Constructive approaches for the controllability of semilinear wave and heat equations

Arnaud Münch

Lab. de mathématiques Blaise Pascal - Clermont-Ferrand - France

Workshop : Simulation of data assimilation under a PDEs constraint - Jussieu -November 2023

with Kuntal Bhandari (Prague), Sue Claret (Clermont-Ferrand), Sylvain Ervedoza (Bordeaux), Irène Gayte (Sevilla), Jérôme Lemoine (Clermont-Ferrand), Emmanuel Trélat (Paris)

UNIVERSITÉ Clermont Auvergne

Arnaud Münch Approximation of exact controls

General framework and objective

GIVEN some semilinear heat/wave equation

$$\begin{cases} \partial_{t(t)} y - \Delta y + f(y) = v \mathbf{1}_{\omega}, \text{ in } Q_{T} := \Omega \times (0, T) \\ y = 0 \text{ in } \partial\Omega \times (0, T) + \text{ initial conditions} \end{cases}$$
(1)

or

$$\begin{cases} \partial_{t(t)} y - \Delta y + f(y) = 0, \text{ in } Q_T := \Omega \times (0, T), \\ y = v \mathbf{1}_{\Gamma} \text{ in } \partial\Omega \times (0, T) + \text{ initial conditions} \end{cases}$$
(2)

ASSUME that there exist control v and T > 0 such that $(y(t), y_t(t)) = (0, 0)$ for all $t \ge T$.

Litterature Lasiecka-Triggiani'91, Zuazua'93, Fernandez-Cara'00, Barbu'00, Li-Zhang'01, Coron-Trelat'06, Dehman-Lebeau'09, Joly-Laurent'14, Fu-Lu-Zhang'19, Friedman'19,

FIND a non trivial sequence $(y_k, v_k)_{k \in \mathbb{N}}$ such that $(y_k, v_k) \to (y, v)$ as $k \to \infty$, with (y, v) a controlled pair for (1) or (2)?

Non trivial question since in many situations, proofs of controllability are based on non constructive fixed point arguments.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Controlled solution (from the boundary)

$$\begin{cases} y_{tt} - y_{xx} - 3y(1 + \ln^{3/2}(2 + |y|)) = 0 & \text{in } (0, 1) \times (0, 2.5), \\ y(0, \cdot) = 0, \ y(1, \cdot) = v & \text{in } (0, 2.5), \\ (y(\cdot, 0), y_t(\cdot, 0)) = (10\sin(\pi x), 0) & \text{in } (0, 1). \end{cases}$$
(3)

How do we get such control v ????

There are strong connections between

• Exact Controllability problem: find $v \in L^2$ such that

$$\begin{cases} \partial_{tt} y - \Delta y + f(y) = 0, \text{ in } \Omega \times (0, T), \\ y = v \mathbf{1}_{\Gamma} \text{ in } \partial \Omega \times (0, T) \\ (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) \text{ in } \Omega \end{cases}$$
(4)

such that $(y(\cdot, T), y_t(\cdot, T)) = (z_0, z_1)$ in Ω .

• Inverse problem: given a "good" observation $y_{\nu,obs} \in L^2(\Gamma \times (0, T))$, reconstruct y solution of

$$\begin{cases} \partial_{tt} y - \Delta y + f(y) = 0, \text{ in } \Omega \times (0, T), \\ y = 0 \text{ in } \partial\Omega \times (0, T) \\ (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) \text{ in } \Omega \end{cases}$$
(5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

such that $\partial_{\nu} y := y_{\nu,obs}$ on $\Gamma \times (0, T)$.

For the semilinear wave/heat equations

$$\begin{cases} \partial_{t(t)} y - \Delta y + f(y) = 0 \\ + \text{ initial conditions and boundary conditions} \end{cases}$$

(6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

KNOWN FACT The uniform (w.r.t. initial conditions) exact controllability holds true under the following asymptotic condition on $f \in C^1(\mathbb{R})$

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \sup_{r \to \infty} \frac{|f(r)|}{r \ln^{\rho}(r)} \leq \beta, \qquad \rho \in (0, 2)$

obtained from non constructive Schauder fixed point arguments [Zuazua'93, Zuazua-Fernandez-Cara'00, Barbu'00, Zhang'07,]

CLAIM Under the following assumption,

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \sup_{n \to \infty} \frac{|f'(r)|}{\ln^p(r)} \le \beta, \qquad p \in (0,2)$

one can construct non trivial sequences $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a state-control pair for the semilinear equation

For the semilinear wave/heat equations

$$\begin{cases} \partial_{t(t)} y - \Delta y + f(y) = 0 \\ + \text{ initial conditions and boundary conditions} \end{cases}$$

(6)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

KNOWN FACT The uniform (w.r.t. initial conditions) exact controllability holds true under the following asymptotic condition on $f \in C^1(\mathbb{R})$

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \sup_{r \to \infty} \frac{|f(r)|}{r \ln^{\rho}(r)} \le \beta, \qquad \rho \in (0, 2)$

obtained from non constructive Schauder fixed point arguments [Zuazua'93, Zuazua-Fernandez-Cara'00, Barbu'00, Zhang'07,]

