Distribution of Fourier coefficients

 of primitive formsJie WU
Institut Élie Cartan Nancy
CNRS et Nancy-Université, France

Clermont-Ferrand, le 25 Juin 2008

Presented work

[1] E. Kowalski, O. Robert \& J. Wu, Small gaps in coefficients of L-functions and \mathfrak{B}-free numbers in short intervals, Revista Mat. Iberoamericana 23 (2007), No. 1, 281-322.
[2] Y.-K. \& J. Wu, The number of Hecke eigenvalues of same signs, Preprint 2008.

§ 1. Motivation

- Ramanujan's function $\tau(n)$

For $\Im m z>0$, define

$$
\Delta(z):=e^{2 \pi i z} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)^{24}=: \sum_{n=1}^{\infty} \tau(n) e^{2 \pi i n z}
$$

- Ramanujan's conjecture

$$
|\tau(n)| \leqslant d(n) n^{11 / 2} \quad(n \geqslant 1)
$$

where $d(n)$ is the divisor function. This conjecture has been proved by Deligne (1974).

- Lehmer's conjecture

$$
\tau(n) \neq 0 \quad(n \geqslant 1)
$$

This is open!

- Two partial results on Lehmer's conjecture

Lehmer (1959) : $\tau(n) \neq 0$ for $n \leqslant 10^{15}$.
Serre (1981): $|\{n \leqslant x: \tau(n) \neq 0\}| \sim \alpha x \quad(x \rightarrow \infty, \alpha>0)$.

- Questions
(i) $\quad \alpha=1$? (Nonvanishing of $\tau(n)$)
(ii) $\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leqslant x, \tau(n) \gtrless 0} 1=\frac{1}{2}$?
(Signs of $\tau(n)$)

§ 2. Modular forms

- Notation

$$
k:=\text { integer } \geqslant 2,
$$

$N:=$ squarefree integer,
$\log _{r}:=$ the r-fold iterated logarithm,
$\chi_{0}:=$ trivial Dirichlet character $(\bmod N)$,
$\chi:=$ Dirichlet character $(\bmod N)$ such that $\chi(-1)=(-1)^{k}$.

- Cusp forms

Denote by $S_{k}(N, \chi)$ the set of all cusp forms of weight k and of level N with nebentypus χ.

- Decomposition of $S_{k}(N, \chi)$
$S_{k}(N, \chi)$ equipped with the Petersson inner product $\langle\cdot, \cdot\rangle$ is a finite dimensional Hilbert space and we have

$$
S_{k}(N, \chi)=S_{k}^{b}(N, \chi) \oplus S_{k}^{\sharp}(N, \chi),
$$

where $S_{k}^{b}(N, \chi)$ is the linear subspace of $S_{k}(N, \chi)$ spanned by all forms of type $f(d z)$, where $d \mid N$ and $f \in S_{k}\left(N^{\prime}, \chi^{\prime}\right)$ with $N^{\prime}<N$ and $d N^{\prime} \mid N$. Here $\chi^{\prime}\left(\bmod N^{\prime}\right)$ is the character which induces $\chi . S_{k}^{\sharp}(N, \chi)$ is the linear subspace of $S_{k}(N, \chi)$ orthogonal to $S_{k}^{b}(N, \chi)$ with respect to $\langle\cdot, \cdot\rangle$.

- Newforms

Denote by $S_{k}^{*}(N, \chi)$ the set of all newforms in $S_{k}^{\sharp}(N, \chi)$. It constitutes a base of $S_{k}^{\sharp}(N, \chi)$.

We can prove $\Delta(z) \in S_{12}(1):=S_{12}\left(1, \chi_{0}\right)$.

