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Index theory and groupoids

CLAIRE DEBORD AND JEAN-MARIE LESCURE*

Abstract

This chapter is mainly devoted to a proof, using groupoids and KK -theory,
of Atiyah and Singer’s index theorem on compact smooth manifolds. We first
present an elementary introduction to groupoids, C*-algebras, KK -theory and
pseudodifferential calculus on groupoids. We then show how the point of view
adopted here generalizes to the case of conical pseudomanifolds.

3.1 Introduction

This chapter is meant to give the tools involved in our approach to index the-
ory for singular spaces. The global framework adopted here is noncommuta-
tive geometry, with a particular focus on groupoids, C*-algebras and bivariant
K-theory.

The idea of using C*-algebras to study spaces may be understood with the
help of the Gelfand theorem, which asserts that Hausdorff locally compact spaces
are in one-to-one correspondence with commutative C*-algebras. A starting point
in noncommutative geometry is then to think of noncommutative C*-algebras as
corresponding to a wider class of spaces, more singular than Hausdorff locally
compact spaces. As a first consequence, given a geometrical or topological object
which is badly behaved with respect to classical tools, noncommutative geometry
suggests defining a C*-algebra encoding relevant information carried by the original
object.

" We would like to thank Georges Skandalis, who allowed us to use several of his works, in particular the
manuscript of one of his courses [48,49]. We would like to warmly thank Jorge Plazas for having typewritten
a part of this chapter during the summer school, and Jérome Chabert, who carefully read the chapter and
corrected several mistakes. We are grateful to all the organizers for their kind invitation to the extremely
stimulating summer school held at Villa de Leyva in July 2007, and we particularly thank Sylvie Paycha, both
as an organizer and for her valuable comments on this document.
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Refining this construction, one may try to define this C*-algebra as the C*-
algebra of a groupoid [46,47]. That is, one can try to build a groupoid directly,
encoding the original object and regular enough to allow the construction of its
C*-algebra. In the ideal case where the groupoid is smooth, one gets much more
than a C*-algebra, which only reflects topological properties: the groupoid has a
geometrical and analytical flavor enabling many applications.

An illuminating example is the study of the space of leaves of a foliated
manifold (M, F) [10, 11, 14]. Although this space M/F is usually very sin-
gular, the holonomy groupoid of the foliation leads to a C*-algebra C*(M, F)
replacing with great success the algebra of continuous functions on the space
M /F. Moreover, the holonomy groupoid is smooth and characterizes the original
foliation.

Once a C*-algebra is built for the study of a given problem, one can look for
invariants attached to it. For ordinary spaces, basic invariants live in the homology
or cohomology of the space. When dealing with C*-algebras, the suitable homology
theory is K -theory, or better the KK -theory developed by G. Kasparov [30,31,49]
(when a smooth subalgebra of the C*-algebra is specified, which for instance is the
case if a smooth groupoid is available, one may also consider cyclic (co)homology,
but this theory is beyond the scope of these notes).

There is a fundamental theory which links the previous ideas, namely index
theory. In the 1960s, Atiyah and Singer [6] proved their famous index theorem.
Roughly speaking, they showed that, given a closed manifold, one can associate
to any elliptic operator an integer called the index, which can be described in two
different ways: one purely analytic and the other purely topological. This result is
stated with the help of K -theory of spaces. Hence, using the Swan—Serre theorem,
it can be formulated with K -theory of (commutative) C*-algebras. This point, and
the fact that the index theorem can be proved in many ways using K -theoretic
methods, leads to the attempt to generalize it to more singular situations where
appropriate C*-algebras are available. Noncommutative geometry therefore offers
a general framework in which one can try to state and prove index theorems.
The case of foliations illustrates this perfectly again: elliptic operators along the
leaves, equivariant with respect to the holonomy groupoid, admit an analytical
index living in the K -theory of the C*-algebra C*(M, F). Moreover, this index can
also be described in a topological way, and this is the content of the index theorem
for foliations of Connes and Skandalis [14].

Connes [13] also observed the important role played by groupoids in the def-
inition of the index map: in both cases of closed manifolds and foliations, the
analytical index map can be described with the use of a groupoid, namely a defor-
mation groupoid. This approach has been extended by the authors and Nistor [20],
who showed that the topological index of Atiyah and Singer can also be described
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using deformation groupoids. This leads to a geometrical proof of the index the-
orem of Atiyah and Singer; moreover, this proof is easily applied to a class of
singular spaces (namely, pseudomanifolds with isolated singularities).

The content of this chapter is divided into three parts. Let us briefly describe
them:

Part I: Groupoids and their C*-algebras. As mentioned earlier, the first problem in the
study of a singular geometrical situation is to associate to it a mathematical object
which carries the information one wants to study and which is regular enough to be
analyzed in a reasonable way. In noncommutative geometry, answering this question
amounts to looking for a good groupoid and constructing its C*-algebra. These points
will be the subject of Sections 3.2 and 3.4.

Part I1: KK -theory. Once the situation is desingularized, say through the construction
of a groupoid and its C*-algebra, one may look for invariants which capture the
basic properties. Roughly speaking, the KK -theory groups are convenient groups of
invariants for C*-algebras, and KK -theory comes with powerful tools to carry out
computations. Kasparov’s bivariant K -theory will be the main topic of Sections 3.4
to 3.6.

Part III: Index theorems. We first briefly explain in Section 3.7 the pseudodifferential
calculus on groupoids. Then, in Section 3.8, we give a geometrical proof of the
Atiyah—Singer index theorem for closed manifolds, using the language of groupoids
and KK -theory. Finally we show in the last section how these results can be extended
to conical pseudomanifolds.

Prerequisites. The reader interested in this course should have background in
several domains. Familiarity with basic differential geometry (manifolds, tangent
spaces) is needed. The notions of fiber bundle and of K -theory for locally compact
spaces should be known. Basic functional analysis, including the analysis of linear
operators on Hilbert spaces, should be familiar. The knowledge of pseudodifferen-
tial calculus (basic definitions, ellipticity) is necessary. Although it is not absolutely
necessary, some familiarity with C*-algebras is preferable.

I. Groupoids and their C*-Algebras

This first part will be devoted to the notion of groupoid, specifically that of dif-
ferentiable groupoid. We provide definitions and consider standard examples. The
interested reader may look for example at [12,35]. We then recall the definition of
C*-algebras and see how one can associate a C*-algebra to a groupoid. The theory
of C*-algebras of groupoids was initiated by Jean Renault [46]. A good reference
for the construction of groupoid C*-algebras is [32], by which the end of Section
3.3.2 is inspired.
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3.2 Groupoids

3.2.1 Definitions and basic examples of groupoids

Definition 3.2.1 Let G and G©) be two sets. A groupoid structure on G over G
is given by the following homomorphisms:

* Aninjective map u : G© — G.The map u is called the unit map. We often identify G©
with its image in G. The set G” is called the set of units of the groupoid.
* Two surjective maps: 7, s : G — G, which are respectively the range and source maps.
They are equal to the identity on the space of units.
* An involution
i:G— G,
vy
called the inverse map. It satisfies s o i = r.
* A map
p: G? - G,
Vi, v2) = V1 v,

called the product, where the set

G? = {(y1,72) € G x G | s(n) =r(y)}
is the set of composable pairs. Moreover, for (y1, y») € G® we have r(y; - y») = r(y1)
and s(y1 - y2) = s(»2).
The following properties must be fulfilled:
* The product is associative: for any y;, y», y3 in G such that s(y;) = r(y») and s(y») =
r(y3) the following equality holds:
Vv v3=vi-(2-v3)

* Forany y in G,onehasr(y)-y =y -s(y)=yandy -y~ =r(y).

A groupoid structure on G over G is usually denoted by G = G, where the
arrows stand for the source and target maps.
We will often use the following notation:
Ga:=s"1(A), G®=r"'(B) and G%=G,nG?.

If x belongs to G, the s-fiber (r-fiber) of G over x is G, = s~ (x) (G* = r~!(x)).

The groupoid is topological when G and G are topological spaces with G
Hausdorff, the structural homomorphisms are continuous, and i is a homeomor-
phism. We will often require that our topological groupoids be locally compact.
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This means that G = G is a topological groupoid, such that G is second count-
able, each point y in G has a compact (Hausdorff) neighborhood, and the map s is
open. In this situation the map r is open and the s-fibers of G are Hausdorff.

The groupoid is smooth when G and G'©) are second-countable smooth manifolds
with G© Hausdorff, the structural homomorphisms are smooth, u is an embedding,
s is a submersion, and i is a diffeomorphism.

When G = G is at least topological, we say that G is s-connected when for
any x € G© the s-fiber of G over x is connected. The s-connected component of a
groupoid G is U)C g0 CG,, where CG, is the connected component of the s-fiber
G, which contains the unit u(x).

Examples

1. A space X is a groupoid over itself withs =r = u = 1d.

2. A group G = {e} is a groupoid over its unit e, with the usual product and inverse map.

3. A group bundle : 7 : E — X is a groupoid £ = X with r = s = 7w and algebraic
operations given by the group structure of each fiber E,, x € X.

4. If R is an equivalence relation on a space X, then the graph of R,

Gr:={(x,y) € X x X | xRy},
admits a structure of groupoid over X, which is given by
ulx) = (x, x), s(x,y) =y, r(x,y) =x,
=00, €Y -0 =2

for x, y, zin X. When xRy for any x, y in X, Gg = X x X = X is called the pair
groupoid.

5. If G is a group acting on a space X, the groupoid of the action is G x X = X with the
following structural homomorphisms:

u(x) = (e, x), s(g,x) =x, r(g,x)=g-x,

1

g.x) "= g ), (h,g-x)-(g,x)=(hg,x)

forxin X and g, hin G.
6. Let X be a topological space. The homotopy groupoid of X is

I(X) :={c¢ | ¢ : [0, 1] - X acontinuous path} = X,
where ¢ denotes the homotopy class (with fixed endpoints) of c. We let
u(x) = cx,
where c, is the constant path equal to x,

5(©) = c(0), r@©) = c(1), cl=cT,
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where ¢~'(t) = ¢(1 — 1),

Cl-Cy=c1-Ca,

where ¢ - c2(t) = ¢2(21) for t € [0, 1] and ¢; - c2(t) = ¢;(2t — 1) for ¢ € [§, 1]. When
X is a smooth manifold of dimension n, I1(X) is naturally endowed with a smooth
structure (of dimension 2n). A neighborhood of ¢ is of the form {¢ic¢y | ¢1(0) =
c(l), c(0) =co(1), Im ¢; C U;, i =0, 1} where U; is a given neighborhood of c(i)
in X.

3.2.2 Homomorphisms and Morita equivalences

3.2.2.1 Homomorphisms

Let G = G© be a groupoid of source s and range rg, and H = H® be a
groupoid of source sy and range rp. A groupoid homomorphism from G to H is
given by two maps:

f:G—-H ad f9:69 - HO

such that

*ryof=fQorg,
* f(») = f(y Hforanyy € G,
* f(y1-v2) = f(1) - f(y2) for y1, y2in G such that sg(y1) = rg(y2).

We say that f is a homomorphism over f©. When G = H® and f© =1d, we
say that f is a homomorphism over the identity.

The homomorphism f is an isomorphism when the maps f, f© are bijections
and f~!: H — G is a homomorphism over ()~

As usual, when dealing with topological groupoids we require that f be contin-
uous and, when dealing with smooth groupoids, that f be smooth.

3.2.2.2 Morita equivalence
In most situations, the right notion of isomorphism of locally compact groupoids
is the weaker notion of Morita equivalence.

Definition 3.2.2 Two locally compact groupoids G = G and H = H® are
Morita equivalent if there exists a locally compact groupoid P = G 1 H® such
that

* the restrictions of P over G¥ and H® are respectively G and H:
Pg((o? =G and P:(i)o)) =H,;
¢ for any y € P there exists n in ng:) U Pg((s: such that (y, ) is a composable pair (i.e.,
s(y) =r(n).
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Examples

1. Let f : G — H be an isomorphism of locally compact groupoid. Then the following
groupoid defines a Morita equivalence between H and G:

P=GuGuG'UH=GOuUHY,

where with the obvious notation we have

G=G=G",
56 on Cj, rG onG UG,
sgof onG, A
sp = ~_1 rp = SHOf on G,
"G on G~ r on H
SH on H, " ’
ic(y) on G,
4, = |uc on GO, i) = in(y) on H,
P~ luy on HO, PY)= yeG' onG,
yeG onG',
pc (Y1, v2) on G2,
pu(vi,v2) on H®, )
_Jrerni.v) €G fory; € G, y» € G,
pr(yi, y2) = _1 2 ~
pc(ri, [ (1) € G foryi € G, ya € H,
pc(yi,2) €G foryi € G, y»e G,
fopsyi,yp)eH fory,eG, ye G\,

2. Suppose that G = G© is a locally compact groupoid and ¢ : X — G© is an open
surjective map, where X is a locally compact space. The pullback groupoid is the
groupoid

“0*(G) = X,
where
0" (G) ={(x,y,y) € X x G x X | ¢(x) =r(y) and p(y) = s(y)}

with  s(x,y,y) =y, r(x,y,y)=x, v,y 0. r2)=y y,.z) and
(x,y,y)"' =,y x). One can show that this endows *¢*(G) with a locally
compact groupoid structure. Moreover, the groupoids G and *¢*(G) are Morita
equivalent, but not isomorphic in general. To prove this last point, one can put
a locally compact groupoid structure on P=GUX x, GUG X, X U*p*(G)
over XUG®, where X x, G ={(x,7) € XX G | px)=r(y)} and G x, X =
{(y,x) € G x X |px)=s(y)}
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3.2.3 The orbits of a groupoid

Suppose that G = G? is a groupoid of source s and range r.
Definition 3.2.3 The orbit of G passing trough x is the following subset of G©:
Or, =r(Gy) = s(GY).

We let G/ G or Or(G) be the space of orbits.

The isotropy group of G at x is G, which is naturally endowed with a group
structure with x as unit. Notice that multiplication induces a free left (right) action
of G} on G* (G,). Moreover, the orbits space of this action is precisely Or, and
the restriction s : G* — Or, is the quotient map.

Examples and remarks

1. In example 4 in Section 3.2.1, the orbits of G correspond exactly to the orbits of the
equivalence relation R. In example 5, the orbits of the groupoid of the action are the
orbits of the action.

2. The second assertion in the definition of Morita equivalence precisely means that both
G and H® meet all the orbits of P. Moreover, one can show that the map

Or(G) — Or(H),
0r(G), — Or(P),NH?

is a bijection. In other word, when two groupoids are Morita equivalent, they have the
same orbit space.

Groupoids are often used in noncommutative geometry for the study of singular
geometrical situations. In many geometrical situations, the topological space which
arises is strongly non-Hausdorff, and the standard tools do not apply. Nevertheless,
it is sometimes possible to associate to such a space X a relevant C*-algebra as
a substitute for Co(X). Usually we first associate a groupoid G = G© such that
its space of orbits G/ G is (equivalent to) X. If the groupoid is regular enough
(smooth, for example), then we can associate natural C*-algebras to G. This point
will be discussed later. In other words, we desingularize a singular space by viewing
it as coming from the action of a nice groupoid on its space of units. To illustrate
this point let us consider two examples.

3.2.4 Groupoids associated to a foliation

Let M be a smooth manifold.

Definition 3.2.4 A (regular) smooth foliation F on M of dimension p is a partition
{F;}; of M where each F; is an immersed submanifold of dimension p called a
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=

Fig. 3.1.

leaf. Moreover, the manifold M admits charts of the following type:
¢ :U—> R’ xRY,

where U is open in M and such that for any connected component P of F; N U
where i € I, thereis at € R? such that p(P) = R? x {¢t}.

In this situation the tangent space to the foliation, TF := |, TF;, is a sub-
bundle of T M stable under Lie bracket.

The space of leaves M /F is the quotient of M by the equivalence relation of
being on the same leaf.

A typical example: Take M = P x T, where P and T are connected smooth
manifolds with the partition into leaves given by {P x {t}};cr. Every foliation is
locally of this type.

The space of leaves of a foliation is often difficult to study, as appears in the
following two examples:

Examples

1. Let F, be the foliation on the plane R? by lines {y = ax + },cgr where a belongs to R.
Take the torus T = R?/Z? to be the quotient of R? by translations of Z>. We denote by
F, the foliation induced by F, on T. When « is rational the space of leaves is a circle,
but when a is irrational it is topologically equivalent to a point (i.e., each point is in any
neighborhood of any other point).

2. Let C\ {(0)} be foliated by

{S:}ie10.1 YU {Dr}rer0,271

where S, = {z € C||z| = t}isthecircle of radius £, and D, = {z = e/* T+ | x € R}}.
(See Figure 3.1.)
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L

Fig. 3.2.

