Constructive approaches for the controllability of semilinear heat and wave equations

ARNAUD MÜNCH Lab. de mathématiques Blaise Pascal - Clermont-Ferrand - France

ICIAM - Tokyo - August 2023

with Kuntal Bhandari (Prague), Sue Claret (Clermont-Ferrand), Sylvain Ervedoza (Bordeaux), Irene Gayte (Sevilla), Jérome Lemoine (Clermont-Ferrand), Emmanuel Trélat (Paris)

・ロット (雪) () () () ()

General framework and objective

GIVEN some semilinear heat/wave equation

$$\begin{cases} \partial_{t(t)} y - \Delta y + f(y) = v \mathbf{1}_{\omega}, \text{ in } \Omega \times (0, T) \\ y = 0 \text{ in } \partial \Omega \times (0, T) + \text{ initial conditions} \end{cases}$$
(1)

or

$$\begin{cases} \partial_{t(t)} y - \Delta y + f(y) = 0, \text{ in } \Omega \times (0, T), \\ y = v \mathbf{1}_{\Gamma} \text{ in } \partial\Omega \times (0, T) &+ \text{ initial conditions} \end{cases}$$

(2)

イロン 不良 とくほう 不良 とうしょう

ASSUME that there exist control v and T > 0 such that y(t) = 0 for all $t \ge T$.

Litterature Lasiecka-Triggiani'91, Zuazua'93, Fernandez-Cara'00, Barbu'00, Li-Zhang'01, Coron-Trelat'06, Dehman-Lebeau'09, Joly-Laurent'14, Fu-Lu-Zhang'19, Friedman'19,

FIND a non trivial sequence $(y_k, v_k)_{k \in \mathbb{N}}$ such that $(y_k, v_k) \to (y, v)$ as $k \to \infty$, with (y, v) a controlled pair for (1) or (2)?

Non trivial question since in many situations, proofs of controllability are based on non constructive fixed point arguments.

One numerical illustration of controlled solution for the wave equation

Controlled solution (from the boundary)

$$\begin{cases} y_{tt} - y_{xx} - 3y(1 + \ln^{3/2}(2 + |y|)) = 0 & \text{in } (0, 1) \times (0, 2.5), \\ y(0, \cdot) = 0, \ y(1, \cdot) = v & \text{in } (0, 2.5), \\ (y(\cdot, 0), y_t(\cdot, 0)) = (10\sin(\pi x), 0) & \text{in } (0, 1). \end{cases}$$
(3)

How do we get such control v ????

프 🕨 🗉 프

For the semilinear wave/heat equations

$$\begin{cases} \partial_{t(t)} y - \Delta y + f(y) = 0 \\ + \text{ initial conditions and boundary conditions} \end{cases}$$

(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

KNOWN FACT The uniform (w.r.t. initial conditions) exact controllability holds true under the following asymptotic condition on $f \in C^1(\mathbb{R})$

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \sup_{r \to \infty} \frac{|f(r)|}{r \ln^{\rho}(r)} \leq \beta, \qquad \rho \in (0, 2)$

obtained from non constructive Schauder fixed point arguments [Zuazua'93, Zuazua-Fernandez-Cara'00, Barbu'00, Zhang'07,]

CLAIM Under the following assumption,

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \sup_{n \to \infty} \frac{|f'(r)|}{\ln^p(r)} \le \beta, \qquad p \in (0, 2)$

one can construct non trivial sequences $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a state-control pair for the semilinear equation

For the semilinear wave/heat equations

$$\begin{cases} \partial_{t(t)} y - \Delta y + f(y) = 0 \\ + \text{ initial conditions and boundary conditions} \end{cases}$$

(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

KNOWN FACT The uniform (w.r.t. initial conditions) exact controllability holds true under the following asymptotic condition on $f \in C^1(\mathbb{R})$