- Fourier development of $f \in S_{k}^{*}(N, \chi)$ at ∞

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{(k-1) / 2} e^{2 \pi i n z} \quad(\Im m z>0)
$$

where $\lambda_{f}(n)$ has the following properties:
(i) $\lambda_{f}(1)=1$,
(ii) $T_{n} f=\lambda_{f}(n) n^{(k-1) / 2} f$ for any $n \geqslant 1$,
(iii) for all integers $m \geqslant 1$ and $n \geqslant 1$,

$$
\lambda_{f}(m) \lambda_{f}(n)=\sum_{d \mid(m, n)} \chi(d) \lambda_{f}\left(\frac{m n}{d^{2}}\right)
$$

where T_{n} is the nth Hecke's operator.
(iv) Further if $f \in S_{k}^{*}\left(N, \chi_{0}\right)$, then $\lambda_{f}(n) \in \mathbb{R}$ for $n \geqslant 1$.

- Deligne's inequality Deligne (1974): If $f \in S_{k}^{*}(N, \chi)$, then $\forall p, \exists \alpha_{f}(p), \beta_{f}(p)$ such that

$$
\begin{cases}\left|\alpha_{f}(p)\right|= \pm p^{-1 / 2}, \quad \beta_{f}(p)=0 & \text { if } p \mid N \\ \left|\alpha_{f}(p)\right|=1, \quad \alpha_{f}(p) \beta_{f}(p)=\chi(p) & \text { if } p \nmid N\end{cases}
$$

and

$$
\lambda_{f}\left(p^{\nu}\right)=\alpha_{f}(p)^{\nu}+\alpha_{f}(p)^{\nu-1} \beta_{f}(p)+\cdots+\beta_{f}(p)^{\nu} \quad(\forall \nu \geqslant 0)
$$

In particular

$$
\left|\lambda_{f}\left(p^{\nu}\right)\right| \leqslant \nu+1 \quad(\forall p \text { and } \forall \nu \geqslant 0) .
$$

More generally

$$
\left|\lambda_{f}(n)\right| \leqslant d(n) \quad(n \geqslant 1)
$$

where $d(n)$ is divisor function.
\S 3. Nonvanishing of $\lambda_{f}(n)$

- Notation

$$
f \in S_{k}(N, \chi): \quad \mathfrak{P}_{f}:=\left\{p: \lambda_{f}(p)=0\right\}
$$

- Forms of CM type

Ribet (1977): If $f \in S_{k}^{\mathrm{cm}}(N, \chi)$ (the subspace of $S_{k}(N, \chi)$ spanned by all CM forms), then

$$
\left|\mathfrak{P}_{f} \cap[1, x]\right|=\frac{x}{2 \log x}+O\left(\frac{x}{(\log x)^{2}}\right) .
$$

By using Landau's method, we can prove $\exists \alpha>0$ such that for $x \rightarrow \infty$,

$$
\sum_{n \leqslant x, \lambda_{f}(n) \neq 0} 1 \sim \frac{\alpha x}{\sqrt{\log x}}, \quad \sum_{n \leqslant x, \lambda_{f}(n)=0} 1 \sim x
$$

- Lang-Trotter's conjecture If $f \in S_{k}^{*}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$, then

$$
\left|\mathfrak{P}_{f} \cap[1, x]\right|<_{f} \begin{cases}\sqrt{x} / \log x & \text { if } k=2, \\ \log _{2} x & \text { if } k=3, \\ 1 & \text { if } k \geqslant 4 .\end{cases}
$$

- Forms of non-CM type Serre (1981): If $f \in S_{k}^{*}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$, then $\forall \delta<\frac{1}{2}$,

$$
\begin{equation*}
\left|\mathfrak{P}_{f} \cap[1, x]\right| \ll f, \delta \frac{x}{(\log x)^{1+\delta}} . \tag{1}
\end{equation*}
$$

From this, we deduce that there are constants $C>c>0$ such that

$$
\begin{equation*}
c x \leqslant \sum_{n \leqslant x, \lambda_{f}(n) \neq 0} 1 \leqslant C x \tag{2}
\end{equation*}
$$

for $x \geqslant x_{0}(f)$.