A holonomy groupoid is a smooth groupoid which desingularizes the space of
leaves of a foliation. Precisely, if F is a smooth foliation on a manifold M, its
holonomy groupoid is the smallest s-connected smooth groupoid G = M whose
orbits are precisely the leaves of the foliation. Here, smallest means thatif H = M
is another s-connected smooth groupoid whose orbits are the leaves of the foliation,
then there is a surjective groupoid homomorphism : H — G over identity.

The first naive attempt to define such a groupoid is to consider the graph of the
equivalence relation defined by being on the same leaf. This does not work: you get
a groupoid, but it may not be smooth. This fact can be observed in the preceding
example 2. Another idea consists in looking at the homotopy groupoid. Let T1(F)
be the set of homotopy classes of smooth paths lying on leaves of the foliation. It
is naturally endowed with a groupoid structure similarly to the homotopy groupoid
of Section 3.2.1, example 6. Such a groupoid can be naturally equipped with a
smooth structure (of dimension 2p + ¢), and the holonomy groupoid is a quotient
of this homotopy groupoid. In particular, when the leaves have no homotopy, the
holonomy groupoid is the graph of the equivalence relation of being in the same leaf.

3.2.5 The noncommutative tangent space of a conical pseudomanifold

It may happen that the underlying topological space which is under study is a nice
compact space which is “almost” smooth. This is the case of pseudomanifolds
[24, 36, 53]; for a review on the subject see [9,28]. In such a situation we can
desingularize the tangent space [18, 19]. Let us see how this works in the case of a
conical pseudomanifold with one singularity.

Let M be an m-dimensional compact manifold with a compact boundary
L. We attach to L the cone cL = L x [0, 1]/L x {0}, using the obvious map
L x {1} - L C aM. The new space X = cL U M (see Figure 3.2) is a compact
pseudomanifold with a singularity [24]. In general, there is no manifold structure
around the vertex c of the cone.
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We will use the following notation: X° = X \ {c} is the regular part, X* denotes
M\ L=X\cL, X, =M denotes its closure in X, and X~ = Lx]0, 1[. If y is
a point of the cylindrical part of X \ {c}, we write y = (y., k), where y; € L
and k, € 10, 1] are the tangential and radial coordinates. The map y — k, is
extended into a smooth defining function for the boundary of M. In particular,
k'(1)=L = 9M and k(M) C [1, +ool.

Let us consider 7 X+, the restriction to X T of the tangent bundle of X°. As a C®
vector bundle, it is a smooth groupoid with unit space X +. We define the groupoid
TSX as the disjoint union

- 5
TSX =X xX UTXT = X°,

where X~ x X~ == X is the pair groupoid.

In order to endow TSX with a smooth structure, compatible with the usual
smooth structure on X~ x X~ and on T X+, we have to take care of what happens
around points of 7 X T, 5.

Let T be a smooth positive function on R such that =1 ({0}) = [1, +oo[. We let
 be the smooth map from X° to R* given by £(y) = 7 0 k().

Let (U, ¢) be a local chart for X° around z € AXT. Setting U~ = U N X~ and
U+ = U N X+, we define a local chart of TSX by

: U xU UTUY — R" x R",

P(y) — ¢(x)
T(x)

d(x, V) = (p(x), (@)s(x, V) elsewhere.

We define in this way a smooth groupoid structure on 7SX. Note that at the
topological level, the space of orbits of TS X is equivalent to X: there is a canonical
isomorphism between the algebras C(X) and C(X°/TSX).

The smooth groupoid TSX = X° is called the noncommutative tangent space
of X.

P(x,y) = (¢(X), ) if(x,y)e U™ xU", (3.1

3.2.6 Lie theory for smooth groupoids

Let us go into the more specific world of smooth groupoids. Similarly to Lie groups
which admit Lie algebras, any smooth groupoid has a Lie algebroid [42,43].

Definition 3.2.5 A Lie algebroid A= (p: A— TM,[, ]4) on a smooth mani-
fold M is a vector bundle A — M equipped withabracket[, ] 4 : I'(A) x '(A4A) —
I'(A) on the module of sections of A together with a homomorphism of fiber
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bundle p : A — T M from A to the tangent bundle T M of M called the anchor,
such that:

(1) the bracket [, ]4 is R-bilinear, is antisymmetric and satisfies the Jacobi identity,
(1) [X, fY]la= fIX,Y]a+ p(X)(f)Y forall X, Y € I'(A) and f a smooth function
of M,
(i) p(X,Yla) = [p(X), p(Y)] forall X, Y € T'(A).

Each Lie groupoid admits a Lie algebroid. Let us recall this construction.
Let G = G© be a Lie groupoid. We denote by T°G the subbundle of TG of

s-vertical tangent vectors. In other words, 7°G is the kernel of the differential T's
of s.

Forany yinGlet R, : G,y — Gy ) be the right multiplication by y. A tangent
vector field Z on G is right invariant if it satisfies:

e Zis s-vertical: Ts(Z) = 0.
* Forall (y1, y2) in G?, Z(y; - y») = TR,,(Z(11)).

Note that if Z is a right invariant vector field and A4’ its flow, then for any ¢, the local
diffeomorphism A’ is a local left translation of G, that is, h'(y; - v») = h'(y1) - >
when it makes sense.

The Lie algebroid AG of G is defined as follows:

* The fiber bundle AG — G is the restriction of T*G to G). In other words: AG =
U,cgo TxG is the union of the tangent spaces to the s-fiber at the corresponding unit.

* The anchor p : AG — TG is the restriction of the differential Tr of r to AG.

* IfY : U — AG is alocal section of AG, where U is an open subset of G, we define
the local right invariant vector field Zy associated with Y by

Zy(y) =TR,(Y(r(y)) forall yeGY.
The Lie bracket is then defined by
[, 1:T(AG) x T(AG) — T'(AG),
(Y1, Y2) = [Zy,, Zy,]lgo,

where [Zy,, Zy,] denotes the s-vertical vector field obtained with the usual bracket, and
[Zy,, Zy,]go is the restriction of [Zy,, Zy,] to G©.

Example If TI(F) is the homotopy groupoid (or the holonomy groupoid) of a
smooth foliation, its Lie algebroid is the tangent space T F to the foliation. The
anchor is the inclusion. In particular, the Lie algebroid of the pair groupoid M x M
on a smooth manifold M is T M, the anchor being the identity map.
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Lie theory for groupoids is much trickier than for groups. For a long time
people thought that, as for Lie algebras, every Lie algebroid integrates into a Lie
groupoid [44]. In fact this assertion, named Lie’s third theorem for Lie algebroids,
is false. This was pointed out by a counterexample given by Almeida and Molino
in [1]. Since then, a lot of work has been done around this problem. A few years
ago Crainic and Fernandes [15] completely solved it by giving a necessary and
sufficient condition for the integrability of Lie algebroids.

3.2.7 Examples of groupoids involved in index theory

Index theory is a part of noncommutative geometry where groupoids may play a
crucial role. Index theory will be discussed later in this chapter, but we want to
present here some of the groupoids which will arise.

Definition 3.2.6 A smooth groupoid G is called a deformation groupoid if
G =G x {0}UG>2x]0,11 = G?9 =M x [0, 1],

where G and G are smooth groupoids with unit space M. That is, G is obtained by
gluing G, x]0, 1] = M x]0, 1], which is the groupoid G, parametrized by ]0, 1],
with the groupoid G x {0} = M x {0}.

Example Let G be a smooth groupoid, and let AG be its Lie algebroid.
The adiabatic groupoid of G [13,38,39] is a deformation of G on its Lie
algebroid:

Gaa = AG x {0} UGx]0,11= G x [0, 1],

where one can put a natural smooth structure on G,,. Here, the vector bundle
7 : AG — G is considered as a groupoid in the obvious way.

3.2.7.1 The tangent groupoid

A special example of adiabatic groupoid is the tangent groupoid of Connes [13].
Consider the pair groupoid M x M on a smooth manifold M. We saw that its
Lie algebroid is T M. In this situation, the adiabatic groupoid is called the rangent
groupoid and is given by

Gy =TM x {0} uM x Mx]0,11 = M x [0, 1].

The Lie algebroid is the bundle A(gfw) =TM x [0,1] > M x [0, 1] with anchor
p:(x,V,) eTM x[0,1]—~ (x,tV,t,0) e TM x T[0, 1].
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Choose a Riemannian metric on M. The smooth structure on Gj, is such that the
map

UcCTM x[0,1] > Gj,,

(x,V,0) ift =0,

x,V,t) > {(x, exp,(—tV),t) elsewhere

is a smooth diffeomorphism on its range, where { is an open neighborhood of
TM x {0}.

The previous construction of the tangent groupoid of a compact manifold gen-
eralizes to the case of conical manifold. When X is a conical manifold, its tangent
groupoid is a deformation of the pair groupoid over X° into the groupoid TSX.
This deformation has a nice description at the level of Lie algebroids. Indeed,
with the notation of Definition 3.2.5, the Lie algebroid of G} is the (unique) Lie
algebroid given by the fiber bundle AG} = [0, 1] x ATSX)=10,1] x TX° —
[0, 1] x X°, with anchor map

pg, t AGy =1[0,1] x TX° — T([0, 1] x X°) = T[0, 1] x T X",
*x,V)y > (A, 0,x,(Fx)+A1)V).

Such a Lie algebroid is almost injective; thus it is integrable [15, 17]. Moreover, it
integrates into the tangent groupoid, which is defined by

Gh = X° x X°x]0, 11 U TSX x {0} = X° x [0, 1].

Once again one can equip such a groupoid with a smooth structure compatible with
the usual one on each piece: X° x X°x10, 1]and TSX x {0} [19].

3.2.7.2 The Thom groupoid

Another important deformation groupoid for our purpose is the Thom groupoid
[20].

Let m : E — X be a conical vector bundle. This means that X is a conical
manifold (or a smooth manifold without vertices) and we have a smooth vector
bundle 7° : E° — X° whose restriction to X~ = Lx]0, 1[ is equal to E; x]0, 1[,
where E; — L is a smooth vector bundle. If ET — X denotes the bundle E°
restricted to X, then E is the conical manifold E = cE; U E™.

When X is a smooth manifold (with no conical point), this boils down to the
usual notion of smooth vector bundle.

From the definition, 7 restricts to a smooth vector bundle map 7° : E° — X°.
Welet o =n° x1d: E° x [0, 1] — X° x [0, 1].

We consider the tangent groupoids G5 = X° x [0, 1] for X and i =2 E° x
[0, 1] for E, equipped with a smooth structure constructed using the same gluing

17:18
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function t (in particular 7y o m = 7). We denote by *n[”(‘))l](gg() = E° x [0, 1]
the pullback of G} by 7o 1.

We first associate to the conical vector bundle E a deformation groupoid 7}
from *nfg,”(g;() to G%.. More precisely, we define

Tp =G x {0} U *n[’al](g;)x]O, 1] = E° x [0, 1] x [0, 1].

Once again, one can equip 7/ with a smooth structure [20], and the restriction of
T} to E° x {0} x [0, 1] leads to a smooth groupoid,

Hr = TSE x {0} u*n*(TSX)x]0, 1] = E° x [0, 1],

called a Thom groupoid associated to the conical vector bundle E over X.
The following example explains what these constructions become if there is no
singularity.

Example Suppose that p : E — M is a smooth vector bundle over the smooth
manifold M. Then we have the usual tangent groupoids G, = TE x {0} U E X
Ex]0,11= E x [0, 1] andgfw =TM x{0}uM x Mx]0,11 =M x [0, 1]. In
this example the groupoid 7/ will be given by

T = TE x {0} x {0} u*p*(TM) x {0}x]0, 1JU E x Ex]0, 1] x [0, 1]
= E x [0, 1] x [0, 1]

and is smooth. Similarly, the Thom groupoid will be given by Hg := TE x {0} U
*p*(TM)x]0,1] = E x [0, 1].

3.2.8 Haar systems

A locally compact groupoid G = G can be viewed as a family of locally compact
spaces

G.={yeG|s(y)=x}

parametrized by x € G2, Moreover, right translations act on these spaces. Pre-
cisely, to any y € G one associates the homeomorphism

R, : G, — G,,
n—mn-y.

This picture enables us to define the right analogue of Haar measure on locally
compact groups to locally compact groupoids, namely Haar systems. The following
definition is due to Renault [46].



P1:SJT
Book

Trim: 174mm x 247mm Top: 0.581in Gutter: 0.747in
CUUK991-Ocampo 978 0521 76482 7 November 27, 2009

Index theory and groupoids 101

Definition 3.2.7 A Haar system on G is a collection v = {v,},cgo of positive
regular Borel measure on G satisfying the following conditions:

(i) Support: For every x € G, the support of v, is contained in G,.
(ii) Invariance: For any y € G, the right-translation operator R, : G, — G, is measure-
preserving. That is, for all f € C.(G),

[ smavn = [ s-piann.
(iii) Continuity: For all f € C.(G), the map
G(O) — C,
x = [f()dve(y)

is continuous.

In contrast to the case of locally compact groups, Haar systems on groupoids may
not exist. Moreover, when such a Haar system exists, it may not be unique. In the
special case of a smooth groupoid, a Haar system always exists [40,45], and any
two Haar systems {v,} and {u,} differ by a continuous and positive function f on
GO: v, = f(x)u, forall x € GO,

Example When the source and range maps are local homeomorphisms, a possible
choice for v, is the counting measure on G,.

3.3 C*-algebras of groupoids

This second part starts with the definition of a C*-algebra together with some
results. Then we construct the maximal and minimal C*-algebras associated to a
groupoid and compute explicit examples.

3.3.1 C*-algebras — Basic definitions

In this subsection we introduce the terminology and give some examples and
properties of C*-algebras. We refer the reader to [3,21,41] for a more complete
overview on this subject.

Definition 3.3.1 A C*-algebra A is a complex Banach algebra with an involution
X > x* such that:

() Ox+py)* =rx*+ay*fork, weCandx, y € A,
(i) (xy)* = y*x*forx, y € A, and
i) [x*x] = [|x|2 for x € A.

Note that it follows from the definition that * is isometric.

17:18



P1:SJT
Book

Trim: 174mm x 247mm Top: 0.581in Gutter: 0.747in
CUUK991-Ocampo 978 0521 76482 7 November 27, 2009

102 Claire Debord and Jean-Marie Lescure

The element x in A is self-adjoint if x* = x, and normal if xx* = x*x. When 1
belongs to A, x is unitary if xx* = x*x = 1.

Given two C*-algebras A, B, a homomorphism respecting the involution is a
called a x-homomorphism.

Examples

1. Let H be a Hilbert space. The algebra £L(H) of all continuous linear transformations of
‘H is a C*-algebra. The involution of L(H) is given by the usual adjunction of bounded
linear operators.

2. Let C(H) be the norm closure of finite-rank operators on H. It is the C*-algebra of
compact operators on H.

3. The algebra M, (C) is a C*-algebra. It is a special example of the previous kind, when
dim(H) = n.

4. Let X be alocally compact, Hausdorff, topological space. The algebra Cy(X) of contin-
uous functions vanishing at oo, endowed with the supremum norm and the involution
f + f,isacommutative C*-algebra. When X is compact, 1 belongs to C(X) = Cy(X).

Conversely, Gelfand’s theorem asserts that every commutative C*-algebra A is
isomorphic to Cy(X) for some locally compact space X (and it is compact precisely
when A is unital). Precisely, a character X of A is a continuous homomorphism
of algebras X' : A — C. The set X of characters of A, called the spectrum of A,
can be endowed with a locally compact space topology. The Gelfand transform
F : A — Cy(X) given by F(x)(X) = X(x) is the desired x-isomorphism.

Let A be a C*-algebra and H a Hilbert space.

Definition 3.3.2 A x-representation of A in H is a x-homomorphism 7 : A —
L(H). The representation is faithful if 7 is injective.

Theorem 3.3.3 (Gelfand—Naimark) If A is a C*-algebra, there exists a Hilbert
space 'H and a faithful representation 7 : A — L(H).

In other words, any C*-algebra is isomorphic to a norm-closed involutive sub-
algebra of L(H). Moreover, when A is separable, 7 can be taken to be the (unique
up to isometry) separable Hilbert space of infinite dimension.

3.3.1.1 Enveloping algebra

Given a Banach x-algebra A, consider the family m, of all continuous -
representations for A. The Hausdorff completion of A for the seminorm | x| =
sup, ([lmo (x)|) is a C*-algebra called the enveloping C*-algebra of A.

17:18
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3.3.1.2 Units

A C*-algebra may or may not have a unit, but it can always be embedded into a
unital C*-algebra A:

A={x+xr|xecA, »eC}

with the obvious product and involution. The norm on A is given for all x € A by
Xl = sup{llxyll, y € A; [lyl = 1}. On Awehave || - || = || - || The algebra A
is a closed two-sided ideal in A and A/A = C.