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \sup_{r \to \infty} \frac{|f(r)|}{r \ln^{\rho}(r)} \le \beta, \qquad \rho \in (0, 2)$

obtained from non constructive Schauder fixed point arguments [Zuazua'93, Zuazua-Fernandez-Cara'00, Barbu'00, Zhang'07,]

CLAIM Under the following assumption,

$$\exists \beta > 0$$
 such that $\lim \sup_{r \to \infty} \frac{|f'(r)|}{\ln^p(r)} \le \beta$, $p \in (0,2)$

one can construct non trivial sequences $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a state-control pair for the semilinear equation

Same method for the wave and heat equation

Assuming

$$\exists \beta > 0 \text{ such that } \lim_{r \to \infty} \sup \frac{|f'(r)|}{\ln^p(r)} \le \beta, \qquad p \in (0, 2)$$

we design convergent sequences (y_k, v_k) from two different approaches :

Method 1 : Least-squares approaches (Newton type linearization)

$$y_{k+1,t(t)} - \Delta y_{k+1} + f'(y_k)y_{k+1} = v_{k+1}\mathbf{1}_{\omega} - f'(y_k)y_{k+1} + f(y_k), k \ge 0$$

where (y_{k+1}, v_{k+1}) is the optimal state-control pair for the cost

$$J(y, v) = \|v\|_{L^2(q_T)}^2$$

Method 2: Zero order linearization and Carleman weights

$$y_{k+1,t(t)} - \Delta y_{k+1} = v_{k+1} \mathbf{1}_{\omega} - f(y_k), k \ge 0$$

where (y_{k+1}, v_{k+1}) is the optimal null state-control pair for the cost for the cost

$$J(y, v) = \|\rho(s)v\|_{L^{2}(q_{T})}^{2} + s\|\rho_{0}(s)y\|_{L^{2}(q_{T})}^{2}$$

involving Carleman weights $\rho(x, t, s)$, $\rho_0(x, t, s)$ and parameter s > 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Assuming

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \sup \frac{|f'(r)|}{\ln^{p}(r)} \le \beta$, $p \in (0, 2)$

we design convergent sequences (y_k, v_k) from two different approaches :

Method 1 : Least-squares approaches (Newton type linearization)

$$y_{k+1,t(t)} - \Delta y_{k+1} + f'(y_k)y_{k+1} = v_{k+1}\mathbf{1}_{\omega} - f'(y_k)y_{k+1} + f(y_k), k \ge 0$$

where (y_{k+1}, v_{k+1}) is the optimal state-control pair for the cost

$$J(y, v) = \|v\|_{L^2(q_T)}^2$$

Method 2: Zero order linearization and Carleman weights

$$y_{k+1,t(t)} - \Delta y_{k+1} = v_{k+1} \mathbf{1}_{\omega} - f(y_k), k \ge 0$$

where (y_{k+1}, v_{k+1}) is the optimal null state-control pair for the cost for the cost

$$J(y,v) = \|\rho(s)v\|_{L^2(q_T)}^2 + s\|\rho_0(s)y\|_{L^2(q_T)}^2$$

involving Carleman weights $\rho(x, t, s)$, $\rho_0(x, t, s)$ and parameter s > 0

Method 1 : A least-squares approach (Damped Newton method)

We consider the nonconvex minimization problem

$$\inf_{(y,v)\in\mathcal{A}} E(y,v), \quad E(y,v) := \frac{1}{2} \left\| \partial_{tt} y - \Delta y + f(y) - v \mathbf{1}_{\omega} \right\|_{L^{2}(Q_{T})}^{2}$$
(5)

$$\begin{split} \mathcal{A} &:= \Big\{ (y, v) \in \mathcal{H} \mid (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), (y(\cdot, T), \partial_t y(\cdot, T)) = (0, 0) \text{ in } \Omega \Big\}, \\ \mathcal{H} &:= \Big\{ (y, v) \in L^2(Q_T) \times L^2(q_T) \mid \partial_{tt} y - \Delta y \in L^2(Q_T), \ y = 0 \text{ on } \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) \in \mathbf{V} \Big\} \end{split}$$