- Serre's function $i_{f}(n)$

For $f \in S_{k}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$, we define

$$
i_{f}(n):=\max \left\{i: \lambda_{f}(n+j)=0 \quad(0<j \leqslant i)\right\} .
$$

The inequalities (2) imply that

$$
\begin{equation*}
i_{f}(n) \ll_{f} n \quad(n \geqslant 1) \tag{3}
\end{equation*}
$$

since

$$
0=\sum_{\substack{n<m \leqslant n+i_{f}(n) \\ \lambda_{f}(m) \neq 0}} 1 \geqslant c\left(n+i_{f}(n)\right)-C n=c i_{f}(n)-(C-c) n .
$$

- Serre's question (1981)

Find constant $\theta<1$ such that

$$
\begin{equation*}
i_{f}(n)<_{f, \theta} n^{\theta} \quad(\forall n \geqslant 1) . \tag{4}
\end{equation*}
$$

Remark 1. Balog \& Ono (2001) remarked that Serre's question has been resolved before proposing it! There is two methods !

- Rankin-Selberg convolution (The first method)

Rankin (1939) and Selberg (1940): For $f \in S_{k}^{*}(N, \chi)$, we have

$$
\sum_{n \leqslant x}\left|\lambda_{f}(n)\right|^{2}=A_{f} x+O_{f}\left(x^{3 / 5}\right) \quad\left(A_{f}>0\right) .
$$

This implies trivially (4) with $\theta=\frac{3}{5}$, since

$$
\begin{aligned}
0 & =\sum_{n<m \leqslant n+i_{f}(n)} \lambda_{f}(m)^{2}=\sum_{m \leqslant n+i_{f}(n)} \lambda_{f}(m)^{2}-\sum_{m \leqslant n} \lambda_{f}(m)^{2} \\
& =A_{f}\left(n+i_{f}(n)\right)-A_{f} n+O\left(\left(n+i_{f}(n)\right)^{3 / 5}+n^{3 / 5}\right) \\
& =A_{f} i_{f}(n)+O\left(n^{3 / 5}\right) \quad(\operatorname{via}(3)) .
\end{aligned}
$$

- Erdös' \mathfrak{B}-free numbers (The second method)

Let

$$
\mathfrak{B}=\left\{b_{k} \in \mathbb{N}: 1<b_{1}<\cdots<b_{k}<\cdots\right\}
$$

such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{b_{i}}<\infty \quad \text { and } \quad\left(b_{i}, b_{j}\right)=1 \quad(i \neq j) \tag{5}
\end{equation*}
$$

An integer $n \geqslant 1$ is called \mathfrak{B}-free if $b \nmid n$ for any $b \in \mathfrak{B}$. The set of all \mathfrak{B}-free numbers is denoted by $\mathfrak{A}=\mathfrak{A}(\mathfrak{B})$.

Taking $\mathfrak{B}=\left\{p^{2}: p\right.$ prime $\}=: \mathfrak{P}^{2}$, then $\mathfrak{A}\left(\mathfrak{P}^{2}\right)$ is the set of all squarefree integers.

Erdős (1966): $\exists \theta<1$ such that for $x \geqslant x_{0}(\mathfrak{B}, \theta)$,

$$
\begin{equation*}
\mid\left\{x<n \leqslant x+x^{\theta}: n \text { is } \mathfrak{B} \text {-free }\right\} \mid \gg_{\mathfrak{B}, \theta} x^{\theta} \tag{6}
\end{equation*}
$$

The records on θ :

$$
\begin{array}{ll}
\theta=\frac{1}{2}=0.5+\varepsilon & \\
\text { (Szemerédi, 1973), } \\
\theta=\frac{9}{20}=0.45+\varepsilon & \\
\theta=\frac{5}{12}=0.4166+\varepsilon & \\
\text { (Bantle \& Grupp, 1986), 1990), } \\
\theta=\frac{17}{41}=0.4146+\varepsilon & \\
\theta=\frac{33}{80}=0.4125+\varepsilon & \\
\theta=\frac{40}{97}=0.4123+\varepsilon & \\
\theta=\varepsilon & \text { (Sargos \& 1994) and (Zhai, 2000), }, \\
\theta=\varepsilon & \text { (Conjecture), }
\end{array}
$$

where ε is an arbitrarily small positive number.

