) ∈ R2 | zp,q(τ, η) = 0}

the SU(2)- (resp. SO(3)-) representation curve of b(p, q).

For more informations about the representation curves of 2–bridge knots see [5] and [8].
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3. The peripheral curve

Outline: We obtain the peripheral curve of a knot by restricting the SU(2)-

representations of the knot group on the peripheral subgroup. The peripheral curve

is contained in the pillowcase. For a given 2–bridge knot the program draws its peripheral

curve.

Example:

(7,3) SU(2)
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Figure 4. The curve C7,3 and the peripheral curve of the knot b(7, 3) on the pillowcase.

Details: While the representation curves are not invariants for the knot, C7,3 6= C7,5 but

3 · 5 ≡ 1 mod 7, there is the peripheral curve which is determined by the knot type only.

Let in general k ⊂ S3 be a non trivial knot and denote by X the complement of

a regular neighborhood of k in S3 . The boundary ∂X is a torus and since k is non

trivial the inclusion induces an injection π1(∂X) → π1(X) (the peripheral subgroup

π1(∂X) ⊂ π1(X) is unique up to conjugation).

A given representation ρ : π1(X)→ SU(2) can be restricted to the peripheral subgroup

res(ρ) := ρ |π1(∂X) : π1(∂X)→ SU(2). Let µ be the meridian and λ the longitude of the

knot k . The pair (µ, λ) is unique up to common conjugation and gives us a distinguished

pair of generators for π1(∂X). The group π1(∂X) ∼= Zµ⊕Zλ is abelian and the image of

each homomorphism % : π1(∂X)→ SU(2) is contained (after conjugation) in the maximal

torus S1 ⊂ SU(2). Therefore, % is determined by two real numbers α, β , 0 ≤ α, β ≤ 1,

% : µ 7→ e2iαπ and % : λ 7→ e2iβπ.

It is clear that the two representations determined by (α, β) and (1−α, 1−β) are equiv-

alent (conjugation by j ). The space of conjugacy classes of representations of π1(∂X)

into SU(2) is hence parameterized by the pillowcase P (see figure 5).

P := (S1 × S1)/ ∼
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where (e2iαπ, e2iβπ) ∼ (e−2iαπ, e−2iβπ).

0 0.5

1

0.5

α

β
α

β

Figure 5. The pillowcase and its parameterization.

The restriction defines a map res : R → P where R is the space of conjugacy classes

of representations of π1(X) to SU(2). The image res(R) ⊂ P is called the peripheral

curve of the knot k . For more information and related topics see [6] and [7].

For a given knot b(p, q) we obtain a map res : Cp,q ∩D → P . The program draws the

peripheral curve res(Cp,q ∩D) ⊂ P (see figure 4).

4. Chern-Simons invariants

Outline: Let M be a three manifold obtained by Dehn surgery on a 2–bridge knot. The

computer program calculates the representations ρ : π1(M)→ SU(2) of the fundamental

group in SU(2) and the Chern-Simons invariants cs(ρ) for the corresponding flat SU(2)-

connections.

Example:

(5,3)

0.2 0.4

1.0

α

β

p, q r/s c τ γ α β
∫
βα′ cs

5, 3 1 1 -0.75892 0.28882 0.20525 0.79475 0.10978 0.14881=25/168

5, 3 1 1 0.073574 -0.43770 0.31566 -0.31566 0.09006 0.72024=121/168

Figure 6. The representations of the manifold obtained by 1-surgery on

the knot b(5, 3) and the data produced by the program.
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Details: Let b(p, q) be a given 2–bridge knot and let r/s be a rational number (r, s

coprime). We are interested in the closed 3-dimensional manifold M which is obtained

by r/s-surgery on b(p, q). We denote the 2-dimensional disk in R2 by D2 .

M := X(p, q) ∪h (S1 ×D2)

here X(p, q) denotes the complement of a regular neighborhood of b(p, q) ⊂ S3 and

h : ∂X(p, q) → ∂(S1 × D2) is a homeomorphism such that h(µrλs) = {∗} × ∂D2 (note

that µrλs is a simple closed curve in ∂X(p, q)).

We have a surjection π1(X(p, q)) → π1(M) by van Kampen’s theorem. Hence the

SU(2)-representations of π1(M) are exactly the representations ρ : π1(X(p, q))→ SU(2)

which satisfies ρ(µrλs) = 1 . Given a representation ρ0 : π1(M) → SU(2) we denote by

cs(ρ0) ∈ Q/Z the Chern–Simons invariant of the corresponding flat connection on the

trivial bundle M × SU(2). For more information about gauge theory see [1], [3] and [10].

The program calculates the Chern–Simons invariant cs(ρ0) by using the method devel-

oped by Paul Kirk and Eric Klassen:

1. The program determines the coordinates (τ, γ) of those points of Cp,q which corre-

spond to the representations of π1(M) (see figure 6).

2. Given a representation ρ1 : π1(M) → SU(2) the program constructs a piecewise

smooth path ρt : π1(X(p, q))→ SL2(C), 0 ≤ t ≤ 1, connecting the trivial represen-

tation ρ0 with ρ1 . Here the SL2(C)-representation polynomial of R. Riley is used

(see [11]). This step is more complicated than it seems to be (see [12] and [13] for

more information).

Following Kirk and Klassen the program calculates α(t) and β(t) such that

ρt : µ 7→ e2iα(t)π and ρt : λ 7→ e2iβ(t)π.

3. In the last step the integral
∫ 1

0
β(t)α′(t) dt is calculated by a numerical integration.

According to Theorem 4.2 of [10] the Chern–Simons invariant is given by

cs(ρ1) = −2

∫ 1

0

β(t)α′(t) dt− ur α2(1)− vs β2(1)− 2usα(1)β(1)

where u, v ∈ Z are integers such that rv − su = 1. Details can be found in [10,

Theorem 4.2 and Section 5, application to surgery on the figure 8 knot] and [12].
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