Proposition

$\forall (y,v) \in \mathcal{A}, \quad \sqrt{E(y,v)} \le C e^{C\sqrt{\|l'(y)\|_{\infty}}} \|E'(y,v)\|_{\mathcal{A}_{0}^{\prime}}.$

Consequence:

Any *critical* point $(y, v) \in A$ of *E* is a zero of *E*, and thus is a pair solution of the controllability problem. Moreover:

given any sequence $(y_k, v_k)_{k \in \mathbb{N}}$ in \mathcal{A} such that $||E'(y_k, v_k)||_{\mathcal{A}'_0} \xrightarrow[k \to +\infty]{} 0$ and such that $||f'(y_k)||_{\infty}$ is uniformly bounded, we have $E(y_k, v_k) \xrightarrow[k \to +\infty]{} 0$.

A minimizing sequence for *E* cannot be stuck in a local minimum, even though *E* fails to be convex (it has multiple zeros).

Method 1 : A least-squares approach (Damped Newton method)

We consider the nonconvex minimization problem

$$\inf_{(y,v)\in\mathcal{A}} E(y,v), \quad E(y,v) := \frac{1}{2} \left\| \partial_{tt} y - \Delta y + f(y) - v \mathbf{1}_{\omega} \right\|_{L^{2}(Q_{T})}^{2}$$
(5)

$$\begin{split} \mathcal{A} &:= \Big\{ (y, v) \in \mathcal{H} \mid (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), (y(\cdot, T), \partial_t y(\cdot, T)) = (0, 0) \text{ in } \Omega \Big\}, \\ \mathcal{H} &:= \Big\{ (y, v) \in L^2(Q_T) \times L^2(q_T) \mid \partial_{tt} y - \Delta y \in L^2(Q_T), \ y = 0 \text{ on } \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) \in \mathbf{V} \Big\} \end{split}$$

Proposition

$$\forall (y,v) \in \mathcal{A}, \quad \sqrt{E(y,v)} \leq Ce^{C\sqrt{\|f'(y)\|_{\infty}}} \|E'(y,v)\|_{\mathcal{A}_{0}}.$$

Consequence:

Any *critical* point $(y, v) \in A$ of *E* is a zero of *E*, and thus is a pair solution of the controllability problem. Moreover:

given any sequence $(y_k, v_k)_{k \in \mathbb{N}}$ in \mathcal{A} such that $\|E'(y_k, v_k)\|_{\mathcal{A}'_0} \xrightarrow[k \to +\infty]{} 0$ and such that $\|f'(y_k)\|_{\infty}$ is uniformly bounded, we have $E(y_k, v_k) \xrightarrow[k \to +\infty]{} 0$.

A minimizing sequence for *E* cannot be stuck in a local minimum, even though *E* fails to be convex (it has multiple zeros).

A minimizing sequence for E

Let the sequence $(y_k, v_k)_{k \in \mathbb{N}}$ in \mathcal{A} defined by

$$\begin{cases} (y_0, v_0) \in \mathcal{A} \\ (y_{k+1}, v_{k+1}) = (y_k, v_k) - \lambda_k(Y_k, V_k) & \forall k \in \mathbb{N} \\ \lambda_k = \underset{\lambda \in [0, 1]}{\operatorname{argmin}} E((y_k, v_k) - \lambda(Y_k, V_k)) \end{cases}$$
(6)

where $(Y_k, V_k) \in A_0$ is the solution of minimal control norm of

$$\begin{cases} \partial_{tt} Y_k - \Delta Y_k + f'(y_k) Y_k = V_k \mathbf{1}_{\omega} + (\partial_{tt} y_k - \Delta y_k + f(y_k) - v_k \mathbf{1}_{\omega}) & \text{in } Q_T, \\ Y_k = 0 & \text{on } \Sigma_T, \\ (Y_k(\cdot, 0), \partial_t Y_k(\cdot, 0)) = (0, 0) & \text{in } \Omega. \end{cases}$$
(7)