- Application of \mathfrak{B}-free numbers

Take

$$
\begin{aligned}
& \mathfrak{P}_{f}:=\left\{p: \lambda_{f}(p)=0\right\} \\
& \mathfrak{B}_{f}:=\mathfrak{P}_{f} \cup\left\{p^{2}: p \notin \mathfrak{P}_{f}\right\} .
\end{aligned}
$$

The multiplicativity of $\lambda_{f}(m)$ implies

$$
m \text { is } \mathfrak{B}_{f} \text {-free } \Rightarrow \lambda_{f}(m) \neq 0
$$

In fact, if m is \mathfrak{B}_{f}-free, we have
(i) if $p \mid m$, then $\lambda_{f}(p) \neq 0$,
(ii) $m=p_{1} \cdots p_{j}$ with $\lambda_{f}\left(p_{i}\right) \neq 0$ for $1 \leqslant i \leqslant j$ and $p_{1}<\cdots<p_{j}$,
(iii) $\lambda_{f}(m)=\lambda_{f}\left(p_{1}\right) \cdots \lambda_{f}\left(p_{j}\right) \neq 0$.

In view of Serre's (1), \mathfrak{B}_{f} satisfies (5). Thus Erdős' (6) implies : $\exists \theta<1$ such that for $x \geqslant x_{0}(f, \theta)$

$$
\sum_{\substack{x<m \leqslant x+x^{\theta} \\ \lambda_{f}(m) \neq 0}} 1 \geqslant \sum_{\substack{x<m \leqslant x+x^{\theta} \\ m \text { is } \mathfrak{B}_{f}-\text { free }}} 1>_{f, \theta} x^{\theta},
$$

from which we deduce ($\operatorname{taking} x=n$)

$$
i_{f}(n)<n^{\theta}
$$

for $n \geqslant x_{0}(f, \theta)$. Thus

$$
i_{f}(n) \ll_{f, \theta} n^{\theta} \quad(n \geqslant 1)
$$

In particular, the value $\theta=\frac{40}{97}+\varepsilon$ is admissible.

Theorem 1 (Kowalski, Robert \& Wu, 2007). Suppose that

$$
\begin{equation*}
\left|\mathfrak{P}_{f} \cap[1, x]\right|<_{f} x^{\rho} /(\log x)^{\Theta_{\rho}} \quad(x \geqslant 2) \tag{7}
\end{equation*}
$$

for any $f \in S_{k}^{*}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$, where $\rho \in[0,1]$ and $\Theta_{\rho} \in \mathbb{R}$ such that $\Theta_{1}>1$. Then for any $f \in S_{k}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$ we have

$$
i_{f}(n) \ll_{f, \varepsilon} n^{\theta(\rho)+\varepsilon}
$$

where

$$
\theta(\rho)= \begin{cases}1 / 4 & \text { if } 0 \leqslant \rho \leqslant 1 / 3 \\ 10 \rho /(19 \rho+7) & \text { if } 1 / 3<\rho \leqslant 9 / 17 \\ 3 \rho /(4 \rho+3) & \text { if } 9 / 17<\rho \leqslant 15 / 28 \\ 5 / 16 & \text { if } 15 / 28<\rho \leqslant 5 / 8 \\ (22 \rho /(24 \rho+29) & \text { if } 5 / 8<\rho \leqslant 9 / 10 \\ 7 \rho /(9 \rho+8) & \text { if } 9 / 10<\rho \leqslant 1\end{cases}
$$