3.3.1.3 Functional calculus

Let A be a C*-algebra. If x belongs to A, the spectrum of x in A is the compact set
Sp(x) = {r» € C | x — Ais not invertible in A}
The spectral radius of X is the number
v(x) = sup{[A]; A € Sp(x)}.
We have

Sp(x) CR when x is self-adjoint (x* = x),
Sp(x) C Ry when x is positive (x = y*y with y € A),

Sp(x) Cc U(1) when x is unitary (x*x = xx* = 1).

When x is normal (x*x = xx*), these conditions on the spectrum are equivalent.

When x is normal, v(x) = ||x||. From these, one infers that for any polyno-
mial P € C[x] one has ||P(x)|| = sup{P(¢) | t € Sp(x)} (using that Sp(P(x)) =
P(Sp(x))). We can then define f(x) € A for every continuous function f :
Sp(x) — C. Precisely, according to Weierstrass’ theorem, there is a sequence
(P,) of polynomials which converges uniformly to f on Sp(x). We simply define
f(x) =1lim P,(x).

3.3.2 The reduced and maximal C*-algebras of a groupoid

We restrict our study to the case of Hausdorff locally compact groupoids. For the
non-Hausdorff case (which is also important and not exceptional), in particular
when dealing with foliations, we refer the reader to [11, 13,32].

From now on, G = G'? is a locally compact Hausdorff groupoid equipped with
a fixed Haar system v = {v,},cc0. We let C.(G) be the space of complex-valued
functions with compact support on G. It is provided with a structure of involutive

17:18
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algebra as follows. If f and g belong to C.(G), we define the involution by

fory € G, )= fly=h,

and the convolution product by

fory € G, fxgly)= / frn~Hgmdvy(n),
neGy

where x = s(y). The 1-norm on C.(G) is defined by

[fllt = sup max (/G If(J/)Idvx(V),/G If()/_l)ldvx()/))~

xeGO

The groupoid full C*-algebra C*(G, v) is defined to be the enveloping C*-algebra
of the Banach x-algebra CC(G)”'Hl obtained by completion of C.(G) with respect
to the norm || - ||;.

Given x in G©, fin C.(G), & in L*(G,, vy), and y in G, we set
(6 = [ RO
neG,

One can show that 7, defines a x-representation of C.(G) on the Hilbert space
L?*(Gy, vy). Moreover, for any f € C.(G), the inequality ||7.(f)|| < || ]l holds.
The reduced norm on C.(G) is

If1l- = sup {7 (O}

xeGO

which defines a C*-norm. The reduced C*-algebra C,(G, v) is defined to be the
C*-algebra obtained by completion of A with respectto | - ||,.

When G is smooth, the reduced and maximal C*-algebras of the groupoid G do
not depend up to isomorphism on the choice of the Haar system v. In the general
case they do not depend on v up to Morita equivalence [46]. When there is no
ambiguity on the Haar system, we write C*(G) and C;(G) for the maximal and
reduced C*-algebras.

The identity map on C.(G) induces a surjective homomorphism from C*(G) to
C(G). Thus C}(G) is a quotient of C*(G).

For a quite large class of groupoids, amenable groupoids [2], the reduced and
maximal C*-algebras are equal. This will be the case for all the groupoids we will
meet in the last part of this course devoted to index theory.

Examples

1. When X = X is alocally compact space, C*(X) = CH(X) = Co(X).

2. When G = e is a group and v a Haar measure on G, we recover the usual notion of
reduced and maximal C*-algebras of a group.

17:18
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3. Let M be a smooth manifold, and 7T M = M the tangent bundle. Let us equip the vector

bundle T M with a Euclidean structure. The Fourier transformation

feCATM), (x,w)eT*M, f(x,w)= e X F(X)dX

7 ),
Qm)? Jxer.m
gives rise to an isomorphism between C*(TM) = C;(T M) and Co(T*M). Here, n
denotes the dimension of M, and 7*M the cotangent bundle of M.

Let X be alocally compact space, with i a measure on X, and consider the pair groupoid
X x X = X.If f, g belongs to C.(X x X), the convolution product is given by

f*g(x,y)=/ f(x, 2)g(z, y)du(z),
zeX

and a representation of C.(X x X) by
7 Co(X x X) > LILA(X, p)); T(f)E)x) = / . fx, 2)§(2)du(z)

when f e C.(X x X), & € L*(X,p) and x € X. It turns out that C*(X x X) =
CH(X x X) ~ K(L*(X, w)).

Let M be a compact smooth manifold, and G}, == M x [0, 1] its tangent groupoid. In
this situation C*(G},) = C}(G},) is a continuous field (A,),¢[0,1; of C*-algebras [21]
with Ag >~ Co(T* M) a commutative C*-algebra, and for any ¢ €]0, 1], A, >~ K(L>(M))
[13].

In the sequel we will need the two following properties of C*-algebras of

groupoids.

1.

Let G; and G, be two locally compact groupoids equipped with Haar systems, and
suppose for instance that G is amenable. Then according to [2], C*(G) = C}(Gy)
is nuclear — which implies that for any C*-algebra B there is only one tensor product
C*-algebra C*(G1) ® B. The groupoid G| x G, is locally compact, and

C*(G1 X G2) ~ C*(G1) ® C*(Gy) and C’ (G x Gy) >~ C*(G1) ® CX(Gr).

. Let G = G be a locally compact groupoid with a Haar system v. An open subset

U c GO is saturated if U is a union of orbits of G, in other words, if U = s(r—'(U)) =
r(s~(U)). The set F = G \ U is then a closed saturated subset of G'®. The Haar
system v can be restricted to the restrictions G|y = Gg and G| := G, and we have
the following exact sequence of C*-algebras [27,45]:

0— C*(Gly) iR C*(G) 5 C*(Glp) = 0

where i : C.(G|y) = C.(G) is the extension of functions by 0, and r : C.(G) —
C.(G|F) is the restriction of functions.

17:18
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II. KK-Theory

This part on KK -theory starts with a historical introduction. In order to motivate our
purpose we list most of the properties of the KK -functor. Sections 3.5 and 3.6 are
devoted to a detailed description of the ingredients involved in KK -theory. In order
to write this review we have made intensive use of the references [26, 48,49, 54].
Moreover, a significant part of this chapter was written by Jorge Plazas from the
lectures held in Villa de Leyva, and we would like to thank him for his great
help.

3.4 Introduction to KK -theory
3.4.1 Historical comments

The story begins with several studies by Atiyah [4,5].

Firstly, recall that if X is a compact space, the K -theory of X is constructed in
the following way: let Ev be the set of isomorphism classes of continuous vector
bundles over X. Thanks to the direct sum of bundles, the set £v is naturally endowed
with the structure of an abelian semigroup. One can then symmetrize £v in order
to get a group; this gives the K -theory group of X:

K%X) = {[E] - [F; [E],[F] € Ev}.

For example, the K-theory of a point is Z, for a vector bundle on a point is
just a vector space, and vector spaces are classified, up to isomorphism, by their
dimension.

A first step towards KK -theory is the discovery, made by Atiyah [4] and inde-
pendently by Janich [29], that K-theory of a compact space X can be described
with Fredholm operators.

When H is an infinite-dimensional separable Hilbert space, the set F(H) of
Fredholm operators on 'H is the open subset of £(H) made of bounded operators
T on H such that the dimensions of the kernel and cokernel of T are finite. The set
F(H) is stable under composition. We set

[X, F(H)] = {homotopy classes of continuous maps: X — F(H)}.

The set [ X, F(H)] is naturally endowed with a semigroup structure. Atiyah and
Jinich showed that [ X, F(H)] is actually (a group) isomorphic to K°(X) [4]. The
idea of the proof is the following. If f : X — F(H) is a continuous map, one can
choose a subspace V of ‘H of finite codimension such that

Vx € X, VNnker f, = {0} and U ‘H/f:(V)is a vector bundle.  (3.2)

xeX
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Denoting by H/f (V) the vector bundle arising in (3.2) and by H/V the product
bundle X x H/V, the Atiyah—Janich isomorphism is then given by

[X, F(H)] — K%(X),
[f1 [H/V]—=TH/F(V)].

Note that choosing V amounts to modifying f inside its homotopy class into f
(defined to be equal to f on V and to 0 on a supplement of V') such that

Kerf := |_J Ker(f,) and CoKerf := |_J H/ f.(H) (3.4)

xeX xeX

3.3)

are vector bundles over X. These constructions contain relevant information for
the sequel: the map f arises as a generalized Fredholm operator on the Hilbert
C(X)-module C(X, H).

Later, Atiyah tried to describe the dual functor K((X), the K-homology of X,
with the help of Fredholm operators. This gave rise to Ell(X), whose cycles are
triples (H, m, F') where:

* H = Hy® H, is a Z, graded Hilbert space.
* 7 :C(X)— L(H) is arepresentation by operators of degree 0, which means that

C(mlf) 0
”(f)‘< 0 m(f))'

* F belongs to L(H), is of degree 1 and thus is of the form
0 G
F =
(%)

F’—1eK(H) and [rm, F]e K(H)

and satisfies

In particular, G is an inverse of 7 modulo compact operators.

Elliptic operators on closed manifolds produce natural examples of such cycles.
Moreover, there exists a natural pairing between Ell(X) and K°(X), justifying the
choice of ElI(X) as a candidate for the cycles of the K-homology of X:

K%X) x Ell(X) = Z,
([E], (H, , F)) — Index(Fg),

(3.5)

where Index(Fg) = dim(Ker(Fg)) — dim(CoKer(Fg)) is the index of a Fredholm
operator associated to a vector bundle £ on X and a cycle (H, , F), as follows.
Let E’ be a vector bundle on X such that E @ E' ~ C" x X, and let e be the
projection of CV x X onto E. We can identify C(X, CV) c%( : H with HV ., Let &
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be the image of e ® 1 under this identification. We define Fr := éF"|;zv), where
FV is the diagonal operator with F in each diagonal entry. The operator F is the
desired Fredholm operator on é(H™).

Now, we should recall that to any C*-algebra A (actually, to any ring) is associ-
ated a group Ko(A). When A is unital, it can be defined as follows:

Ko(A) = {[E] — [F]; [£], [F]are isomorphism classes of
finitely generated projective A-modules}.

Recall that an A-module £ is finitely generated and projective if there exists
another A-module G such that £ @ G ~ A" for some integer N.

The Swan—Serre theorem asserts that for any compact space X, the category of
(complex) vector bundles over X is equivalent to the category of finitely generated
projective modules over C(X); in particular, K°(X) ~ Ky(C(X)). This fact and the
(C*-)algebraic flavor of the preceding constructions lead to the natural attempt to
generalize them for noncommutative C*-algebras.

During 1979 and the 1980s G. Kasparov defined with great success, for any pair
of C*-algebras, a bivariant theory, the KK -theory. This theory generalizes both
K -theory and K-homology and carries a product generalizing the pairing (3.5).
Moreover, in many cases K K(A, B) contains all the morphisms from K((A) to
Ko(B). To understand this bifunctor, we will study the notions of Hilbert modules,
of adjointable operators acting on them and of generalized Fredholm operators
which generalize to arbitrary C*-algebras the notions already encountered for
C(X). Before going to this functional-analytic part, we end this introduction by
listing most of the properties of the bifunctor KK.

3.4.2 Abstract properties of KK (A, B)

Let A and B be two C*-algebras. In order to simplify our presentation, we assume
that A and B are separable. Here is a list of the most important properties of the
KK functor:

KK (A, B) is an abelian group.

Functorial properties. The functor KK is covariant in B and contravariant in A:
if f:B— Candg: A — D aretwo homomorphisms of C*-algebras, there exist
two homomorphisms of groups,

f.:KK(A,B)— KK(A,C) and g*:KK(D,B)— KK(A, B)-

In particular Id, = Id and Id* = Id.
Each x-morphism f : A — B defines an element, denoted by [ f],in K K (A, B).
Weset 14, :=[Ids] € KK(A, A).
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Homotopy invariance. K K(A, B) is homotopy invariant. Recall that the C*-
algebras A and B are homotopic if there exist two *-morphisms f : A — B and
g : B — Asuchthat f o gis homotopictoldp and g o f is homotopic to Id4. Two
homomorphisms F, G : A — B are homotopic when there exists a x-morphism
H: A — C([0, 1], B) such that H(a)(0) = F(a) and H(a)(1) = G(a) for any
acA.

Stability. If K is the algebra of compact operators on a Hilbert space, there are
isomorphisms

KK(A,BRK)~KK(A®K, B)~ KK(A, B).

More generally, the bifunctor KK is invariant under Morita equivalence.
Suspension. If E is a C*-algebra, there exists a homomorphism

1z : KK(A,B) > KK(A® E,BQE)

which satisfies g o Tp = tggp for any C*-algebra D.
Kasparov product. There is a well-defined bilinear coupling

KK(A, D) x KK(D, B) - KK(A, B),
(x, ) > x®Yy,

called the Kasparov product. It is associative, covariant in B and contravariant in
A:if f:C — Aand g : B — E are two homomorphisms of C*-algebras, then

ffa®y)=f"x)®y and gx®y) =x® g(y).
If g : D — C is another *-morphism, x € KK (A, D)and z € KK(C, B), then
ho(x)®z=x ®h*(2).
Moreover, the following equalities hold:
[f)=10f1®x, 8(2)=2zQ®I[gl and [foh]l=[h]Q[f]
In particular
xQ1lp=14,Q0x =x.

The Kasparov product behaves well with respect to suspensions. If E is a C*-
algebra,

TE(x @ y) = Te(x) @ Te(y).
This enables us to extend the Kasparov product:
®:KK(A,BD)x KK(D®C,E) > KK(A®C,BQ® E),
D
(@, y) > x @y = 1c(x) @ T5(y).

The Kasparov product ® is commutative.
C

17:18
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Higher groups. For any n € N, let
KK,(A, B) := KK(A, Co(R") ® B).
An alternative definition, leading to isomorphic groups, is
KK,(A,B):=KK(A,C, ® B),

where C, is the Clifford algebra of C". This will be explained later. The functor
KK satisfies Bott periodicity: there is an isomorphism

KK>(A, B) >~ KK(A, B).
Exact sequences. Consider the following exact sequence of C*-algebras:
0—>J N AL 00— 0,

and let B be another C*-algebra. Under a few more assumptions (for example, all
the C*-algebras are nuclear or K -nuclear, or the preceding exact sequence admits
a completely positive norm-decreasing cross section [50]), we have the following
two periodic exact sequences:

KK(B,J) —*> KK(B,A) — KK(B, Q)

il I

KK (B, Q) «<— KK (B,A) «<— KK (B, /J)
Px Iy

KK(0.B) —> KK(A,B) —— KK(J.B)

] It
KK(J,B) «<—— KK (A, B) «<——— KK (Q, B)
i* [7*
where the connecting homomorphisms § are given by Kasparov products.
Final remarks. Let us go back to the end of the introduction in order to make it

more precise.
The usual K-theory groups appears as special cases of KK -groups:

KK(C, B) >~ Ky(B),
and the K -homology of a C*-algebra A is defined by
K°A) = KK(A,C).
Any x € KK (A, B) induces a homomorphism of groups:
KK(C,A) ~ Kyo(A) -> Kyo(B) ~ KK(C, B),

a—>a®x.

17:18
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In most situations, the induced homomorphism
KK(A, B) — Mor(Ko(A), Ko(B))
is surjective. Thus one can think of KK-elements as homomorphisms between
K -groups.
When X is a compact space, one has K%X) ~ Ko(C(X)) ~ KK(C, C(X)) and,
as we will see shortly, K°(C(X)) = KK(C(X), C) is a quotient of the set EI1(X)

introduced by Atiyah. Moreover the pairing K°(X) x Ell(X) — Z coincides with
the Kasparov product K K(C, C(X)) x KK(C(X),C) - KK(C,C) ~ Z.

3.5 Hilbert modules

We review the main properties of Hilbert modules over C*-algebras, necessary for
a correct understanding of bivariant K -theory. We closely follow the presentation
given by Skandalis [48]. Most of the proofs are taken from his lectures on the
subject. We are indebted to him for allowing us to use his lecture notes. Some of
the following material can also be found in [54], where the reader will find a guide
to the literature and a more detailed presentation.

3.5.1 Basic definitions and examples
Let A be a C*-algebra and E be a A-right module.

A sesquilinear form (-,-) : E x E — A is positive if for all x € E one has
(x,x) € A;. Here A, denotes the set of positive elements in A. It is positive
definite if moreover (x, x) = 0 if and only if x = 0.

Let (-,-) : E x E — A be a positive sesquilinear form, and set Q(x) = (x, x).
By the polarization identity

1 : : : :
Vi.y € E, (xy)=2(Q0+y) —iQ(x +iy) — Q(x — y) +i0(x — iy)).
we get

Vx,ye E, (x,y)=(, 0"

Definition 3.5.1 A pre-Hilbert A-module is a right A-module E with a positive
definite sesquilinear map (-, -) : E x E — A such that y — (x, y) is A-linear.