Lemma $\forall k \geq 0, E'(y_k, v_k) \cdot (Y_k, V_k) = 2E(y_k, v_k)$

Theorem (Münch-Trélat 2022, Bottois-Lemoine-Münch 2023)

Assume that $f'' \in L^{\infty}(\mathbb{R})$ and that $\limsup_{r \to \infty} \frac{|f'(r)|}{\ln^{p}(r)}$ is small enough. for any $(y_0, v_0) \in A$, $(y_k, v_k) \to (y, v)$ a controlled pair for the nonlinear wave eq. The convergence of these sequences is at least linear, and is at least of order 2 after a finite number of iterations.

Remark: Link with a Damped Newton method

Actually, the sequence $(y_k, v_k)_{k \ge 0}$ coincides with the one associated to damped Newton method to find a zero of the map $F : \mathcal{A} \to L^2(Q_T)$ defined by $\mathcal{F}(y, v) := (\partial_{tt}y - \Delta y + f(y) - v1_\omega)$

$$\begin{cases} (y_0, v_0) \in \mathcal{A} \\ D\mathcal{F}(y_k, v_k) \cdot ((y_{k+1}, v_{k+1}) - (y_k, v_k)) = -\lambda_k \mathcal{F}(y_k, v_k), k \ge 0 \\ \lambda_k = \operatorname*{argmin}_{\lambda \in [0, 1]} \mathcal{F}((y_k, v_k) - \lambda D \mathcal{F}^{-1}(y_k, v_k) \mathcal{F}(y_k, v_k)) \end{cases}$$

(8)

For $\lambda_k = 1$, the least-squares algorithm coincides with the Newton algorithm applied to \mathcal{F} (explaining the quadratic convergence property).

Optimizing the parameter λ_k ensures the global convergence of the algorithm

Numerical experiments in the 2d case

We consider a two-dimensional case for which $\Omega = (0, 1)^2$ and T = 3.

$$\begin{cases} \partial_{tt}y - \Delta y - 10 y \ln^{1/2}(2 + |y|) = v \mathbf{1}_{\omega} & \text{in } Q_T := \Omega \times (0, T), \\ y = 0 & \text{on } \Sigma_T := \partial \Omega \times (0, T), \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (100 \sin(\pi x_1) \sin(\pi x_2), 0) & \text{in } \Omega, \end{cases}$$
(9)

・ 同 ト ・ ヨ ト ・ ヨ ト

∃ 9900

Numerical experiments in the 2d case

‡iterate <i>k</i>	$\sqrt{2E(y_k,v_k)}$	$\frac{\ y_k - y_{k-1}\ _{L^2(Q_T)}}{\ y_{k-1}\ _{L^2(Q_T)}}$	$\frac{\ v_k - v_{k-1}\ _{L^2_{\chi}(q_T)}}{\ v_{k-1}\ _{L^2_{\chi}(q_T)}}$	$\ y_k\ _{L^2(Q_T)}$	$\ v_k\ _{L^2_{\chi}(q_T)}$	λ_k
0	7.44×10^{2}	-	-	38.116	732.22	1
1	$1.63 imes 10^{2}$	$1.79 imes10^{0}$	$9.30 imes 10^{-1}$	58.691	667.602	1
2	1.62×10^{0}	$8.42 imes 10^{-2}$	1.41×10^{-1}	60.781	642.643	1
3	$1.97 imes 10^{-3}$	$1.21 imes 10^{-3}$	$4.66 imes 10^{-3}$	60.745	643.784	1
4	5.11×10^{-10}	$6.43 imes10^{-7}$	$2.63 imes 10^{-6}$	60.745	643.785	-