Corollary 2 (KRW, 2007). For any form $f \in S_{k}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$, we have $i_{f}(n) \ll_{f, \varepsilon} n^{7 / 17+\varepsilon}$ for all $n \geqslant 1$.
$\left[(1) \Rightarrow(7)\right.$ with $\rho=1$ and $\left.\Theta_{1}=1+\delta\right]$
$\theta(1)=\frac{7}{17} \approx 0.411$ improves very slightly Balog \& Ono's $\frac{40}{97} \approx 0.412$.
Corollary 3 (KRW, 2007). For any $f \in S_{k}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$, LangTrotter's conjecture implies $i_{f}(n)<_{f, \varepsilon} n^{10 / 33+\varepsilon}$ for all $n \geqslant 1$.
[Lang-Trotter's conjecture implies (7) with $\rho=\frac{1}{2}$ and $\Theta_{1 / 2}=1$] $\theta\left(\frac{1}{2}\right)=\frac{10}{33} \approx 0.303$ improves considerably Alkan's $\frac{1}{3} \approx 0.333$.
Corollary 4 (KRW, 2007). Let E / \mathbb{Q} be an elliptic curve without CM and f the associated newform. Then $i_{f}(n)<_{E, \varepsilon} n^{33 / 94+\varepsilon}$ for all $n \geqslant 1$.
[For elliptic curve, Elkies proved (7) with $\rho=\frac{3}{4}$ and $\Theta_{3 / 4}=0$] $\theta\left(\frac{3}{4}\right)=\frac{33}{94} \approx 0.351$ improves considerably Alkan's $\frac{69}{169} \approx 0.408$.

§ 4. Further improvements

- Expected result

$$
\theta(0)=0 \text { in Theorem } 1
$$

- Defect of the constraint "squarefree"

$$
\theta(0)=\frac{1}{4} \neq 0 \text { in Theorem } 1
$$

- Squarefree integers in short intervals

Filaseta \& Trifonov (1992) : $\exists c>0$ such that

$$
\mid\left\{x<n \leqslant x+c x^{1 / 5} \log x: n \text { is squarefree }\right\} \mid \gg x^{1 / 5} \log x .
$$

Remark 2. With the multiplicative constraint "squarefree", we have few chance for obtaining $\theta(0)=0$.

- Treatment without the constraint "squarefree"

Lemma 1 (KRW, 2007). Let $f \in S_{k}^{*}(N, \chi)$. Then $\exists \nu_{f}$ such that for any $p \nmid N$: either $\lambda_{f}\left(p^{\nu}\right) \neq 0(\nu \geqslant 0)$ or $\exists \nu \leqslant \nu_{f}$ such that $\lambda_{f}\left(p^{\nu}\right)=0$.

Lemma 2 (KRW, 2007). For $f \in S_{k}^{*}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$, we define

$$
\begin{aligned}
\mathfrak{P}_{f, \nu} & :=\left\{p: \lambda_{f}\left(p^{\nu}\right)=0 \text { and } \lambda_{f}\left(p^{j}\right) \neq 0(0 \leqslant j<\nu)\right\}, \\
\mathfrak{B}_{f}^{*} & :=\mathfrak{P}_{f, 1} \cup \mathfrak{P}_{f, 2} \cup \cdots \cup \mathfrak{P}_{f, \nu_{f}} .
\end{aligned}
$$

Then for any $\delta<\frac{1}{2}$, we have

$$
\left|\mathfrak{B}_{f}^{*} \cap[1, x]\right|<_{f, \delta} \frac{x}{(\log x)^{1+\delta}}
$$

Remark 3. This contains Serre's (1) and leads us to propose a generalized Lang-Trotter's conjecture.

- Generalized Lang-Trotter's conjecture

Conjecture 1. If $f \in S_{k}^{*}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$, then

$$
\left|\mathfrak{B}_{f}^{*} \cap[1, x]\right|<_{f} \begin{cases}\sqrt{x} / \log x & \text { if } k=2 \\ \log _{2} x & \text { if } k=3, \\ 1 & \text { if } k \geqslant 4\end{cases}
$$

Lemma 3 (KRW, 2007). If $f \in S_{k}^{*}(N)$ such that $\lambda_{f}(n) \in \mathbb{Z}$ for any $n \geqslant 1$ (for example for elliptic curves), then Conjecture 1 is equivalent to Lang-Trotter's conjecture.

