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1 Renormalisation in physics

Systems in interaction are most common in physics. When parameters (such as
mass, electric charge, acceleration, etc.) characterising the system are considered, it is
crucial to distinguish between bare parameters, which are the values they would take
if the interaction were switched off, and the actually observed parameters. Renor-
malisation can be defined as any procedure able to transform the bare parameters
into the actually observed ones (i.e. with interaction taken into account), which will
therefore be called renormalised. Consider (from [CK1]) the following example: the
initial acceleration of a spherical balloon is given by:

g =
m0 −M

m0 + M
2

g0 (1)

where g0 ' 9, 81m.s−2 is the gravity acceleration at the surface of the Earth, m0 is the
mass of the balloon, and M is the mass of the volume of the air occupied by it. Note
that this acceleration decreases from g0 to −2g0 when the interaction (represented
here by the air mass M) increases from 0 to +∞. The total force F = mg acting on
the balloon is the sum of the gravity force F0 = m0g0 and Archimedes’ force −Mg0.
The bare parameters (i.e. in the absence of air) are thus m0, F0, g0 (mass, force and
acceleration respectively), whereas the renormalised parameters are:

m = m0 +
M

2
, F = (1− M

m0

)F0, g =
m0 −M

m0 + M
2

g0. (2)

In perturbative quantum field theory an extra difficulty arises: the bare pa-
rameters are usually infinite! Typically they are given by divergent integrals2 such
as: ∫

R4

1

1 + ‖p‖2
dp. (3)
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2To be precise, the physical parameters of interest are given by a series each term of which is
a divergent integral. We do not approach here the question of convergence of this series once each
term has been renormalised.

1



One must then subtract another infinite quantity to the bare parameter to re-
cover the renormalised parameter, which is finite as it can be actually measured!
Such a process takes place in two steps:

1) a regularisation procedure, which replaces the bare infinite parameter by a func-
tion of one variable z which tends to infinity when z tends to some z0.

2) the renormalisation procedure itself, of combinatorial nature, which extracts an
appropriate finite part from the function above when z tends to z0. When this pro-
cedure can be carried out, the theory is called renormalisable.

There is usually considerable freedom in the choice of a regularisation proce-
dure. Let us mention, among many others, the cut-off regularisation, which amounts
to consider integrals like (3) over a ball of radius z (with z0 = +∞), and dimensional
regularisation which consists, roughly speaking, in “integrating over a space of com-
plex dimension z”, with z0 = d, the actual space dimension of the physical situation
(for example d = 4 for the Minkowski space-time). In this case the function which
appears is meromorphic in z with a pole at z0 ([C],[HV], [Sp]).

The renormalisation procedure is an algorithm of combinatorial nature, the
BPHZ algorithm (after N. Bogoliubov, O. Parasiuk, K. Hepp and W. Zimmermann).
The combinatorial objects involved are Feynman graphs: to each graph3 corresponds
(by Feynman rules) a quantity to be renormalised, and an integer (the loop number)
is associated to the graph. The initial data for this algorithm are determined by the
choice of a renormalisation scheme, which consists in choosing the finite part for the
“simplest” quantities, corresponding to graphs with loop number L = 1. For example
we can simply remove the pole part at z0 of a meromorphic function and then consider
the value at z0. This is the minimal subtraction scheme. The renormalisation of the
other quantities involved are then given recursively with respect to the loop number.

2 Connected graded Hopf algebras

The crucial fact first observed by D. Kreimer [K1] is the following: the Feyn-
man graphs involved in the renormalisation procedure are organised in a connected
graded Hopf algebra. On these Hopf algebras recursive procedures with respect to
the degree can be implemented. In particular the antipode “comes for free” by means
of a recursive formula.

3together with external momenta. cf. § 4 below.
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Let k be a field of characteristic zero. A connected graded bialgebraH =
⊕

n≥0Hn

is a graded unital algebra on k with dimH0 = 1 endowed with a compatible co-unit
ε : H → k and coproduct ∆ : H → H⊗H such that:

∆(Hn) ⊂
⊕

r+s=n

Hr ⊗Hs. (4)

For any x ∈ Hn we more precisely have, using a variant of Sweedler’s notation [Sw]:

∆(x) = x⊗ 1 + 1⊗ x+
∑
(x)

x′ ⊗ x′′, (5)

where the degrees of x′ and x′′ are strictly smaller than n. Now let A be any k-algebra
(with multiplication mA : A⊗A → A), and let L(H,A) be the vector space of linear
maps from H to A. The convolution product on L(H,A) is defined as follows:

ϕ ∗ ψ = mA ◦ (ϕ⊗ ψ) ◦∆. (6)

Convolution product writes then with Sweedler’s notation:

(ϕ ∗ ψ)(x) = ϕ(x)ψ(1) + ϕ(1)ψ(x) +
∑
(x)

ϕ(x′)ψ(x′′). (7)