Arnaud Münch

Approximation of exact controls

Method 2 (explained in the boundary controllability case)

$$\begin{cases} y_{tt} - \Delta y + f(y) = 0 & \text{in } Q_T, \\ y = v \mathbf{1}_{\Gamma_0} \text{in } \partial\Omega \times (0, T), \quad (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) & \text{in } \Omega, \end{cases}$$
(10)

Theorem (Bhandari-Lemoine-Münch 2022, Claret-Lemoine-Münch, 2023)

Assume T > 0 and $\Gamma_0 \subset \partial \Omega$ large enough. Assume that there exists $\beta^* > 0$ such that if $f \in C^1(\mathbb{R})$ satisfies

 $(\mathbf{H}_{\mathbf{2}}') \quad \exists \alpha > 0, \ s.t. \ |f'(r)| \le \alpha + \beta^{\star} \ln_{+}^{3/2} |r|, \quad \forall r \in \mathbb{R}$

then, for any initial state (u_0, u_1) in $H := L^2(\Omega) \times H^{-1}(\Omega)$, the controlled sequence $(y_k, v_k)_{k \in \mathbb{N}^*}$ solution of

$$\begin{cases} \partial_{tt} y_{k+1} - \Delta y_{k+1} = -f(y_k) & \text{in } Q_T, \\ y_{k+1} = v_{k+1} \mathbf{1}_{\Gamma_0} & \text{in } \partial \Omega \times (0, T), \\ (y_{k+1}(\cdot, 0), \partial_t y_{k+1}(\cdot, 0)) = (u_0, u_1) & \text{in } \Omega, \end{cases}$$
(11)

minimizer of a functional $J_s(y, v) := s \int_{Q_T} \rho^2(s) y^2 + \int_0^T \int_{\Gamma_0} \eta^{-2} \rho_1^2(s) v^2$ converges strongly to a controlled pair (y, v) in $(\mathcal{C}^0([0, T]; H^1(\Omega)) \cap \mathcal{C}^1([0, T]; L^2(\Omega))) \times H_0^1(0, T)$ for the system (10). The convergence holds with a linear rate for the norm $\|\rho(s) \cdot \|_{L^2(Q_T)} + \|\rho_1(s) \cdot \|_{L^2(0,T)}$ and *s* is chosen sufficiently large depending on $\|(u_0, u_1)\|_{H}$.

Contraction of the operator within a suitable class

• For any $s \ge s_0$ and R > 0, we introduce the class $C_R(s)$, defined as the closed convex subset of $L^{\infty}(Q_T)$

$$\mathcal{C}_{R}(\boldsymbol{s}) := \left\{ \widehat{\boldsymbol{y}} \in L^{\infty}(\boldsymbol{Q}_{T}) : \| \widehat{\boldsymbol{y}} \|_{L^{\infty}(\boldsymbol{Q}_{T})} \le R, \| \boldsymbol{\rho}(\boldsymbol{s}) \widehat{\boldsymbol{y}} \|_{L^{2}(\boldsymbol{Q}_{T})} \le R^{1/2} \right\}$$
(12)

and assume that that the nonlinear function $f' \in C^0(\mathbb{R})$ in (21) satisfies the logarithmic assumption for some β^* positive precisely chosen later.