- Relation between \mathfrak{B}_{f}^{*}-free and $\lambda_{f}(n) \neq 0$

$$
n \text { is } \mathfrak{B}_{f}^{*} \text {-free } \Leftrightarrow \lambda_{f}(n) \neq 0
$$

Theorem 5 (KRW, 2007). Suppose that

$$
\left|\mathfrak{B}_{f}^{*} \cap[1, x]\right| \lll f_{f} \frac{x^{\rho}}{(\log x)^{\Theta_{\rho}}} \quad(x \geqslant 2)
$$

for any $f \in S_{k}^{*}(N, \chi) \backslash S_{k}^{c m}(N, \chi)$, where $\rho \in[0,1]$ and $\Theta_{\rho} \in \mathbb{R}$ such that $\Theta_{1}>1$. Then for any $f \in S_{k}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$ and $\varepsilon>0$, we have

$$
i_{f}(n) \ll_{f, \varepsilon} n^{\theta(\rho)+\varepsilon} \quad(n \geqslant 1)
$$

where $\theta(\rho)=\rho /(1+\rho)$. In particular $\theta(0)=0$.
Corollary 6 (KRW, 2007). Let $k \geqslant 3$. Suppose that Conjecture 1 holds for all $f \in S_{k}^{*}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$. Then for any $\varepsilon>0$ and all $f \in S_{k}(N, \chi) \backslash S_{k}^{\mathrm{cm}}(N, \chi)$, we have

$$
i_{f}(n) \ll_{f, \varepsilon} n^{\varepsilon} \quad(n \geqslant 1)
$$

§ 5. Katz' conjecture and nonvanishing problem

- Question

Is there a cusp form f such that $\lambda_{f}(n) \neq 0$ for any $n \geqslant 1$?

- Katz' conjecture (1972)

Let $S(1,1 ; p)$ be the sum of Kloosterman. Then

$$
L(s, \mathrm{Kl}):=\prod_{p}\left(1-S(1,1 ; p) p^{-s}+p^{1-2 s}\right)^{-1}=: \sum_{n \geqslant 1} \lambda_{\mathrm{Kl}}(n) n^{-s}
$$

is L-function of a "non-holomorphic" cusp form of weight 2 over $S L_{2}(\mathbb{Z})$. Theorem 7 (KRW, 2007). We have $\lambda_{\mathrm{Kl}}(n) \neq 0$ for any $n \geqslant 1$.

Remark 4. This gives an affirmative answer conditionally. But very probably Katz' conjecture should not hold.
§ 6. Sign changes of Hecke's eigenvalues

- Sato-Tate's conjecture

For any $-2 \leqslant \alpha \leqslant \beta \leqslant 2$ and any $f \in S_{k}^{*}(N):=S_{k}^{*}\left(N, \chi_{0}\right)$, we have

$$
\left|\left\{p \leqslant x: \alpha \leqslant \lambda_{f}(p) \leqslant \beta\right\}\right| \sim \frac{x}{\log x} \int_{\alpha}^{\beta} \frac{\sqrt{4-t^{2}}}{2 \pi} \mathrm{~d} t \quad(x \rightarrow \infty)
$$

Here $\sqrt{4-t^{2}} /(2 \pi) \mathrm{d} t$ is called Sate-Tate's measure.

- Hecke's eigenvalues of same signs

For $f \in S_{k}^{*}(N)$, define

$$
\mathcal{N}_{f}^{ \pm}(x):=\sum_{\substack{n \leqslant x,(n, N)=1 \\ \lambda_{f}(n) \gtrless 0}} 1 .
$$

$$
-25-
$$

It is natural to conjecture

$$
\lim _{x \rightarrow \infty} \frac{\mathcal{N}_{f}^{ \pm}(x)}{x}=\frac{1}{2}
$$

Kohnen, Lau \& Shparlinski (2007):

$$
\mathcal{N}_{f}^{ \pm}(x) \gg_{f} \frac{x}{(\log x)^{17}} \quad\left(x \geqslant x_{0}(f)\right) .
$$

Wu (2008): The exponent 17 can be reduced to $1-1 / \sqrt{3} \approx 0.4226$ and $2-16 /(3 \pi) \approx 0.3023$ if we assume Sato-Tate's conjecture. Theorem 8 (Lau \& Wu, 2008). For any $f \in S_{k}^{*}(N)$, we have

$$
\mathcal{N}_{f}^{ \pm}(x) \ggg{ }_{f} x
$$

for all $x \geqslant x_{0}(f)$.