Recall that the antipode S is the inverse of the identity for the convolution product
on L(H,H). It always exists in a connected graded bialgebra, hence any connected
graded bialgebra is a connected graded Hopf algebra. The antipode is given by any
of the following recursive formulas:

S(x) = −x−
∑
(x)

S(x′)x′′, (8)

S(x) = −x−
∑
(x)

x′S(x′′). (9)

3 Renormalisation for connected graded Hopf al-

gebras

Let A be any commutative unital algebra over the field k, and suppose that A
splits into two subalgebras:

A = A− ⊕A+, (10)
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where the unit 1A belongs to A+. Such a splitting is called a renormalisation scheme.
The minimal renormalisation scheme described in paragraph 1 corresponds to the
splitting of the C-algebra A of meromorphic functions in which A− is the algebra of
polynomials in (z − z0)

−1 without constant term (the “pole parts”), and A+ is the
algebra of meromorphic functions which are holomorphic at z0.

Now let H be a connected graded Hopf algebra. It is easily seen, thanks to
the commutativity of the algebra A, that the set G of unital algebra morphisms from
H to A is a group for the convolution product, the group of A-valued characters on
H. The neutral element e is given by e(1) = 1A and e(x) = 0 for x ∈ Hn, n ≥ 1. The
inverse is given by composition with the antipode:

χ∗−1 = χ ◦ S. (11)

Now any character admits a Birkhoff decomposition which is unique once the renor-
malisation scheme has been chosen [CK1], [M]: namely for any χ ∈ G we have:

χ = χ∗−1
− ∗ χ+, (12)

where both χ− and χ+ belong to G, where χ+(x) ∈ A+ for any x ∈ H, and where
χ−(x) ∈ A− for any x ∈ Hn, n ≥ 1. The components χ− and χ+ are given by fairly
simple recursive formulas: let us denote by π : A → A− the projection onto A−
parallel to A+. Suppose that χ−(x) and χ+(x) are known for x ∈ Hk, k ≤ n − 1.
Define for x ∈ Hn Bogoliubov’s preparation map:

R : x 7−→ χ(x) +
∑
(x)

χ−(x′)χ(x′′). (13)

The components in the Birkhoff decomposition are then given by:

χ−(x) = −π
(
R(x)

)
, (14)

χ+(x) = (1− π)
(
R(x)

)
. (15)

The component χ+ is the renormalised character whereas χ−(x) is the sum of coun-
terterms one must add to R(x) to get χ+(x). In the example of minimal subtraction
scheme the renormalised value of the character χ at z0 is the well-defined complex
number χ+(z0), whereas χ(z0) may not exist4.

4The fact that χ− and χ+ are still characters relies on a Rota-Baxter property for the projection
π. This aspect is well developed in [EGK1], [EGK2], [EGGV], see also [EG].
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4 Feynman graphs

A Feynman graph is a (non-planar) graph with a finite number of vertices and
edges. An internal edge is an edge connected at both ends to a vertex (which can
be the same in case of a self-loop), an external edge is an edge with one open end,
the other end being connected to a vertex. A Feynman graph is called by physicists
vacuum graph, tadpole graph, self-energy graph, resp. interaction graph if its number
of external edges is 0,1, 2, resp. > 2. An edge can be of various types according to
which elementary particle it represents.
A one-particle irreducible graph (in short, 1PI graph) is a connected graph which
remains connected when we cut any internal edge. A disconnected graph is said to
be locally 1PI if any of its connected components is 1PI.

A given perturbative quantum field theory (for example quantum electrody-
namics) imposes constraints on the corresponding diagrams: only a few valences for
vertices are allowed, for instance. Let V be the vector space freely generated by those
diagrams (which we call admissible) which are moreover 1PI, and let H be the free
commutative algebra (the symmetric algebra) generated by V . This is a connected
graded Hopf algebra5, with grading given by the loop number: the coproduct of a
graph Γ is given by:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ locally 1PI proper subgraph of Γ
Γ/γ admissible

γ ⊗ Γ/γ. (16)

Here Γ/γ stands for the contracted graph (or cograph), where each connected compo-
nent of the subgraph is shrinked to a point. The situation is actually less simple than
sketched here because Feynman diagrams come together with exterior structures,
i.e. a vector (called exterior momentum) attached to each external edge. The sum
of those vanishes, reflecting the conservation of total momentum in an interaction.
It is still possible to organise Feynman diagrams together with exterior structures
in a connected graded Hopf algebra ([CK1], [K2]). Feynman rules and dimensional
regularisation yield a character of this Hopf algebra with values in the meromorphic
functions [C], [HV], [Sp]. In the case of a renormalisable theory the abstract renor-
malisation algorithm described in § 3 applied to this particular Hopf algebra coincides
with the BPHZ algorithm.

5This Hopf algebra is commutative by construction. Thanks to the Cartier-Milnor-Moore theo-
rem its graded dual is the enveloping algebra of a Lie algebra g. The Lie structure comes from the
pre-Lie operation of insertion of graphs [K2].
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