Proposition 3.5.2 Let (E, (-, -)) be a pre-Hilbert A-module. Then
Vx € E, |xll =+l x)l (3.6)
defines a norm on E.

The only nontrivial fact is the triangle inequality, which results from
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Lemma 3.5.3 (Cauchy—Schwarz inequality)

Va,y € B, (x, )" (x,y) < xRy, p).
In particular, ||(x, y)II < [lx][Iy]-
Seta = (x, y). We have for all ¢ € R that (xa + ty, xa + ty) > 0; thus
2ta*a < a*(x, x)a + 1>(y, y). (3.7

Because (x, x) > 0, wehave a*(x, x)a < |x||?a*a (use the equivalence z*z < w*w
if and only if ||zx|| < ||wx] for all x € A), and choosing ¢ = ||x||? in (3.7) gives
the result.

Definition 3.5.4 A Hilbert A-module is a pre-Hilbert A-module which is complete
for the norm defined in (3.6).

A Hilbert A-submodule of a Hilbert A-module is a closed A-submodule provided
with the restriction of the A-valued scalar product.

When there is no ambiguity about the base C*-algebra A, we simply say pre-
Hilbert module and Hilbert module.

Let (E, (-, -)) be a pre-Hilbert A-module. From the continuity of the sesquilinear
form (-, ) : E x E — A and of the right multiplication £ — E, x + xa for any
a € A, we infer that the completion of E for the norm (3.6) is a Hilbert A-module.

Remark 3.5.5 In the definition of a pre-Hilbert A-module, one can remove the
hypothesis that (-, -) is definite. In that case, (3.6) defines a seminorm, and one
checks that the Hausdorff completion of a pre-Hilbert A-module, in this extended
sense, is a Hilbert A-module.

We continue this subsection with classical examples.
1. The algebra A is a Hilbert A-module with its obvious right A-module structure and
(a,b) :=a*b.

2. For any positive integer n, A" is a Hilbert A-module with its obvious right A-module
structure and

(@). (b)) := ) _afb;-
i=1
Observe that ) ;_, a*a; is a sum of positive elements in A, which implies that

n
*

E ai a;

i=1

(@)l =

> [lall
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for all k. It follows that if (a{", ..., a)"), is a Cauchy sequence in A" and that the
sequences ('), are Cauchy in A and thus convergent, and we conclude that A" is
complete.

3. Example 2 can be extended to the direct sum of n Hilbert A-modules Ey, ..., E, with
the Hilbertian product:

(), 1) = ) (X0, ¥ -
i=1
4. If F is a closed A-submodule of a Hilbert A-module E, then F' is a Hilbert A-module.

For instance, a closed right ideal in A is a Hilbert A-module.
5. The standard Hilbert A-module is defined by

Ha = {x = (x)eeny € AV | Zx,ka converges}. (3.8)
keN
The right A-module structure is given by (xx)a = (x;a), and the Hilbertian A-valued
product is
+00
() ) = D Xk (3.9)
k=0

This sum converges for elements of H 4; indeed, for all ¢ > p € N we have

q

lej)’k

k=p

= ” ((xk)Zv (yk)z)Aq*I’ ”

IA

”(xk)‘lf, || Aw" (yk)‘;, || A (Cauchy-Schwarz inequality in A777)

q q
* *
E Xy Xk E Vi Yk
k=p k=p

This implies that ), x; i satisfies the Cauchy criterion, and therefore converges, so
that (3.9) makes sense. Because for all (x;), (yx) in Hx

DOk ) ) =Y Xixe+ Y Vixe+ D x5+ D vin

k>0 k>0 k>0 k>0 k>0

is the sum of four convergent series, we find that (xi) 4+ (yx) = (xx + yr) isin Ha. We
also have, as before, that for all a € A and (x;) € Ha,

—+00
E XX
k=0

Hence, H 4 is a pre-Hilbert A-module, and we need to check that it is complete. Let
(tn)n = ((u}))n be a Cauchy sequence in H 4. We get, as in Example 2, that foralli € N
the sequence (u}'), is Cauchy in A and thus converges to an element denoted v;. Let us
check that (v;) belongs to H 4.

2
< llal

+o00
> (xa)* (xia)
k=0
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Let ¢ > 0. Choose ng such that
Vp > g > no, ”uq - up”HA =< 8/2'

Choose i such that
k

nox_ no
2:“1‘ u;

i=j

1/2

Yk > j > i, <eg/2.

Then thanks to the triangle inequality in A*~/, we get for all p, ¢ > ng and j, k > i
k

P, P
E:”i u;

i=j

k

nox_  no
E:”i u;

i=j

172
<

172
+

172
<e&.

k
Do =yl = ui)
i=j

Taking the limit p — 400, we get || Zf:j v I'/? < & for all J, k > iy, which implies

that (v;) € Ha. It remains to check that (u,), converges to v = (v;) in H,. With the
notation just defined,

I 1/2
Vp,q > no, VI €N, do@! —uly@! —uh)|  =<e
i=0
Taking the limit p — 400, we have
I 1/2
Vg > no, VI €N, Y wi—ulywi—uh)| <
i=0

and taking the limit / — 400,
Vg = no, flv—uyll <e,

which ends the proof.

The standard Hilbert module H4 is maybe the most important Hilbert module.
Indeed, Kasparov proved:

Theorem 3.5.6 Let E be a countably generated Hilbert A-module. Then H 4 and
E & H, are isomorphic.

The proof can be found in [54]. This means that there exists an A-linear unitary
map U : E @ Hs — H4. The notion of unitary uses the notion of adjoint, which
will be explained later.

Remark 3.5.7
1. The algebraic sum €PA is dense in H 4.
N

2. In 'H4 we can replace the summand A by any sequence of Hilbert A-modules (E;);en,
and the Hilbertian A-valued product by

“+o00

() ) = D (ks Y-

k=0

If E; = E forall i € N, the resulting Hilbert A-module is denoted by I*(N, E).
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3. We can generalize the construction to any family (E;);c; using summable families
instead of convergent series.

We end this subsection with two concrete examples.

a. Let X be alocally compact space and E a Hermitian vector bundle. The space Co(X, E)
of continuous sections of E vanishing at infinity is a Hilbert Cy(X)-module with the
module structure given by

£ -a(x) =§(x)a(x), £ € Cy(X,E), aceCyX),
and the Cy(X)-valued product given by
€. mx) = (Ex), n(x))E, -

b. Let G be a locally compact groupoid with a Haar system, A, and E a Hermitian vector
bundle over G, Then

g€ CAG,r"E), (f9)y) = / SOy ™), g, dV () (3.10)

G

gives a positive definite sesquilinear C.(G)-valued form which has the correct behavior
with respect to the right action of C.(G) on C.(G, r*E). This leads to two norms
£ = 11Cf Ol and [1£1- = (£, £, and two completions of Ce(G, r*E),
denoted C*(G,r*E) and C}(G,r*E), WhiCil are Hilbert modules, respectively, over
C*(G) and C}(G).

3.5.2 Homomorphisms of Hilbert A-modules
Let E, F be Hilbert A-modules. We will need the orthogonality in Hilbert modules:

Lemma 3.5.8 Let S be a subset of E. The orthogonal of S,
St={xeE|¥yeS. (y.x)=0},
is a Hilbert A-submodule of E.

3.5.2.1 Adjoints

LetT : E — F be amap. T is adjointable if there exists amap S : F — E such
that

Yix,y)e ExF, (Tx,y)=(x,Sy). (3.11)

Definition 3.5.9 Adjointable maps are called homomorphisms of Hilbert A-
modules. The set of adjointable maps from E to F is denoted by Mor(E, F),
and Mor(E) = Mor(E, E). The space of linear continuous maps from E to F is
denoted by L(E, F)and L(E) = L(E, E).

17:18
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The terminology will become clear after the next proposition.
Proposition 3.5.10 Let T € Mor(E, F).

(a) The operator satisfying (3.11) is unique. It is denoted by T* and called the adjoint of
T. One has T* € Mor(F, E) and (T*)* =T.

(b) T islinear, A-linear and continuous.

(¢) ITN=I1T*I, IT*T| = IIT|? and Mor(E, F) is a closed subspace of L(E, F). In
particular Mor(E) is a C*-algebra.

(d) If S e Mor(E, F)and T € Mor(F, G), then TS € Mor(E, G) and (T S)* = S*T*.
Proof (a) Let R, S be two maps satisfying (3.11) for 7. Then
Vxe E,yeF, (x,Ry—Sy)=0,

and taking x = Ry — Sy yields Ry — Sy = 0. The remaining part of the assertion
is obvious.
(b)Vx,ye E,ze F,  €C,

(T(x +21y), 2) = (x + 4y, T*2) = (x, T*2) + A(y, T*2) = (Tx, 2)(A Ty, 2);

thus T(x +Ay) = Tx + ATy, and T is linear. Moreover,

VxeE,ye Fae A, (T(xa),y)= (xa,T*y)=a*(x,T*y) = ((Tx)a,y),
which gives the A-linearity. Consider the set

S={(-T"y,y)e Ex F|y e F}.
Then
(x0, o) € S & ¥y € F, (x0, =T*y) + (y0,¥) =0
< VyeF, (yo— Txo,y)=0.

Thus G(T) ={(x,y) € E x F | y=Tx} = S* is closed, and the closed-graph
theorem implies that 7" is continuous.
(c) We have

IT|* = sup |Tx||* = sup (x, T*Tx) < |T*T| < IT*|IT].

llxli<1 lxli<t

Thus ||T|| < |IT*||, and switching T and T* gives the equality. We have also
proved

ITI> < IT*TI < IT*ITN = T

thus | T*T|| = || T||?, and the norm of Mor(E) satisfies the C*-algebraic equation.

17:18
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Let (7,), be a sequence in Mor(E, F) which convergesto T € L(E, F). Because
IT|| = |IT*]| and because T — T* is (anti)linear, the sequence (7)), is a Cauchy
sequence, and therefore converges to an operator S € L(F, E). It then immediately
follows that S is the adjoint of 7. This proves that Mor(E, F)is closed; in particular,
Mor(E) is a C*-algebra.

(d) Easy. [l

Remark 3.5.11 There exist continuous linear and A-linear maps 7 : E — F
which do not have an adjoint. For instance, take A = C([0, 1]), J = Co(]0, 1])
and T : J < A the inclusion. Assuming that 7' is adjointable, a one-line com-
putation proves that 7*1 = 1. But 1 does not belong to J. Thus J < A has no
adjoint.

One can also take £ = C([0,1]) ® Cop(]0, 1)) and T : E - E,x+y+—~> y+0
to produce an example of T € L(E) and T & Mor(E).

One can characterize self-adjoint and positive elements in the C*-algebra
Mor(E) as follows.

Proposition 3.5.12 Let T € Mor(E).

(a) T=T*Vxe€kE, (x, Tx)=(x,Tx)*
(b) T>0&VxeE, (x,Tx)>0
Proof (a) The implication = is obvious. Conversely, set Q7(x) = (x, Tx). Using

the polarization identity

1
@, Ty)= 2 (Qr(x +y) —iQr(x +iy) = Or(x —y) +iQ7(x —iy)),

one easily gets (x, Ty) = (Tx, y) forall x, y € E; thus T is self-adjoint.

(b) If T is positive, there exists S € Mor(E) such that T = §*S. Then (x, Tx) =
(Sx, Sx) is positive for all x. Conversely, if (x, Tx) > O for all x, then T is self-
adjoint by (a), and there exist positive elements 7., T_ such that

T=T,-T_, . 7_-=T_T, =0.
It follows that
Vx e E, (x,Tyx) > (x, T_x),
VzeE, (T_z, T, T_z)>(T_z, T_T_z),
Vz e E, (z,(T-)z) <0.

Because T is positive, T° is also positive and the last inequality implies 7> = 0.
It follows that 7_ = O and then T = Ty > 0. O

17:18
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3.5.2.2 Orthocompletion

Recall that for any subset S of E, S+ is a Hilbert submodule of E. It is also worth
noticing that any orthogonal submodules F L G of E are direct summands.
The following properties are left to check as an exercise:

Proposition 3.5.13 Let F, G be A-submodules of E.

e EL ={0}and {0}* = E.

s FCG=G'cF™-

e FCF.

* [fF LGand F® G = E, then FLl=Gand Gt =F. In particular, F and G are
Hilbert submodules.

Definition 3.5.14 A Hilbert A-submodule F of E is said to be orthocomplemented
ifF®F-=E.

Remark 3.5.15 A Hilbert submodule is not necessarily orthocomplemented, even
if it can be topologically complemented. For instance, consider A = C([0, 1]) and
J = Cy(]0, 1]) as a Hilbert A-submodule of A. One easily checks that J+ = {0};
thus J is not orthocomplemented. On the other hand, A = J & C.

Lemma 3.5.16 Let T € Mor(E). Then

e ker7* = (ImT7T)%,
e ImT C (ker T*)*.

The proof is obvious. Note the difference in the second point from the case
of bounded operators on Hilbert spaces (where equality always occurs). Thus, in
general, ker 7* @ Im T is not the whole of E. Such a situation can occur when
Im T is not orthocomplemented.

Let us point out that we can have T* injective without having Im 7" dense in E
(for instance, T : C[0, 1] — C|O0, 1], f — tf). Nevertheless, we have:

Theorem 3.5.17 Let T € Mor(E, F). The following assertions are equivalent:

(i) ImT is closed,

(ii) ImT* is closed,
(iii) 0 is isolated in spec(T*T) (or O & spec(T*T)),
(iv) 0 is isolated in spec(TT*) (or 0 & spec(TT%)),

and in that case Im T, Im T* are orthocomplemented.

Thus, under the assumption of the theorem ker 7* @ Im7T = F,kerT @ ImT* =
E. Before proving the theorem, we gather some technical preliminaries into a
lemma:

17:18
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Lemma 3.5.18 Let T € Mor(E, F). Then:

(i) T*T = 0. We set |T| = ~T*T.
(ii) ImT* =Im|T| =ImT*T.
(iii) Assume that T(E,) C Fy for some Hilbert submodules E, F\. Then T|g, €
MOF(E] , F] )
(iv) If T is onto, then TT* is invertible (in Mor(F)) and E =kerT & ImT*.

Proof Proof of the lemma: (i) is obvious.
(i1) One has T*T(E) C T*(F). Conversely,

T* =limT*(1/n+ TT*)'TT*.

This is a convergence in norm, because

—1
IT*(/n+ TT*'TT* — T*|| = H%T (% + TT*) = 0(1//n).

It follows that T*(F) C T*T(E) and thus Im7* = Im T*T. Replacing T by |T|
yields the other equality.

(iii) Easy.

(iv) By the open-mapping theorem, there exists a positive real number k > 0
suchthateach y € F hasapreimage x, by T with || y|| > k||x,||. Using the Cauchy—
Schwarz inequality for 7"y and x,, we get

IT*yll = kllyll Vy e F. ()

Recall that in a C*-algebra, the inequality a*a < b*b is equivalent to ||ax| < ||bx]|
for all x € A. This can be adapted to Hilbert modules to show that (x) implies
TT* > k* in Mor(F), so that TT* is invertible. Then p = T*(TT*)"'T is an
idempotent and E = ker p @ Im p. Moreover, (TT*)~!'T is onto, from which it
follows that Im p = Im T*. On the other hand, T*(TT*)~! is injective, so that
ker p =kerT. O

Proof Proof of the theorem: Let us start with the implication (i) = (iv). By point
(ii1) of the lemma, S := (7T : E — TE) € Mor(E, TE), and by point (iv) of the
lemma SS* is invertible. Because the spectra of SS* and S*S coincide outside O
and because $*S = T*T, we get (iii).

The implication (iv) = (i): Consider the functions f, g : R — R defined by
f0)=g0)=0, f(t) =1, g)=1/t for t #0. Thus f and g are continu-
ous on the spectrum of 7T*. Using the equalities f(¢)t =1t and tg(¢t) = f(¢),
we get f(TT*)TT*=TT* and TT*g(TT*) = f(TT"), from which we deduce
Im f(TT*) =ImTT*. But f(TT¥)is aprojector (self-adjoint idempotent); hence
Im TT* is closed and orthocomplemented. Using point (ii) of the lemma and the
inclusionIm TT* C Im T yields (i) (and also the orthocomplementability of Im T').

17:18
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At this point we have the following equivalences: (i) < (iii) < (iv). Replacing
T by T*, we get (ii) < (iii) < (iv). O

Another result which deserves to be stated is:

Proposition 3.5.19 Let H be a Hilbert submodule of E, and T : E — F a A-linear
map.

* H is orthocomplemented if and only ifi : H — E € Mor(H, E).
* T € Mor(E, F) if and only if the graph of T,
{(x,y) € Ex Fly=Tx},

is orthocomplemented.