- Sign changes of Hecke's eigenvalues

Kohnen, Lau \& Shparlinski (2007): there are absolute constants $\eta<1$ and $A>0$ such that for any $f \in S_{k}^{*}(N)$ we have

$$
\mathcal{N}_{f}^{ \pm}\left(x+x^{\eta}\right)-\mathcal{N}_{f}^{ \pm}(x)>0 \quad\left(x \geqslant(k N)^{A}\right)
$$

Theorem 9 (Lau \& Wu, 2008). Let $f \in S_{k}^{*}(N)$. There is an absolute constant $c>0$ such that for any $\varepsilon>0$ and $x \geqslant c N^{1+\varepsilon} x_{0}(k)$, we have

$$
\mathcal{N}_{f}^{ \pm}\left(x+c N^{1 / 2+\varepsilon} x^{1 / 2}\right)-\mathcal{N}_{f}^{ \pm}(x) \ggg>_{\varepsilon} x^{1 / 4-\varepsilon},
$$

where $x_{0}(k)$ is a suitably large constant depending on k and the implied constant in $>_{\varepsilon}$ depends only on ε.

Remark 5. $\lambda_{f}(n)$ has a sign-change in interval $\left[x, x+c N^{1 / 2+\varepsilon} x^{1 / 2}\right]$ for all sufficiently large x.
§ 7. Ideas of the proof of Theorem 1
Recall

$$
\mathfrak{B}_{f}:=\mathfrak{P}_{f} \cup\left\{p^{2}: p \notin \mathfrak{P}_{f}\right\}
$$

The existence of \mathfrak{B}_{f}-free numbers in short intervals is a problem of sieve.
(a) System of weights for detecting \mathfrak{B}_{f}-free numbers;
(b) Exponential sum for controlling the error terms in the sieve.

- Alkan's condition on θ

$$
\delta_{1}(\theta)+\theta+\theta / \rho>1,
$$

where $\delta_{1}(\theta)$ is increasing and given by exponential sums of type II.

- Our condition on θ

$$
\delta_{2}(\theta)+2 \theta / \rho>1
$$

where $\delta_{2}(\theta)$ is increasing and given by exponential sums of type I.

- Two improvements
(i) By exploiting $\left\{p^{2}: p \notin \mathfrak{P}_{f}\right\}$, we improve $\theta+\theta / \rho$ into $2 \theta / \rho$.
(ii) Our system of weights allows us to bring back to estimate bilinear forms of type I :

$$
\sum_{M \leqslant m<2 M} \sum_{N \leqslant n<2 N} \psi_{n} r_{m n}\left(x, x^{\theta}\right)
$$

instead of type II (as in the work of Alkan)

$$
\sum_{M \leqslant m<2 M} \sum_{N \leqslant n<2 N} \phi_{m} \psi_{n} r_{m n}\left(x, x^{\theta}\right)
$$

where $\left|\phi_{m}\right| \leqslant 1,\left|\psi_{n}\right| \leqslant 1$ and

$$
r_{d}(x, y):=|\{x<n \leqslant x+y: d \mid n\}|-y / d
$$

Thus we have $\delta_{2}(\theta)>\delta_{1}(\theta)$.

- Multiple exponential sums :

By the Fourier analyse, the estimate of bilinear forms can be transformed into estimate of multiple exponential sums

$$
\sum_{H \leqslant h<2 H} \sum_{M \leqslant m<2 M} \sum_{N \leqslant n<2 N} \phi_{h} \psi_{n} e\left(X \frac{h^{\alpha} m^{\beta} n^{\gamma}}{H^{\alpha} M^{\beta} N^{\gamma}}\right)
$$

where $e(t):=e^{2 \pi i t},\left|\phi_{h}\right| \leqslant 1,\left|\psi_{n}\right| \leqslant 1, \alpha, \beta, \gamma \in \mathbb{R}$.
According the size of ρ, we use the methods of Fouvry-Iwaniec (with Robert-Sargos' refinement) and of Heath-Brown to estimate this sum.