• We introduce the operator

$$\Lambda_{s}: L^{\infty}(Q_{T}) \mapsto L^{\infty}(Q_{T}), \qquad \Lambda_{s}(\widehat{y}) = y$$
(13)

where y solves

$$\begin{cases} y_{tt} - \Delta y = -f(\hat{y}) & \text{in } Q_T, \\ y(0, \cdot) = 0, \ y(1, \cdot) = v & \text{in } (0, T), \\ (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) & \text{in } \Omega, \end{cases}$$
(14)

satisfies $(y(\cdot, T), y_t(\cdot, T)) = (z_0, z_1)$ in Ω , and (y, v) corresponds to the minimizer of a functional J_s

$$J_{s}(y,v) := s \int_{Q_{T}} \rho^{2}(s) y^{2} + \int_{0}^{T} \eta^{-2} \rho_{1}^{2}(s) v^{2}$$
(15)

over the set $\left\{(y,v)\in L^2(Q_T)\times L^2(0,T) \text{ solution of (14) with } y(\cdot,T)=\underbrace{y_t(\cdot,T)=0 \text{ in } \Omega}_{\substack{t=0\\ t \in T}}\right\}.$

Numerical illustration - 1d case - boundary control

$$\begin{cases} y_{tt} - y_{xx} - 5y(1 + \ln^{3/2}(2 + |y|)) = 0 & \text{in } (0, 1) \times (0, 2.5), \\ y(0, \cdot) = 0, \ y(1, \cdot) = v & \text{in } (0, 2.5), \\ (y(\cdot, 0), y_t(\cdot, 0)) = (20\sin(\pi x), 0) & \text{in } \Omega, \end{cases}$$
(16)

Arnaud Münch Approximation of exact controls

ヨトーヨ

Numerical illustration - 1d case - boundary control

Least-squares approaches (Newton type linearization)

• Münch-Trélat. Constructive exact control of semilinear 1D wave equations by a least-squares approach, SICON 2022

• Bottois-Lemoine-Münch. Constructive proof of the exact controllability for semi-linear multi-dimensional wave equations, AMSA 2023

Zero order linearization and Carleman weights

• Bhandari-Lemoine-Münch. Exact boundary controllability of semilinear 1D wave equations through a constructive approach, MCSS 2023

• Lemoine-Münch-Sue. - Exact boundary controllability of semilinear wave equations through a constructive approach, arxiv, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Least-squares approaches (Newton type linearization)

- Lemoine, Marin-Gayte, Munch, Approximation of null controls for semilinear heat equations using a least-squares approach, COCV, 2021
- Lemoine-Munch. Constructive exact control of semilinear 1D heat equations, MCRF 2023

Zero order linearization and Carleman weights

- Ervedoza-Lemoine-Munch. Exact controllability of semilinear heat equations through a constructive approach, EECT 2023
- Bhandari-Lemoine-Munch. Global boundary null controllability of one dimensional semi-linear heat equation, DCDS, 2023

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

$$\begin{cases} \partial_t y - \Delta y + f(y) = v \mathbf{1}_{\omega} & \text{in } Q_T, \\ y = 0 \text{ on } \Sigma_T, \quad y(\cdot, 0) = u_0 \text{ in } \Omega, \end{cases}$$
(17)

Theorem (Lemoine, Munch, 22)

Let T > 0 be given. Let d = 1. Assume that $f \in C^1(\mathbb{R})$ satisfies f(0) = 0 and

$$(\mathbf{H}'_{\mathbf{1}}) \quad \exists \alpha > \mathbf{0}, \ s.t. \ |f'(r)| \le (\alpha + \beta^* \ln_+ |r|)^{3/2}, \quad \forall r \in \mathbb{R}$$

for some $\beta^* > 0$ small enough and

$$(\overline{\mathbf{H}}_{\mathbf{p}}) \quad \exists p \in [0,1] \text{ such that } \sup_{\substack{a,b \in \mathbb{R} \\ a \neq b}} \frac{|f'(a) - f'(b)|}{|a - b|^p} < +\infty.$$

Then, for any $u_0 \in H_0^1(\Omega)$, one can construct a sequence $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a controlled pair for (18) satisfying y(T) = 0. Moreover, after a finite number of iterations, the convergence is of order at least 1 + p.