3.5.2.3 Partial isometries
The following easy result is left as an exercise:

Proposition 3.5.20 (and definition). Let u € Mor(E, F). The following assertions
are equivalent:

i) u*u is an idempotent,
p

(ii) uu* is an idempotent,

(iii) u* = u*uu*,

(iv) u = uu*u.

u is then called a partial isometry, with initial support I = Imu* and final support
J =Imu.

Remark 3.5.21 If u is a partial isometry, then ker u = ker u*u, keru™ = keruu*,
Imu = Imuu* and Imu* = Imu*u. In particular, # has closed range, and E =
keru @ Imu*, F = keru* @ Im u, where the direct sums are orthogonal.

3.5.2.4 Polar decompositions

All homomorphisms do not admit a polar decomposition. For instance, con-
sider T € Mor(C[—1, 1]) defined by Tf =1t - f (here C[—1, 1] is regarded as
a Hilbert C[—1, 1]-module). T is self-adjoint, and |T'| : f +— |t| - f. The equa-
tion T = u|T|, u € Mor(C[—1, 1]), leads to the constraint u(1)(z) = sign(¢), so
u(l) ¢ C[—1, 1] and u does not exist.

The next result clarifies the requirements for a polar decomposition to exist:

Theorem 3.5.22 Let T € Mor(E, F) such that ImT and Im T* are orthocom-
plemented. Then there exists a unique u € Mor(E, F), vanishing on ker T, such
that

T =ulT|.

Moreover, u is a partial isometry with initial support Im T* and final support Im T .

17:18
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Proof We first assume that T and 7* have dense range. Setting u, = T(1/n +
T*T)~'/2, we get a bounded sequence (|ju,|| < 1) such that for all y € F we
have u,(T*y) = T(1/n + T*T)~'2T*y — /T T*(y). Thus, by density of Im T,
u,(x) converges for all x € E. Let v(x) denotes the limit. Replacing T by T*,
we also have that u;(y) converges for all y € F, which yields v € Mor(E, F).
A careful computation shows that u,|7| — T goes to 0 in norm. Thus v|T| =T.
The homomorphism v is unique by density of Im|7|, and is unitary because
upuy(x) — x for all x € Im T*T; this proves v*v = 1, and similarly for vv™.
Now consider the general case, and set £y = ImT*, F; = ImT. One applies
the first step to the restriction 73 € Mor(Ey, F) of T, and we denote by v, the
unitary homomorphism constructed. We set u(x) = vi(x) if x € E, and u(x) =0
if x € E{ = ker T. This definition forces the uniqueness, and it is clear that u is a
partial isometry with the claimed initial and final supports. O

Remark 3.5.23 u is the strong limit of 7(1/n + T*T)~'/2.

3.5.2.5 Compact homomorphisms
Letx € E, y € F, and define 6, , € Mor(E, F) by
ey,x(z) =Yy- (x, 2).
The adjoint is given by 6 . = 6, ,. Then

Definition 3.5.24 We define KC(E, F) to be the closure of the linear span of
{0,x; x € E,y € F}inMor(E, F).

One easily checks that

* 116yl < Ixllllyll and [|6x.. ]l = Ix]1%,
* T0,,=0r,,and 0, S =06, s,
* K(FE):= K(E, E) is a closed two-sided ideal of Mor(F) (and hence a C*-algebra).

We also prove:
Proposition 3.5.25
M(K(E)) ~ Mor(E),
where M(A) denotes the multiplier algebra of a C*-algebra A.

Proof One can show that for all x € E there is a unique y € E such that x =
y - (v, y) (a technical exercise: show that the limit y = limx - f,(+/(x, x)) with
fu(t) = t'3(1/n 4+ t)7! exists and satisfies the desired assertion). Consequently,
E is a nondegenerate JC(E)-module (i.e., (E) - E = E);indeed,x = y - (y, y) =
6y,y(y). Using an approximate unit (u,) o for (E), we can extend the IC(E)-module
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structure of E into an M(IC(E))-module structure:

VT € M(K(E)),x e E, T-x= lil{n T(uy) - x.

The existence of the limit is a consequence of x =6, ,(y) and T'(u,) -0, , =
T (u0y,,) — T(0y,). The limitis T(0, ) - y. By the uniqueness of y, this module
structure, extending that of /C(E), is unique.

Hence each m € M(K(E)) givesrisetoamap M : E — E.Forany x, z in E,

(z, M - x) = (z, (mby,)) - y) = ((mby,)*(2), y);

thus M has an adjoint: M € Mor(E), and M* corresponds to m*. The map p :
m — M provides a x-homomorphism from M(K(E)) to Mor(E), which is the
identity on JC(E). On the other hand, let 7 : Mor(E) — M(IC(E) be the unique *-
homomorphism, equal to the identity on K(E), associated to the inclusion C(E) C
Mor(E) as a closed ideal. We have = o p = Id, and by uniqueness of the M (}C(E))-
module structure of E, p or = Id. ]

Let us give some generic examples:

(1) Consider A as a Hilbert A-module. We know that for any a € A, there exists ¢ € A
such that a = cc*c. It follows that the map y, : A — A, b — ab is equal to 6, .+, and
thus is compact. We get a x-homomorphismy : A — K(A), a — y,, which has dense
image (the linear span of the 8’s is dense in K(A)) and is clearly injective, because
yb =0 forall b € A implies y = 0. Thus y is an isomorphism:

K(A) ~ A.

In particular, Mor(A) >~ M(A), and if 1 € A, then A >~ Mor(A) = K(A).
(i) For any n, one has in a similar way IC(A") >~ M, (A) and Mor(A") >~ M,(M(A)). If
moreover 1 € A, then

Mor(A") = K(A") ~ M, (A). @)
For any Hilbert A-module E, we also have K(E") >~ M,(K(E)).

The relations (i) can be extended to arbitrary finitely generated Hilbert A-
modules:

Proposition 3.5.26 Let A be a unital C*-algebra, and E a A-Hilbert module. Then
the following are equivalent:

(i) E is finitely generated.
(ii) K(E) = Mor(E).
(iii) Idg is compact.

In that case, E is also projective (i.e., it is a direct summand of A" for some n).
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For the proof we refer to [54].

3.5.3 Generalized Fredholm operators

Atkinson’s theorem claims that for any bounded linear operator on a Hilbert space
H , the assertion

ker F and ker F* are finite dimensional

is equivalent to the following: There exists a linear bounded operator G such that
FG —1d, GF — 1d are compact. This situation is a little more subtle on Hilbert
A-modules, in that firstly all the kernel of homomorphisms are A-modules which
are not necessarily free, and secondly, replacing the condition “finite dimensional”
by “finitely generated” is not enough to recover the previous equivalence. This
is why one uses the second assertion as a definition of Fredholm operator in the
context of Hilbert modules, and we will see how to adapt Atkinson’s classical result
to this new setup.

Definition 3.5.27 The homomorphism T € Mor(E, F) is a generalized Fredholm
operator if there exists G € Mor(F, E) such that

GF-1ldeK(E) and FG —1de K(F).
The following theorem is important to understand the next chapter on K K -theory.

Theorem 3.5.28 Let A be a unital C*-algebra, £ a countably generated Hilbert
A-module and F a generalized Fredholm operator on E.

(i) IfIm F is closed, then ker F and ker F* are finitely generated Hilbert modules.
(ii) There exists a compact perturbation G of F such that Im G is closed.

Proof (1) Because Im F is closed, so is Im F'*, and both are orthocomplemented
by, respectively, ker F* and ker F. Let P € Mor(£) be the orthogonal projection
on ker F. Because F is a generalized Fredholm operator, there exists G € Mor(&)
such that Q = 1 — G F is compact. In particular, Q is equal to Id on ker F, and

QP :E=ker F®ImF* — &, xPdyr—>xd0.

Because QP is compact, its restriction Q Pl r : ker F — ker F is also com-
pact, but Q P |xer r = idyer p; hence Proposition 3.5.26 implies that ker F is finitely
generated. The same argument works for ker F*.

(2) Let us denote by 7 the projection homomorphism

7 : Mor(£) = C(E) :=Mor(E)/K(E).
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Because 7 (F) is invertible in C(E), it has a polar decomposition: 7 (F) = w -
|7r(F)|. Any unitary of C(&) can be lifted to a partial isometry of Mor(E) [54]. Let
U be such a lift of the unitary w. Using |7 (F)| = m (| F|), it follows that

F=U|F| mod K().

Because 7 (| F|) is also invertible, and positive, we can form log(s (| '|)) and choose
a self-adjoint H € Mor(€) with 7(H) = log(sw (| F|)). Then

n(Ue") = on(|F|) = n(F),

that is, Ue is a compact perturbation of F (and thus is a generalized Fredholm

operator). The operator U is a partial isometry and hence has a closed image; and

e is invertible in Mor(€), whence Ue'! has a closed image, and the theorem is

proved. U

3.5.4 Tensor products

3.5.4.1 Inner tensor products

Let E be a Hilbert A-module, F a Hilbert B-module, and 7 : A — Mor(F) a
s«-homomorphism. We define a sesquilinear form on £ ® 4 F by setting

Vx,x' € E,y,yeF, x®y,x' ®Y)egr: =, x, x)e-y)r,

where we have seta - y = m(a)(y) to lighten the formula. This sesquilinear form is
a B-valued scalar product: only the positivity axiom needs some explanation. Set

b= <in & i, in ®)’i) = Z()’is (i, xj) - ¥j),
i i i

where 7 has been omitted. Let us set P = ((x;, x;)); ; € M,(A). The matrix P
provides a (self-adjoint) compact homomorphism of A", which is positive because

Ya € A", (a, Pa)yn = Za;“(x,-,xj)aj = (inai, ijaj) > 0.
ij i J

This means that P = Q*Q for some Q € M,(A). On the other hand, one can
consider P as a homomorphism on F”, and setting y = (yy,..., y,) € F", we
have

b= (y, Py)=(Qy, Qy) > 0.

Thus E ®4 F is a pre-Hilbert module in the generalized sense (i.e., we do not
require the inner product to be definite), and the Hausdorff completion of £ ® 4 F
is a Hilbert B-module denoted in the same way.
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Proposition 3.5.29 Let T € Mor(E) and S € Mor(F).

* TR1l:x®y+ Tx Qy defines a homomorphism of E @4 F.
* If S commutes with w, then 1 ® S : x ® y = x ® Sy is a homomorphism which com-
mutes withany T ® 1.

Remark 3.5.30

1. Evenif T is compact, T ® 1 is not compact in general. The same is true for 1 ® S when
defined.

2. In general 1 ® S is not even defined.

3.5.4.2 Outer tensor products

Now forget the homomorphism 7, and consider the tensor product over C of E
and F. We set

Vx,x' € E,y,yeF, x®y,xX®Y)egr: =, x)e®(,Y)r € AQ B.

This defines a pre-Hilbert A ® B-module in the generalized sense (the proof of pos-
itivity uses similar arguments), where A ® B denotes the spatial tensor product (as
it will in the following, when not otherwise specified). The Hausdorff completion
will be denoted E Q¢ F.

Example 3.5.31 Let H be a separable Hilbert space. Then
H®c A~ Hy

3.5.4.3 Connections

We turn back to inner tensor products. We keep the notation of the Section 3.5.4.1.
Connes and Skandalis [14] introduced the notion of connection to bypass the
general nonexistence of 1 ® S.

Definition 3.5.32 Consider two C*-algebras A and B. Let E be a Hilbert A-module
and F be a Hilbert B-module. Assume there is a x-morphism

T A— L(F),

and take the inner tensor product £ ® 4 F. Given x € E, we define a homomor-
phism

T, :E—> EQ, F,
Yy xQy,
whose adjoint is given by
T):E®s F — F,

2@y > w((x,2))y.
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If S € L(F), an S-connection on E ® 4 F is given by an element
GeL(E®sF)
such that for all x € E,
T.S — GT, € K(F,E @, F),
ST —T;G € K(E®4 F, F).

Proposition 3.5.33

(1) If [, S] C KC(F), then there are S-connections.

(2) If G;, i =1, 2, are S;-connections, then G| + G, is an S| + S»-connection and GG,
is an §1S,-connection.

(3) For any S-connection G, [G,K(E)® 1] C K(E ®4 F).

(4) The space of 0-connections is exactly

{G eMor(F,E®4 F)|(K(E)® 1)G and G(K(E) ® 1) are subsets of K(E @4 F)}.

All these assertions are important for the construction of the Kasparov product. For
the proof, see [14].

3.6 KK-Theory
3.6.1 Kasparov modules and homotopies
Given two C*-algebras A and B, a Kasparov A—B-module (abbreviated “Kasparov
module”) is given by a triple
x=(¢E,n, F)
where £ = £ @ £! is a (Z/27)-graded countably generated Hilbert B-module,

7 : A — L(E)is ax-morphism of degree 0 with respect to the grading, and F €
L(E) is of degree 1. These data are required to satisfy the following properties:

n(a)(F?—1) e K(E) foralla € A,
[m(a), F] € K(E) foralla € A.

We denote the set of Kasparov A—B-modules by E(A, B).
Let us immediately define the equivalence relation leading to KK -groups. We
denote B([0, 1]) := C([0, 1], B).

Definition 3.6.1 A homotopy between two Kasparov A—B-modules x = (£, , F)
and x’ = (&', ', F’) is a Kasparov A-B([0, 1])-module % such that
(ev;=0)«(X) = x,

(evi=1)«(¥) = x".

(3.12)
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Here ev,_. is the evaluation map at + = -. Homotopy between Kasparov A—B-

modules is an equivalence relation. If there exists a homotopy between x and x’,
we write x ~j x’.
The set of homotopy classes of Kasparov A—B-modules is denoted K K(A, B).

There is a natural sumon E(A, B):ifx = (£, n, F)andx' = (£/, 7/, F’) belong
to E(A, B), their sum x 4+ x’ € E(A, B) is defined by

x+x' =E®E , 7dn,FOF).

A Kasparov A-B-module x = (&, , F) is called degenerate if for all a € A
one has 7(a)(F> — 1) = 0 and [t (a), F] = 0. Then:

Proposition 3.6.2 Degenerate elements of E(A, B) are homotopic to (0, 0, 0).
The sum of Kasparov A—B-modules provides K K (A, B) with an abelian group
structure.

Proof Letx = (€, n, F) € E(A, B) be a degenerate element. Set ¥ = &, 7, F)e
E(A, B(]0, 1])) with
£ =Co([0, 11, &),
7(a)§(t) = m(a)§ (1),
FE@t) = FEQ).

Then X is a homotopy between x and (0, 0, 0).

One can easily show that the sum of Kasparov modules makes sense at the
level of their homotopy classes. Thus K K (A, B) admits a commutative semigroup
structure with (0, 0, 0) as a neutral element. Finally, the opposite in K K(A, B) of
x = (&, m, F) € E(A, B) may be represented by

(&P, 7, —F).

where £ is £ with the opposite graduation: (£°7)' = £!~. Indeed, the module
(&, 7, F)® (E°P, m, —F) is homotopically equivalent to the degenerate module

0 Id
op
<EEB5 J@m(ld 0))

This can be realized with the homotopy

wt F 0 Tt 0 Id
= _ in{ — . O

17:18



P1:SJT
Book

Trim: 174mm x 247mm Top: 0.581in Gutter: 0.747in
CUUK991-Ocampo 978 0521 76482 7 November 27, 2009

128 Claire Debord and Jean-Marie Lescure

3.6.2 Operations on Kasparov modules

Let us explain the functoriality of KK-groups with respect to its variables. The
following two operations on Kasparov modules make sense on KK -groups:

* Pushforward along x-morphisms: covariance in the second variable. Letx = (£, 7, F) €
E(A, B),and let g : B — C be a x-morphism. We define an element g.(x) € E(A, C)
by

&) =(€®,C,r®1, F®Id,

where € ®, C is the inner tensor product of the Hilbert B-module £ with the Hilbert
C-module C endowed with the left action of B given by g.

* Pullback along x-morphisms: contravariance in the first variable. Let x = (€, 7, F) €
E(A, B),and let f : C — A be a x-morphism. We define an element f*(x) € E(C, B)
by

ffx)y=(E mo f, F).

Provided with these operations, KK -theory is a bifunctor from the category (of
pairs) of C*-algebras to the category of abelian groups.
We recall another useful operation in KK -theory:

* Suspension: Let x = (£, 7w, F) € E(A, B), and let D be a C*-algebra. We define an
element tp(x) € E(A® D, B® D) by

(X)) =(EQ®c D, 7m®1, FQId).

Here we take the external tensor product £ ®¢ D, which is a B ® D-Hilbert module.

3.6.3 Examples of Kasparov modules and of homotopies between them

3.6.3.1 Kasparov modules coming from homomorphisms between C*-algebras

Let A, B be two C*-algebras, and f: A — B a x-homomorphism. Because
K(B) ~ B, the expression

[f1:=(B, f,0)
defines a Kasparov A—B-module. If A and B are Z,-graded, f has to be a homo-

morphism of degree O (i.e., respecting the grading).

3.6.3.2 Atiyah’s Ell

Let X be a compact Hausdorff topological space. Take A = C(X) to be the algebra
of continuous functions on X and let B = C. Then

E(A, B) = EI(X),
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the ring of generalized elliptic operators on X as defined by Atiyah. We give two
concrete examples of such Kasparov modules:

* Assume X is a compact smooth manifold, let A = C(X) as before, and let B = C. Let E
and E’ be two smooth vector bundles over X, and denote by 7 the action of A = C(X) by
multiplication on L>(X, E) @ L*(X, E’). Given a zero-order elliptic pseudodifferential
operator

P:C®(E)— C®(E'

with parametrix Q : C®°(E’) — C*(E), the triple

Xp = <L2(X’ E)® L*(X. E'), , <1'(1 g))

defines an element in E(A, B) = E(C(X), C).
* Let X be a compact spin® manifold of dimension 2n, let A = C(X) be as before, and let
B = C. Denote by S = ST @ S~ the complex spin bundle over X, and let

p: L*(X,S) — L*(X,S)

be the corresponding Dirac operator. Let 7 be the action of A = C(X) by multiplication
on L*(X, S). Then the triple

D
= (L2x. 8), 7. ———
x,;, <( T 1+1p2>

defines an element in E(A, B) = E(C(X), C).

3.6.3.3 Compact perturbations
Letx =(&,m, F) € E(A, B). Let P € Mor(€) satisty
Ya € A, w(a)- P e K(E)and P - w(a) € K(&). (3.13)
Then
x ~p (&, n, F+ P).

The homotopy is the obvious one: (£ ® C([0, 1]), # ® Id, F + ¢ P). In particular,
when B is unital, we can always choose a representative (£, 7, G) with Im G closed
(cf. Theorem 3.5.28).

3.6.3.4 (Quasi) Self-adjoint representatives
There exists a representative (£, 7, G) of x = (£, w, F) € E(A, B) satisfying

7(a)(G — G*) € K(&). (3.14)
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Just take (€ ® C([0, 1]), # ® Id, F;) as a homotopy, where
F,=(F*F+ 1)'?FG¢F*F + 1)"'/2

Then G = F) satisfies (3.14). Now, H = (G + G*)/2 is self-adjoint, and P =
(G — G*)/2 satisfies (3.13); thus (£, 7, H) is another representative of x.

Note that (3.14) is often useful in practice and is added as an axiom in many
definitions of KK -theory, like the original one of Kasparov. It was observed in [49]
that it could be omitted.

3.6.3.5 Stabilization and unitarily equivalent modules

Any Kasparov module (E, w, F) € E(A, B) is homotopic to a Kasparov mod-
ule (ﬁ 8, p, G), where ﬁg = Hp @ Hp is the standard graded Hilbert B-module.
Indeed, add to (£, r, F) the degenerate module (7/-[\3, 0, 0), and consider a grading-
preserving 1sometry u:E S H B — H p provided by Kasparov’s stabilization the-
orem. Then, set E = EGBHB,F F®O,T=m®0, p=umtu*, G—uFu
and consider the homotopy

~ o~ cos(Z) —u*sin(*Z F cos(Z * sin(iZ
usin(%) cos(F) 0 J)\-usin(5) cos(F)
(3.15)
between (E, , F) ® (ﬁg, 0,0) = (E, 7, I?) and (ﬁB, p, G). Above, J denotes
the operator
0 1
1 0
defined on ﬁB.
One says that two Kasparov modules (E;, w;, F;) € E(A, B), i = 1, 2, are uni-

tarily equivalent when there exists a grading-preserving isometry v : E; — E»
such that

vFiv!  =F, and Va e A, vmi(a)v* — m(a) € K(&E).

Unitarily equivalent Kasparov modules are homotopic. Indeed, one can replace
(E;, m;, Fy),i = 1,2, by homotopically, equivalent modules (ﬁg, pi,G),i =1,2.
It follows from the preceding construction that the new modules (ﬁB, 0i, Gi)
remain unitarily equivalent, and one immediately adapts (3.15) to a homotopy
between then.

3.6.3.6 Relationship with ordinary K-theory

Let B be a unital C*-algebra. A finitely generated (Z/2Z-graded) projective B-
module & is a submodule of some BY & B" and can then be endowed with a Hilbert
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B-module structure. On the other hand, Idg is a compact morphism (Proposition
3.5.26); thus

(&,1,0) € E(C, B),

where ¢ is just multiplication by complex numbers. This provides a group homo-
morphism Kyo(B) - K K(C, B).

Conversely, let (£, 1, F) € E(C, B) be any Kasparov module where we have
chosen F with closed range (see Theorem 3.5.28): ker F is then a finitely gener-
ated Z/27Z-graded projective B-module. Consider E= {geC(0,11,8) &) €
ker F} and F (&) : t — F(&(2)). The triple (5 , 1, F ) provides a homotopy between
(€, 1, F)and (ker F, 1, 0). This also gives an inverse of the previous group homo-
morphism.

3.6.3.7 A nontrivial generator of K K(C, C)

In the special case B = C, we get K K(C, C) >~ K¢(C) >~ Z, and under this iso-
morphism, the triple

1 0 —0y +x
( (R)7, ’m(8x+x 0 )) where 9+ x°,
(3.16)

corresponds to +1. The reader can check as an exercise that d, + x and H are
essentially self-adjoint as unbounded operators on L?(R), that H has a com-
pact resolvent and that d, + x has a Fredholm index equal to +1. It follows
that the Kasparov module in (3.16) is well defined and satisfies the required
claim.

3.6.4 Ungraded Kasparov modules and KK

Triples (£, m, F') satisfying the properties (3.12) can arise with no natural grading
for £, and consequently with no diagonal-antidiagonal decompositions for =, F.
We refer to those as ungraded Kasparov A—B-modules, and the corresponding set
is denoted by E'(A, B). The direct sum is defined in the same way, as well as the
homotopy, which this time is an element of E (A, B[O, 1]). The homotopy defines
an equivalence relation on E'(A, B), and the quotient inherits an abelian group
structure as before.

Let C; be the complex Clifford algebra of the vector space C provided with the
obvious quadratic form [33]. It is the C*-algebra C @ ¢C generated by ¢ satisfying
e* = ¢ and &% = 1. Assigning to ¢ the degree 1 yields a Z/2Z-grading on C;. We
have:

17:18
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Proposition 3.6.3 The map

E'(A,B) — E(A,BQ® (),
Em, H— (EQRC,7RId, FQ® s)

(3.17)

induces an isomorphism between the quotient of E'(A, B) under homotopy and
KKi(A,B)=KK(A, B® C)).

Proof The grading of C; gives the one of £ ® Cy, and the map (3.17) easily gives
a homomorphism ¢ from K K{(A, B)to KK(A, B ® Cy).

Now let y = (&, m, F) € E(A, B® C;). Multiplication by & on the right of
£ makes sense, even if B is not unital, and one has & = &ye. It follows that
E=EPE >~ & @ & and that any T € Mor(E), thanks to the B ® C-linearity,
has the following expression:

T = (g g) , P, O € Morg(&)).

. O P . T O 1 .
Thus F_<P O),n_<0 7To> andc™ '[y] = [&, 7o, P]. O

Remark 3.6.4 The opposite of (£,7, F) in KK|(A, B) is represented by
(€, , —F). One may wonder why we have to decide if a Kasparov module is
graded or not. Actually, if we forget the Z /27 grading of a graded Kasparov A—
B-module x = (£, m, F) and consider it as an ungraded module, then we get the
trivial class in K K (A, B). Let us prove this claim.

The grading of x implies that £ has a decomposition £ = & @ &; for which F

has degree 1, that is,
0 0
P- (2 9).

G, =cos(tw/2) F + sin(tm/2) <(1) _01> (3.18)

Now

provides an homotopy in K K| between x and

(e )

Because the latter is degenerate, the claim is proved.

Example 3.6.5 Take again the example of the Dirac operator ) introduced in
Section 3.6.3.2 on a spin® manifold X whose dimension is odd. There is no natural
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7,/27. grading for the spinor bundle. The previous triple xp provides this time an
interesting class in E!(C(X), C).

3.6.5 The Kasparov product

In this subsection we construct the product
KK(A,B)® KK(B,C) — KK(A, C).
It satisfies the properties given in Section 3.4. Actually:

Theorem 3.6.6 Let x = (£, 7w, F)in E(A,B)and x = (E', 7', F') in E(B, C) be
two Kasparov modules. Set

g// — g ®B g/
and
=r®]l.

Then there exists a unique — up to homotopy — F’-connection on £" denoted by F”
such that

* (&', 7", F") e E(A,C),
e 1'(a) [F”, F® 1] 7" (a) is nonnegative modulo K(E") for all a € A.

(&", ", F") is the Kasparov product of x and x'. It enjoys all the properties
described in Section 3.4.

Proof 1dea of the proof: We only explain the construction of the operator F”.
For a complete proof, see for instance [14, 30]. A naive idea for F” could be
F ® 14 1® F’, but the trouble is that the operator 1 ® F’ is in general not well
defined. We can overcome this first difficulty by replacing the not well defined
1 ® F' by any F’-connection G on £”, and try F ® 1 + G. We then stumble on a
second problem, namely that the properties of Kasparov module are not satisfied in
general with this candidate for F”: forinstance, (F? — 1)@ 1 e K() ® 1 ¢ K(E")
as soon as £” is not finitely generated.

The case of tensor products of elliptic self-adjoint differential operators on a
closed manifold M gives us a hint towards the right way. If D; and D, are two such
operators and H;, H, the natural L? spaces on which they act, then the bounded
operator on H; ® H, given by

D, D,
RI+1I®

J1+ Dt J1+ D3

(3.19)

17:18
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inherits the same problem as F ® 1 + G, but

1

D//,:
J2+Di®l+1eD;

(D1 ®1+1Q D)

has better properties: D”?> — 1 and [C(M), D"] belong to K(H, ® H,). Note that

D D
D'=vM —L—@1+/N 1@ ——
J1+ D37 J1+D3

with

B 1+1Q® D3
24+ D'®1+1®DF

1+Di®1

= and N
2+D}®1+1Q® D3

The operators M, N are bounded on H; ® H,, are positive, and satisfy M + N = 1.
We thus see that in that case, the naive idea (3.19) can be corrected by combining
the operators involved with some adequate “partition of unity.”

Turning back to our problem, this calculation leads us to look for an adequate
operator F” in the following form:

F'=+vM -F®1++NG.

We need to have that F” is a F'-connection, and satisfies a - (F"?> — 1) € K(E”)
and [a, F"] € K(E") forall a € A (by a we mean 7”(a)). Using the previous form
for F”, a small computation shows that these assertions become true if all the
following conditions hold:

(1) M is a O-connection (equivalently, N is a 1-connection),
() [M,F®1], N-[F®1,G], [G, M], N(G?> — 1) belong to K(E"),
(t11) [a, M], N -[G, a] belong to K(E").

At this point there is a miracle:

Theorem 3.6.7 (Kasparov’s technical theorem) Let J be a C*-algebra, and
denote by M(J) its multiplier algebra. Assume there are two subalge-bras A, A,
of M(J) and a linear subspace A C M(J) such that
A1 Ay C U,
(A, Al CJ.
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Then there exist two nonnegative elements M, N € M(J) with M + N = 1 such
that
MA, CJ,
N A, C J,
(M, Al CJ.

For a proof, see [25].
Now, to get (1), (1), (z21), we apply this theorem with

A =CHEE) ® 1, K(E"),
Ay=C*G*-1,[G. F® 1], [G.7"]),
A = Vect(n"(A), G, F®1).

This gives us the correct F”. O

3.6.6 Equivalence and duality in KK -theory
With the Kasparov product come the following notions:

Definition 3.6.8 Let A, B be two C*-algebras.

* One says that A and B are K K-equivalent if there exist « € KK(A, B) and B €
K K (B, A) such that

a®B=1,€ KK(A,A) and BQ®a =15 € KK(B, B).
In that case, the pair (¢, B) is called a KK -equivalence, and it gives rise to isomorphisms
KK(AQC,D)~KK(B®C,D) and KK(C,A® D)~ KK(C,B ® D)

given by Kasparov products for all C*-algebras C, D.
* One says that A and B are K K -dual (or Poincaré dual) if there exist § € KK(A ® B, C)
and A € KK(C, A ® B) such that

)»(?8 =1e€ KK(A,A) and A(%)S = 1€ KK(B, B).
In that case, the pair (A, ) is called a KK -duality, and it gives rise to isomorphisms
KK(ARQC,D)~KK(C,B®D) and KK(C,AR®D)~KK(B®C,BR® D)
given by Kasparov products for all C*-algebras C, D.

We continue this subsection with classical computations illustrating these
notions.
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3.6.6.1 Bott periodicity
Let B € KK (C, Cy(R?)) be represented by the Kasparov module:

_ ) ) 1 0 c_
(8,7'[, C)_ (CO(R)@CO(R )a 19 \/H_—CZ(CJ,. O))’

where ¢, c_ are the operators given by pointwise multiplication by x — 1y and
x + 1y, respectively, and
o= 0 c_
o Cy 0 )

Let o € K K(Cy(R?), C) be represented by the Kasparov module:

| r2m2 2,12 ; 0 D_
S )

where 77 : Co(R?) — L(L*(R?) @ L*(R?)) is the action given by multiplication of
functions, the operators D, and D_ are given by

D, =0, +10y,
D_ = -0, +10y,

0 D_
and D = ( D, 0 )
Theorem 3.6.9 « and B provide a KK -equivalence between Cy(R?) and C.

This is the Bott periodicity theorem in the bivariant K -theory framework.

Proof Let us begin with the computation of 8 ® @ € K K(C, C). We have an
identification

E ® H~HeH, (3.20)
Co(R?)

where on the right, the first copy of H stands for

& ® Ho® & ® H
Co(R?) Co(R?)

and the second for

& ® Hid&E ® Ho.
Co(R?) Co(R?)

17:18
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One checks directly that under this identification the operator

0 0 D_ 0

1 0 0 0 -D,
- Jizp:|D. 0 0 0 (3.2
0 -D_ 0 0

is an F-connection. On the other hand, under the identification (3.20), the operator
C ®1 gives

0 0 0 c-
1 0 0 ¢y O
—_— 3.22
JI+c21 0 ¢ 0 0 (3-22)
cy. 0 0 O
It immediately follows that 8 ® « is represented by
1
8= <H S H, 1, —D) , (3.23)
V1+c2+ D?
where
0 D_
D=
<D+ 0 >
with

D+ Cc_
D, = <c+ —D_) and D_ =D7.

Observe that, denoting by p the rotation in R? of angle 7 /4, we have

p~l 0 0 D_\(p 0} 0 p~'D_p~!
0 p)\Dy 0)\0 p7') " \pDsp 0

0 0 1(0y —y) —0y+x
_ 0 0 O +x  —1(0y + )
1(0y +y) —0r+x 0 0
O +x (=0, +y) 0 0

(0 x-3d 0 1® -y
_<x+m 0 )®1+1®(mg+w 0 )'

Of course,

1 0 plD_pl))
S~ | HOH, |, ———— ,
! ( V14 2+ D? (PD+,0 0

17:18
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and the preceding computation shows that § coincides with the Kasparov product
u @ u withu € KK(C, C) given by

1 —
w= (@21, —— (Y ¥
VT+x2 402 \x + 0« 0
A simple exercise shows that d, + x : L*(R) — L*(R) is essentially self-adjoint
with one-dimensional kernel and zero-dimensional cokernel; thus 1 = u =u ®
ue KK(,Q).
Let us turn to the computation of &« ® B € K K(Co(R?), Co(IR?)). Itis a Kasparov
product over C, and thus it commutes:
o ® B = 1c,®y)(B) ® Te,ry) (@), (3.24)

but we must observe that the two copies of Cy(R?) in Te,®2)(B) and T r2) (o) play
different roles: on should think of the first copy as functions of the variable u € R?,
and of the second as functions of the variable v € R?. It follows that one cannot
directly factorize t¢ g2 on the right-hand side of (3.24) in order to use the value of
B ® «. This is where a classical argument, known as the rotation trick of Atiyah,
is necessary:

Lemma 3.6.10 Let ¢ : Co(R?) ® Co(R?) — Co(R?) ® Co(R?) be the flip automor-
phism: ¢(f)(u, v) = f(v,u). Then

[¢] = 1 € KK(Co(R*) ® Co(R?), Co(R?) ® Co(R?)).

Proof Proof of the lemma: Let us denote by I, the identity matrix of M,(R). Use
a continuous path of isometries of R* connecting

(0 12) (12 0)

L 0 0 L)

This gives a homotopy (Co(R?) ® Co(R?), ¢, 0) ~;, (Co(R?) ® Co(R?),1d, 0). O
Now
a® B = 1c,r)(B) ® T,y (@) = Te,my)(B) ® (@] ® Ty m2)(@)

= Tey@) (B ® @) = Te,ma(D) = 1 € KK(Co(R?), Co(R?).  (3.25)
O

3.6.6.2 Self-duality of Co(R)

With the same notation as before, we get:

Corollary 3.6.11 The algebra Cy(R) is Poincaré dual to itself.