1

¹ Lemoine, Münch, Constructive exact control of semilinear 1D heat equations. MCRE 2022 📳 🔖 🧃 👘 🔤 🖉 🔗

Heat eq. and zero order linearization/Carleman setting

$$\begin{cases} \partial_t y - \Delta y + f(y) = v \mathbf{1}_{\omega} & \text{in } Q_T, \\ y = 0 \text{ on } \Sigma_T, \quad y(\cdot, 0) = u_0 \text{ in } \Omega, \end{cases}$$
(18)

Theorem (Ervedoza-Lemoine-Münch 2022, Bandhari-Lemoine-Münch, 2023)

Let T > 0 be given and $d \ge 5$. Assume that there exists $\beta^* > 0$ such that if $f \in C^1(\mathbb{R})$ satisfies f(0) = 0 and

 $(\mathbf{H}_{\mathbf{2}}') \quad \exists \alpha > 0, \ s.t. \ |f'(r)| \leq \alpha + \beta^{\star} \ln_{+}^{3/2} |r|, \quad \forall r \in \mathbb{R}$

Then, for any initial state $u_0 \in L^{\infty}(\Omega)$, the controlled sequence $(y_k, v_k)_{k \in \mathbb{N}^*}$ solution of

$$\begin{cases} \partial_{t} y_{k+1} - \Delta y_{k+1} = v_{k+1} \mathbf{1}_{\omega} - f(y_{k}) & \text{in } Q_{T}, \\ y_{k+1} = 0 & \text{in } \partial \Omega \times (0, T), \\ y_{k+1}(\cdot, 0) = u_{0} & \text{in } \Omega, \end{cases}$$
(19)

optimal for the cost $J_s(y, v) := s \int_{Q_T} \rho^2(s) y^2 + \int_0^T \int_{\omega} \rho_0^2(s) v^2$ converges strongly to a controlled pair (y, v) in $L^2(Q_T) \times L^2(q_T)$ for the system (21). The convergence holds with a linear rate for the norm $\|\rho(s) \cdot\|_{L^2(Q_T)} + \|\rho_1(s) \cdot\|_{L^2(0,T)}$ and *s* is chosen sufficiently large depending on $\|u_0\|_{L^\infty(\Omega)}$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

$$\begin{cases} y_t - y_{xx} - 5y(1 + \ln^{3/2}(2 + |y|)) = 1_{(0.2, 0.8)}(x)v & \text{in } (0, 1) \times (0, 0.5), \\ y(0, \cdot) = y(1, \cdot) = 0 & \text{in } (0, 0.5), \\ y(\cdot, 0) = 10\sin(\pi x) & \text{in } (0, 1), \end{cases}$$
(20)

э

ъ

The distributed control ν in (0, 1) \times (0, 0.5) for $s \in \{2, 3, 4\}$.

The controlled solution in $(0,1) \times (0,0.5)$ for $s \in \{2,3,4\}$.

Arnaud Münch Approximation of exact controls

Controlled solutions from the boundary with $\nu \in \{0.3, 0.5\}$.

$$\begin{cases} y_t - \nu y_{xx} - 2.5y(1 + \ln^{3/2}(2 + |y|)) = 0 & \text{in } Q_T, \\ y(0, \cdot) = 0, \ y(1, \cdot) = \nu & \text{in } (0, T), \\ y(\cdot, 0) = e^{-100(x - 0.7)^2} & \text{in } \Omega, \end{cases}$$
(21)

ъ

э

For the semilinear wave/heat equations

 $\begin{cases} \partial_{t(t)}y - \Delta y + f(y) = 0 \\ + \text{ initial conditions and boundary conditions} \end{cases}$

(22)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つんの

assuming mainly $f \in C^1(\mathbb{R})$ and the growth assumption

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \frac{|f'(r)|}{\ln^{p}(r)} \le \beta$, $p \in (0, 2)$

one can now construct non trivial sequences $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a state-control pair for the semilinear equation.

THANK YOU VERY MUCH FOR YOUR ATTENTION