17:18
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Other examples of Poincaré-dual algebras will be given later.

Proof The automorphism i of C()(]R)®3 given by ¥ (f)(x,y,2) = f(z,x,y) is
homotopic to the identity; thus

B CQ?M o = Tey®)(B) @ Teym)(@) = Te,®)(B) @ [V] ® Teym)(@)

= Te,®) (B ® a) = Te,®) (1) = 1 € KK(Co(R), Co(R)). (3.26)
]

Exercise 3.6.12 With C; = C @ ¢C the Clifford algebra of C, consider

x
.= [ Co(R Ci,1, — KK(C, Co(R Cy),
B (0()@ 1 m@w)e ( R)® Cy)

1
o = (LZ(R, A*R), 7, «/H——A(d + 5)) € KK(Cy(R) ® Cy, C),

where (d + 8)(a + bdx) = —b' +a'dx, A = (d +§)*, and 7(f ® ¢) sends a +
bdx to f(b+ adx). Show that B, o provide a KK -equivalence between C and
Co(R) ® C;. (Hints: compute directly 8, ® a,; then use the commutativity of the
Kasparov product over C and check that the flip of (Co(R) ® C 1)®2 is 1 to conclude
about the computation of o, ® f..)

3.6.6.3 A simple Morita equivalence

Let 1, = (M, ,(C), 1,0) € E(C, M,(C)), where the M,(C)-module structure is
given by multiplication by matrices on the right. Note that [z,] is also the class
of the homomorphism C — M,,(C) given by the upper left corner inclusion. Let
also j, = (M, 1(C), m,0) € E(M,(C), C), where m is multiplication by matrices
on the left. It follows in a straightforward way that

I, @ Jn ~h ((C, 1, O) and In Ry ~n (Mn((c), 1, O)a

thus C and M, (C) are KK -equivalent, and this is an example of a Morita equiv-
alence. The map in K-theory associated with j: - ® j, : Ko(M,(C)) —> Z is
just the trace homomorphism. Similarly, let us consider the Kasparov elements
1 € E(C, K(H)) associated to the homomorphism ¢ : C — IC(H) given by the
choice of a rank one projection, and j = (H, m, 0) € E(KX(H), C), where m is just
the action of compact operators on H: they provide a KK -equivalence between C
and C.

3.6.6.4 Co(R) and C,.

We leave the proof of the following result as an exercise:

17:18
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Proposition 3.6.13 The algebras Cy(R) and Cy are KK -equivalent.

Proof Hint: Consider

o= (LZ(R, A*R), m, ﬁ(d + 5)) € KK(Cy(R), Cy),

where d, §, A are defined in the previous exercise, m(f)(§) = f&, and the C;-
right module structure of L?>(R, A*R) is given by (a + bdx) - & = —ib + iadx.
Consider also

B = (CO(R)Z, 0, ﬁ (? (1))) € KK(Cy, Co(R)),

where ¢(e)(f, g) = (—ig, i f). Prove that they provide the desired KK -equivalence.
O

Exercise 3.6.14

(i) Check thatt¢, : KK(A, B) > KK(A® Cy, B ® C)) is an isomorphism.

(ii) Check that under t¢, and the Morita equivalence M,(C) ~ C, the elements «,, B, of
the previous exercise coincide with @, ,E and recover the KK -equivalence between C
and Cy(R).

Remark 3.6.15 Atthis point, one seesthat K K (A, B) = KK(A, BR))(B(R) :=
Co(R) ® B) can also be presented in the following different ways:

E\(A,B)/~y~KK(A,B®C))~KK(A®C,, B)~ KK(AR), B).

3.6.7 Computing the Kasparov product without its definition

Computing the product of two Kasparov modules is in general quite hard, but we
are often in one of the following situations.

3.6.7.1 Use of the functorial properties

Thanks to the functorial properties listed in Section 3.4, many products can be
deduced from known, already computed ones. For instance, in the proof of Bott
periodicity (the KK -equivalence between C and Co(IR?)) one had to compute two
products: the first one was directly computed; the second one was deduced from
the first using the properties of the Kasparov product and a simple geometric fact.
There are numerous examples of this kind.

3.6.7.2 Maps between K -theory groups

Let A, B be two unital (if not, add a unit) C*-algebras, let x € K K(A, B) be given
by a Kasparov module (€, w, F)) where F has a closed range, and assume that we

17:18
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are interested in the map ¢, : Ko(A) — Ko(B) associated with x in the following
way:

y € Ko(A) ~ KK(C, A), o () =y R x.

This product takes a particularly simple form when y is represented by (P, 1, 0)
with ‘P a finitely generated projective A-module (see Section 3.6.3.6):

y®x = (P@S, l®m, G) = (ker(G), 1, 0),
A
where G is an arbitrary F-connection.

3.6.7.3 Kasparov elements constructed from homomorphisms

Sometimes, Kasparov classes y € K K(B, C) can be explicitly represented as Kas-
parov products of classes of homomorphisms with inverses of such classes. Assume
for instance that y = [¢y] ™' ® [e;], where ey : C — B, e; : C — C are homomor-
phisms of C*-algebras and ey produces an invertible element in KK -theory (for
instance, Ker ¢ is K -contractible and B is nuclear or C, B K -nuclear; see [16,50]).
Then computing a Kasparov product x ® y where x € K K(A, B) amounts to lift-
ing x to KK (A, C) (that is, finding x’ € KK (A, C) such that (ep).(x") = x) and
restricting this liftto K K (A, C) (that is, evaluating x” = (e;).(x")). It follows from
the properties of the product that x” = x ® y.

Example 3.6.16 Consider the tangent groupoid Gg of R, and let § = [ep] ™' ®
[e1] ® © be the associated deformation element: ¢y : C*(Gr) — C*(TR) =~
Co(R?)isevaluationat?t = 0,¢; : C*(Gr) — C*(R x R) >~ K(L?*(R)) ~ K iseval-
uation at t = 1, and u = (L*(R), m, 0) € K K (K, C) gives the Morita equivalence
K~ C.

Let B € KK(C, Cy(R?)) be the element used in Section 3.6.6.1. Then 8 ® § €
K K(C, C) is easy to compute. The lift ' € K K(C, C*(Gr)) is produced using the
pseudodifferential calculus for groupoids (see Section 3.7) and can be presented as
a family B’ = (8;) with

Bo =B, t>0,

/3:=(C*(R><R,d—x>,l,—1 ( 0 x_taX)).
p ST+ 22+ 1202 \x + 18, 0
After restricting at ¢+ = 1 and applying the Morita equivalence, only the index of
the Fredholm operator appearing in 8; remains — that is, +1 — and this proves
BRS=1.

Observe that by uniqueness of the inverse, we can conclude that § = « in
K K(Cy(R?), C).

17:18
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Example 3.6.17 (Boundary homomorphisms in long exact sequences.) Let

0->1—-A—->B—0
i P

be a short exact sequence of C*-algebras. We assume that either it admits a com-
pletely positive, norm-decreasing linear section or I, A, B are K-nuclear [50].
Let C, = {(a,¢) € A® Co([0, 1[, B) |p(a) = ¢(0)} be the cone of the homo-
morphism p : A — B, and denote by d the homomorphism Cy(]0, 1[, B) — C,
given by d(¢) = (0, ¢), and by e the homomorphism I — C, given by e(a) =
(a, 0). Thanks to the hypotheses, [e] is invertible in KK-theory. One can set
§=[d]l®[e]™" € KK(Co(R)® B, I) and use the Bott periodicity Co(R?) ~ C

in order to identify
KK»(C, D)= KK(Cy(R*>)® C, D) ~ KK(C, D).
Then the connecting maps in the long exact sequences
...— KK,(I, D) - KK(B, D)

5 KK, D)D KK(I, D)= KKy(B, D) = ---

k)

...— KK|(C,B)— KK(C,I)
M KK(C,A) % KK(C, B) = KK\(C, T) = ---

are given by the appropriate Kasparov products with §.

III. Index Theorems

3.7 Introduction to pseudodifferential operators on groupoids

The historical motivation for developing pseudodifferential calculus on groupoids
comes from Connes, who implicitly introduced this notion for foliations. Later on,
this calculus was axiomatized and studied on general groupoids by several authors
[38,39,52].

The following example illustrates how pseudodifferential calculus on groupoids
arises in our approach to index theory. If P is a partial differential operator on R”,

P(x,D)= Y cu(x)DY,
la|=d
we may associate to it the asymptotic operator

P(x,1D)= ) ca(x)(t D"

ler|<d

17:18
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by introducing a parameter 7 € ]0, 1] in front of each d,;. Here we use the usual
convention: D¢ = (—idy,)*" ---(—idy,)*. We would like to give an (interesting)
meaning to the limit # — 0. Of course we would not be happy with tD — 0.

To investigate this question, let us look at P(x,tD) as a left multiplier on
C*®°(R" x R"x]0, 1]) rather as a linear operator on C*°(R"):

P(x,tDu(x, y, t) = fe@”)'f P(x, t&)u(z, y, t)dzd&

dzdg
tl’l

B /ex”'éP(x,S)u(z,y,t)
= /e<X—Z>~fP(x, Eulx —t(X — Z),x —tX, 1)dZdE.

In the last line we introduced the notation X = ’% and performed the change of

variables Z = %

At this point, assume that # has the following behavior near ¢t = 0:

7 x=y ~ 00 (21
M(X,y,l‘)Zu(y, ; ,t), where u € C*(R™" x [0, 1]).
It follows that
P(x,tDu(x,x —tX,t) = /e“—Z)fP(x,g)ﬁ(x —tX,Z,)dZd&

t—0

—= | X725 P(x, E)ii(x, Z,0)dZdE
= P, Dy)u(x, X, 0).
Some observations:

* P(x, Dy) is a partial differential operator in the variable X with constant coefficients,
depending smoothly on a parameter x and with symbol coinciding with that of P(x, D,),
in the sense that o(P(x, Dx)(x, X, &) = P(x, &). In particular, P(x, Dx) is invariant
under the translation X — X + Xj. Of course, P(x, Dy) is nothing else, up to a Fourier
transformation in X, than the symbol P(x, §) of P(x, D,). In other words, denoting by
Sx(TR") the space of smooth functions f(x, X) rapidly decreasing in X and by Fx the
Fourier transform with respect to the variable X, we have a commutative diagram

P(X,Dx)
Sx(TR") —— Sx(TR™)

f}(l fxi
P(x,§)

Se(T*R") ——> Se(T*R")

17:18
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where P(x, Dyx) acts as a left multiplier on the convolution algebra Sx (TR"), and P(x, &)
acts as a left multiplier on the function algebra Sg(7*R") (equipped with the pointwise
multiplication of functions).

* u and ¥ are related by the bijection

¢ : R x [0, 1] — Ggr,
x, X, ) — (x —tX,x,1) ift >0,

x,X,0)— (x, X,0)

@', vy, )=, (x —y)/t, 1), ¢~ '(x, X,0) = (x, X, 0)). In fact, the smooth structure
of the tangent groupoid Gy« of the manifold R” (see Section 3.2.7) is defined by requiring
that ¢ be a diffeomorphism. Thus & € C*®(R?" x [0, 1]) means u € C®(Gg»).

Thus P(x, Dy) is another way to look at, and even another way to define, the
symbol of P(x, D,). What is important for us is that it arises as a limit of a family
P, constructed with P, and the pseudodifferential calculus on the tangent groupoid
of R" will enable us to give a rigorous meaning to this limit and perform interesting
computations.

The following material is taken from [38,39,52]. Let G be a Lie groupoid, with
unit space G© = V and with a smooth (right) Haar system d\. We assume that
V is a compact manifold and that the s-fibers G, x € V, have no boundary. We
denote by U,, the map induced on functions by right multiplication by y, that is,

U, : C¥(Gyyy) —> C¥(Griyy); Uy f(y) = f(¥'y).

Definition 3.7.1 A G-operator is a continuous linear map P : C>°(G) — C*(G)
such that

(i) P is given by a family (Py).cv of linear operators P, : C°(G,) — C*(G,), and

VfeCX(G), PN = P fson)s

where f, stands for the restriction f|g,.
(i) The following invariance property holds

Uy Psy) = PrUy .

Let P be a G-operator, and denote by k, € C~*°(G, x G,) the Schwartz kernel
of P, for each x € V, as obtained from the Schwartz kernel theorem applied to
the manifold G, provided with the measure dA,.

Thus, using property (i) in the definition,

Vy € G, f eC¥G), Pf(y)= fG LGV OO (= k).



P1:SJT
Book

Trim: 174mm x 247mm Top: 0.581in Gutter: 0.747in
CUUK991-Ocampo 978 0521 76482 7 November 27, 2009

Index theory and groupoids 145

Next,

U,PFG/) = PF(Y'y) = /G LGy YO FO G (= s,

and

PW, ) = /G LG YL AN, (5= r()

Ly / Gy D), = s()),

X

where the last line uses the invariance property of Haar systems. Property (ii) is
equivalent to the following equalities of distributions on G, x G, forall x € V:

Vy e G, k'yv.y)=k& Yy  (x=sk), y=r).

Setting kp(y) := ks)(y, s(¥)), we getky(y, y') = kp(yy’~"), and the linear oper-
ator P : C°(G) — C*(G) is given by

P(F)(y) = / ke(ry DA (& = ().

x

We may consider kp as a single distribution on G acting on smooth functions on
G by convolution. With a slight abuse of terminology, we will refer to kp as the
Schwartz (or convolution) kernel of P.

We say that P is smoothing if kp lies in C*°(G), and is compactly supported or
uniformly supported if kp is compactly supported (which implies that each P, is
properly supported).

Let us develop some examples of G-operators.

Examples 3.7.2
(i) If G = G© = Vs just a set, then G, = {x} for all x € V. Then in Definition 3.7.1,
property (i) is empty, and property (ii) implies that a G-operator is given by pointwise
multiplication by a smooth function P € C*(V): Pf(x) = P(x) - f(x).
(i) Let G =V x V,the pair groupoid, and let the Haar system d A be given in the obvious
way by a single measure dy on V:

dr,(y) =dy under the identification G, =V x {x} >~ V.

It follows that for any G-operator P,
Pe = [ ke et 0dh .0 = [ ket gt dy.
Vx{x} Vv

which immediately proves that P, = P, as linear operators on C*°(V) under the
obvious identifications V >~ V x {x} >~ V x {y}.

17:18



P1:SJT
Book

Trim: 174mm x 247mm Top: 0.581in Gutter: 0.747in
CUUK991-Ocampo 978 0521 76482 7 November 27, 2009

146 Claire Debord and Jean-Marie Lescure

(iii) Letp: X — Zbeasubmersion,and G = X x X ={(x,y) € X x X |p(x) = p(y)}
z

the associated subgroupoid of the pair groupoid X x X. The manifold G, can be
identified with the fiber p~!(p(x)). Property (ii) implies that for any G-operator P,
we have P, = P, as linear operators on p~'(p(x)) as soon as y € p~!(p(x)). Thus,
P is actually given by a family P,, z € Z, of operators on p~!(z), with the relation
Py = ~p(JC)-

(iv) Let G = E be the total space of a (Euclidean, Hermitian) vector bundle p : E — V,
with r = s = p. The Haar system d,w, x € V, is given by the metric structure on the
fibers of E. We have here

Pf(v) = / kp(v —w) f(w)ydcw  (x = p(v)).
E

X

Thus, for all x € V, P, is a convolution operator on the linear space E ..

v) Let G=Gy =TV x {0} uV x Vx ]0, 1] be the tangent groupoid of V. It can be
viewed as a family of groupoids G, parametrized by [0, 1], where Gy = TV and
G, =V x V fort > 0. A Gy-operator is given by a family P, of G,-operators, and
(P;);>0 1s a family of operators on C°(V) parametrized by 7, whereas P is a family
of translation-invariant operators on 7,V parametrized by x € V. The Gy-operators
are thus a blend of examples (ii) and (iv).

We now turn to the definition of pseudodifferential operators on a Lie groupoid
G.

Definition 3.7.3 A G-operator P is a G-pseudodifferential operator of order m if:

(i) The Schwartz kernel kp is smooth outside G©.
(i1) For every distinguished chart  : U C G — Q x s(U) C R"7? x R? of G,

v
U Q x s(U)

N

s(U)

the operator (¥ ~!)*Py* : CX(Q xsU)) = CX(2 xs(U)) is a smooth family
parametrized by s(U) of pseudodifferential operators of order m on €.

We will use few properties of this calculus and only provide some examples and a
list of properties. The reader can find a complete presentation in [37-39,51,52].

Examples 3.7.4 In the previous five examples (Examples 3.7.3), a G-
pseudodifferential operator is:

(i) an operator given by pointwise multiplication by a smooth function on V;
(i1) a single pseudodifferential operator on V;
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(iii) a smooth family parametrized by Z of pseudodifferential operators in the fibers (this
coincides with the notion of [7]);

(iv) a family parametrized by x € V of convolution operators in E, such that the under-
lying distribution kp identifies with the Fourier transform of a symbol on E (that is,
a smooth function on E satisfying the standard decay conditions with respect to its
variable in the fibers);

(v) the data provided by an asymptotic pseudodifferential operator on V together with its
complete symbol, the choice of it depending on the gluing in Gy (this is quite close
to the notions studied in [8,22,23]).

It turns out that the space W}(G) of compactly supported G-pseudodifferential
operators is an involutive algebra.

The principal symbol of a G-pseudodifferential operator P of order m is defined
as a function o,,(P) on A*(G) \ G by

om(P)(x, &) = 0pr(Pr)(x, §),

where o,,(P,) is the principal symbol of the pseudodifferential operator P, on the
manifold G,. Conversely, suppose we are given a symbol f of order m on A*(G)
together with the following data:

(i) a smooth embedding 6 : U — AG, where U is a open set in G containing G, such
that 0(G?) = GO, (dB)|go = 1d, and O(y) € Ay,)G forall y € U;
(i) a smooth, compactly supported map ¢ : G — R, such that ¢ (1) = G©.

Then we get a G-pseudodifferential operator Py ¢ with the formula (1 € C°(G))

e £(r(y), )y Uy Vs (v).

v'€Gs(y).
*
FeA (@

Py pu(y) = /

The principal symbol of Pyg 4 is just the leading part of f.

The principal symbol map respects pointwise product, whereas the product law
for total symbols is much more involved. An operator is elliptic when its principal
symbol never vanishes, and in that case, as in the classical situation, it has a
parametrix inverting it modulo ¥ *°(G) = C°(G).

Operators of negative order in W}(G) are actually in C*(G), whereas zero-order
operators are in the multiplier algebra M(C*(G)).

All these definitions and properties immediately extend to the case of operators
acting between sections of bundles on G pulled back to G with the range map .
The space of compactly supported pseudodifferential operators on G acting on sec-
tions of r* E and taking values in sections of r*F will be denoted by W'(G, E, F).
If F = E, we get an algebra denoted by V(G, E).
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Examples 3.7.5

(i) The family given by P, = P(x,tD,) for t > 0 and Py = P(x, Dy) described in the
introduction of this section is a G-pseudodifferential operator with G the tangent
groupoid of R”.

(i) More generally, let V be a closed manifold endowed with a Riemannian metric. We
denote by exp the exponential map associated with the metric. Let f be a symbol on
V. We get a Gy -pseudodifferential operator P by setting

ey ') dzdf
(t>0) Pfu(x,y,t)=/ e T fx, Hulz, —,
zeV.EeT}V t
Pou(x, X,0) = / eX=D%8 £ (x, Eyu(x, Z)dZdE.
ZeT V E€TV

Moreover, P; is a pseudodifferential operator on the manifold V, which admits f as a
complete symbol.

3.8 Index theorem for smooth manifolds

The purpose of this section is to present a proof of the Atiyah—Singer index
theorem using deformation groupoids and show how it generalizes to conical
pseudomanifolds. The results presented here come from recent works of the authors
together with a joint work with V. Nistor [18-20]; we refer to [19,20] for the proofs.

3.8.1 The KK -element associated to a deformation groupoid

Before going to the description of the index maps, let us describe a useful and
classical construction [13,27].
Let G be a smooth deformation groupoid (Definition 3.2.6):

G=G x{0}UG»x]0,11=G? =M x [0, 1].

One can consider the saturated open subset M x]0, 1] of G©. Using the iso-
morphisms C*(G|uxjo0,17) = C*(G2) ® Co(]0, 1]) and C*(G |y o) = C*(G1), we
obtain the following exact sequence of C*-algebras:

IMx10.1]

0 —— C*Gr) ®Co(10, 1)) =24 c*G) -2 C*Gy) —— 0

where i)7x10,17 is the inclusion map and evy is the evaluation map at 0, that is, evy is
the map coming from the restriction of functions to G| o). We assume now that
C*(Gy) is nuclear. Because the C*-algebra C*(G;) ® Cy(]0, 1]) is contractible, the
long exact sequence in KK -theory shows that the group homomorphism

(evo) = -®levo] : KK (A, C*(G)) - KK (A, C*(Gy))
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is an isomorphism for each C*-algebra A. In particular, with A = C*(G) we get that
[evo] is invertible in KK -theory: there is an element [evo]™! in KK(C*(G,),
C*(G)) such that [evy]®[evy]~ ! = I+ and [evo] ™' ®[evy] = lexy)-

Let ev; : C*(G) — C*(G,) be the evaluation map at 1, and [ev;] the corre-
sponding element of K K(C*(G), C*(G,)). The K K -element associated to the
deformation groupoid G is defined by

8 = [evo] ' ®lev1] € KK(C*(G1), C*(G)).

We will meet several examples of this construction in the sequel.

3.8.2 The analytical index
Let M be a closed manifold, and consider its tangent groupoid:
Gy =TM x {0}UM x Mx]0,1] = M x [0, 1].

It is a deformation groupoid, and the preceding construction provides us a KK -
element:

= (e))s 0 (]! € KK(Co(T*M), K) ~ KK(Co(T*M), C),

where e/ : C*(G},) — C*(G},)|;—; are evaluation homomorphisms.
The analytical index is then [13]

Ind, M := (e}, 0 (e))." : KK(C, Co(T*M)) — K K(C, K(L*(M))
>~ Ko(Co(T*M)) >~ Z
or, in terms of the Kasparov product,
Ind,M = - ® dy.

Using the notion of pseudodifferential calculus for G}, it is easy to conclude that this
map is the usual analytical index map. Indeed, let f(x, &) be an elliptic zero-order
symbol, and consider the G},-pseudodifferential operator, Py = (P;)o<,<, defined
as in Examples 3.7.5. Then f provides a K-theory class [ f] € Ko(C*(T M)) ~
Ko(Co(T*M)), whereas P provides a K -theory class [P] € Ko(C*(G},)), and

(eg")+([P]) = [f] € Ko(C*(T M)).
Thus
[f1®[e)' 17! ® [e}'] = [P1] € Ko(K),
and [ P;] coincides with Ind(P;) under Ky(K) >~ Z.
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Because P; has principal symbol equal to the leading part of f, and because
every class in Ko(Co(T*M)) can be obtained from a zero-order elliptic symbol, the
claim is justified.

To be complete, let us explain that the analytical index map is the Poincaré dual
of the homomorphism in K-homology associated with the obvious map: M — {-}.
Indeed, thanks to the obvious homomorphism ¥ : C*(TM) ® C(M) — C*(TM)
given by multiplication, dj can be lifted into an element Dy = W,.(dy) €
KK(C*(TM)® C(M),C)=K%C*(TM)® C(M)), called the Dirac element.
This Dirac element yields the well-known Poincaré duality between Co(T*M)
and C(M) [14,19,31], and in particular it gives an isomorphism

. ® Dy: Ko(CHTM)) — K(C(M)),
C*(TM)

whose inverse is induced by the principal symbol map.
One can then easily show the following proposition:

Proposition 3.8.1 Let g: M — - be the projection onto a point. The following
diagram commutes:

KOT*M) -2 Ko(M)

Ind, l lq*
Z

— Z

3.8.3 The topological index

Take an embedding M — R”, and let p : N — M be the normal bundle of this
embedding. The vector bundle TN — T M admits a complex structure; thus we
have a Thom isomorphism

T : Ko(CHTM)) — Ko(C*(TN))
given by a KK -equivalence
T € KK(C*(TM),C*(TN)).

T is called the Thom element [30].
The bundle N identifies with an open neighborhood of M into R", so we have
the excision map
Jj:C*(TN)— C*(TR").

Consider also B : Ko(C*(TR")) — Z given by the isomorphism C*(TR") >~
Co(R?") together with Bott periodicity.

17:18
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The topological index map Ind, is the composition
K(C*(TM) - K(CHTN)) 2> K(CHTRY) = 7.

This classical construction can be reformulated with groupoids.

First, let us give a description of T, or rather of its inverse, in terms of groupoids.
Recall the construction of the Thom groupoid. We begin by pulling back 7'M over
N in the groupoid sense. Let

*PPTM)=NxTM xN =N
M M
and
Ty =TN x {0} u*p*(TM)x]0,1] = N x [0, 1].

This Thom groupoid and the Morita equivalence between *p*(T M) and T M pro-
vide the KK -element

7y € KK(C*(TN), C*(TM)).

This element is defined exactly as 9y is. Precisely, the evaluation map at 0, namely
¢o : C*(1Iy) — C*(T N), defines an invertible K K -element. We let &, : C*(7y) —
C*(*p*(T M)) be the evaluation map at 1. The Morita equivalence between the
groupoids T M and * p*(T M) leads to a Morita equivalence between the correspond-
ing C*-algebra and thus to a KK -equivalence M € K K(C*(* p*(T M)), C*(T M)).
Then

wo=18] 7 @ @] e M.
We have the following:

Proposition 3.8.2 [20] If T is the KK -equivalence giving the Thom isomorphism,
then

N = Tﬁl.

This proposition also applies to interpret the isomorphism B : Ko(C*(TR")) —
Z. Indeed, consider the embedding - < R". The normal bundle is just R" — -,
and we get as before

TRe € KK(C*(TRn), C)

Using the previous proposition, we get B = - ® Tpr.
Remark also that 7g: = Gg», so that tg: = [eélfn]*1 ® [eIF"].
Finally, the topological index

. -1
Ind; = TR 0 jy 0Ty

is entirely described using (deformation) groupoids.
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3.8.4 The equality of the indices

A last groupoid is necessary in order to prove the equality of index maps. Namely,
this groupoid is obtained by recasting the construction of the Thom groupoid at the
level of tangent groupoids:

Ty = Gy x {0} U*(p ® Idip.11)*(Gu) %10, 11. (3.27)
As before, this yields a class
v € KK(C*(Gn), C*(Gum)).

All maps in the diagram

7 _— 7 _— 7
e{”T e{VT N eﬂ

Ko(C*(Gu) <22 Ko(C*(Gn) —2> Ko(C*(Gar)) (3.28)
e(/)wl: e(’)"lz ebR"lz

Ko(CHTM)) <=2 Ko(CHTN)) —Ls Ko(C*TR™))

~

are given by Kasparov products with

(i) classes of homomorphisms coming from restrictions or inclusions between groupoids,
(i) inverses of such classes,
(iii) explicit Morita equivalences.

This easily yields the commutativity of the diagram (3.28). Having in mind the
previous description of index maps using groupoids, this commutativity property
just implies

Ind, = Ind,.

3.9 The case of pseudomanifolds with isolated singularities

As we explained earlier, the proof of the K -theoretical form of the Atiyah—Singer
index theorem presented in this chapter easily extends to the case of pseudoman-
ifolds with isolated singularities. This is achieved provided one uses the correct
notion of tangent space of the pseudomanifold; for a pseudomanifold X with
one conical point (the case of several isolated singularities is similar), this is the
noncommutative tangent space defined in Section 3.2.5:

TSX =X x X UTX'T = X°.
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In the sequel, it will replace the ordinary tangent space of a smooth manifold.
Moreover, it gives rise to another deformation groupoid, which will replace the
ordinary tangent groupoid of a smooth manifold:

Gt =TSX x {0} U X° x X°x]0, 1] = X° x [0, 1].

We call G the rangent groupoid of X . It can be provided with a smooth structure
such that 78X is a smooth subgroupoid. Moreover, both are amenable, so their
reduced and maximal C*-algebras coincide and are nuclear.

With these choices of TSX as a tangent space for X and of G as a tangent
groupoid, one can follow step by step all the constructions made in the previous
section.

3.9.1 The analytical index

Using the partition X° x [0, 1] = X° x {0} U X°x]0, 1] into saturated open and
closed subsets of the units space of the tangent groupoid, we define the KK -element
associated to the tangent groupoid of X:
dx = [eo] ' ® [e1] € KK(CH(TSX), K) = KK(C*(TSX), ),

where ¢ : C*(GYy) = C*(Gy|x-x0) = C*(TSX) is the evaluation at 0, and e; :
C*(GY) — C*(GYlxoxpy) = K(L*(X)) is the evaluation at 1.

Now we can define the analytical index exactly as we did for closed smooth
manifolds. Precisely, the analytical index for X is set to be the map

Ind¥ = ® dy : KK(C, C*(TSX)) - KK(C, K(L}(X°))) ~ Z.

The interpretation of this map as the Fredholm index of an appropriate class of
elliptic operators is possible and carried out in [34].

3.9.2 The Poincaré duality

Pursuing the analogy with smooth manifolds, we explain in this subsection that
the analytical index map for X is Poincaré dual to the index map in K-homology
associated to the obvious map : X — {.}.

The algebras C(X) and C*(X) :={f € C(X) | f is constant on cL} are homo-
topic. If g belongs to C*(X) and f to C.(TSX), let g - f be the element of C.(TSX)
defined by g - f(y) = g(r(y)) f(y). This induces a x-morphism

W C(X)® CH(TSX) — CHTSX).
The Dirac element is defined to be
Dy :=[¥]® dx € KK(C(X)® CX(T®X), C).
We recall

17:18
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Theorem 3.9.1 [19] There exists a (dual-Dirac) element Ly € KK(C, C(X) ®
C*(TSX)) such that

Ax ® Dx = lesy) € KK(CHTSX), CX(TSX)),
c(X)

Ax ® Dx=lcwx € KK(C(X), C(X)).
CH(TSX)
This means that C(X) and C*(TSX) are Poincaré dual.

Remark 3.9.2 The explicit construction of Ay, which is heavy going and technical,
can be avoided. In fact, the definitions of TS X, G and thus of D can be extended in
a natural way to the case of an arbitrary pseudomanifold, and the proof of Poincaré
duality can be done using a recursive argument on the depth of the stratification,
starting with the case depth = 0, that is, with the case of smooth closed manifolds.
This is the subject of [18].

The theorem implies that
KK(C, C*(TSX)) ~ Ko(C*(TSX)) - K(C(X),C) ~ K’(C(X)),

x—x & Dy
CH(TSX)
is an isomorphism. In [34], it is explained how to interpret its inverse as a principal
symbol map, and one also get the analogue of Proposition 3.8.1:

Proposition 3.9.3 Let g : X — - be the projection onto a point. The following
diagram commutes:

Ko(CHTSX)) —2> Ko(X)

Indfl lq*

Z —s 7

3.9.3 The topological index

3.9.3.1 Thom isomorphism

Take an embedding X — cR" = R" x [0, +oo[/R" x {0}. This means that we
have a map which restricts to an embedding X° — R" x]0, +oo[ in the usual sense
and which sends ¢ to the image of R"” x {0} in cR". Moreover, we require the
embedding on X~ = L x]0, 1] to be of the form j x Id where j is an embedding
of L in R".

Such an embedding provides a conical normal bundle. Precisely, let p : N° —
X° be the normal bundle associated with X° < R"x]0, +oo[. We can identify
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N°|x- >~ N°|; x]0, 1[, and set
N =¢N°|p UN°|x+.

Thus N is the pseudomanifold with an isolated singularity obtained by gluing the

closed cone ¢ N°|p := N°|p x [0, 1]/N°|p x {0} with N°|x+ along their common

boundary N°|, x {1} = N°|yx+. Moreover, p : N — X is a conical vector bundle.
The Thom groupoid is then

Ty = TSN x {0} u*p*(TSX)x]0, 1].

It is a deformation groupoid. The corresponding KK -element gives the inverse
Thom element:

v € KK(C*(TSN), C*(T®X)).
Proposition 3.9.4 [20] The following map is an isomorphism:

K(CHTSN)) 28 K(CHTSX)).

Roughly speaking, the inverse of - @ ty is the Thom isomorphism for the “vector
bundle” TSN “over” TSX. One can show that it really restricts to usual Thom
homomorphism on regular parts.

3.9.3.2 Excision

The groupoid TSN is identified with an open subgroupoid of 7ScR”, and we have
an excision map

j: CYTSN)— C*TSR").
3.9.3.3 Bott element

Consider ¢ < cRR". The (conical) normal bundle is cR" itself. Remark that G, =
T.rn. Then

Tre € KK(C*(TScR"), C)
gives an isomorphism
B=(®Tr): Ko(CHTScR")) — Z.
Definition 3.9.5 The topological index is the morphism
IndX = Boj,oty': Ko(C*(TSX)) - Z.

The following index theorem can be proved along the same lines as in the smooth
case:

Theorem 3.9.6 The following equality holds:

Ind’ = Ind.
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