CLAIM Under the following assumption,

$$\exists \beta > 0$$
 such that $\lim \sup_{r \to \infty} \frac{|f'(r)|}{\ln^p(r)} \le \beta$, $p \in (0,2)$

one can construct non trivial sequences $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a state-control pair for the semilinear equation

Rk: Lack of contraction of the Zuazua's operator

Exact controllability in Zuazua'93¹ based on a Leray Schauder fixed point argument: Let $\Lambda : L^{\infty}(Q_T) \to L^{\infty}(Q_T)$ and $y := \Lambda(\xi)$ is a controlled solution with the control function v_{ξ} (of minimal L^2 -norm)

$$\begin{cases} \partial_{tt}y - \partial_{xx}y + y\,\widehat{f}(\xi) = -f(0) + v_{\xi}\mathbf{1}_{\omega} & \text{in } Q_{T}, \\ y = 0 & \text{on } \Sigma_{T}, \\ (y(\cdot, 0), \partial_{t}y(\cdot, 0)) = (u_{0}, u_{1}) & \text{in } \Omega, \end{cases} \quad \widehat{f}(r) := \begin{cases} \frac{f(r) - f(0)}{r} & \text{if } r \neq 0 \\ f'(0) & \text{if } r = 0 \end{cases}$$
(7)

satisfying $(y(\cdot, T), \partial_t y(\cdot, T)) = (z_0, z_1).$

Assume $\omega = (l_1, l_2), T > 2 \max(\ell_1, 1 - \ell_2), f \in C^1$ and that $\limsup_{|r| \to \infty} \frac{|r(r)|}{|r| \ln^2 |r|} < \beta$ for some β small enough.

Then, Λ has a fixed point. In particular,

$$\|\Lambda(\xi)\|_{\infty} \leq C\Big(\|u_0, u_1\|_{V} + \|f(0)\|_2\Big)\underbrace{(1+\|\xi\|_{\infty})^{(1+\mathcal{C})\sqrt{\beta}}}_{e^{\sqrt{\|\hat{f}(\xi)\|_{L^{\infty}(Q_T)}}}}, \quad \forall \xi \in L^{\infty}(Q_T).$$

but Λ is not contracting in general. The sequence $\{y_{k+1}\}_k$ given by $y_{k+1} = \Lambda(y_k)$ is bounded but not convergent.

¹ E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire

Rk: Lack of contraction of the Zuazua's operator

Exact controllability in Zuazua'93¹ based on a Leray Schauder fixed point argument: Let $\Lambda : L^{\infty}(Q_T) \to L^{\infty}(Q_T)$ and $y := \Lambda(\xi)$ is a controlled solution with the control function v_{ξ} (of minimal L^2 -norm)

$$\begin{cases} \partial_{tt}y - \partial_{xx}y + y\,\widehat{f}(\xi) = -f(0) + v_{\xi}\mathbf{1}_{\omega} & \text{in } Q_{T}, \\ y = 0 & \text{on } \Sigma_{T}, \\ (y(\cdot, 0), \partial_{t}y(\cdot, 0)) = (u_{0}, u_{1}) & \text{in } \Omega, \end{cases} \quad \widehat{f}(r) := \begin{cases} \frac{f(r) - f(0)}{r} & \text{if } r \neq 0 \\ f'(0) & \text{if } r = 0 \end{cases}$$

satisfying $(y(\cdot, T), \partial_t y(\cdot, T)) = (z_0, z_1).$

Assume $\omega = (l_1, l_2), T > 2 \max(\ell_1, 1 - \ell_2), f \in C^1$ and that $\limsup_{|r| \to \infty} \frac{|f(r)|}{|r| \ln^2 |r|} < \beta$ for some β small enough.

Then, Λ has a fixed point. In particular,

$$\|\Lambda(\xi)\|_{\infty} \leq C\Big(\|u_{0}, u_{1}\|_{V} + \|f(0)\|_{2}\Big)\underbrace{(1 + \|\xi\|_{\infty})^{(1+\mathcal{C})\sqrt{\beta}}}_{e^{\sqrt{\|\hat{f}(\xi)\|_{L^{\infty}(Q_{T})}}}}, \quad \forall \xi \in L^{\infty}(Q_{T}).$$

but Λ is not contracting in general. The sequence $\{y_{k+1}\}_k$ given by $y_{k+1} = \Lambda(y_k)$ is bounded but not convergent.

¹ E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire

Same method for the wave and heat equation

Assuming

$$\exists \beta > 0 \text{ such that } \lim_{r \to \infty} \sup \frac{|f'(r)|}{\ln^p(r)} \le \beta, \qquad p \in (0, 2)$$

we design convergent sequences (y_k, v_k) from two different approaches :

Method 1 : Least-squares approaches (Newton type linearization)

$$y_{k+1,t(t)} - \Delta y_{k+1} + f'(y_k)y_{k+1} = v_{k+1}\mathbf{1}_{\omega} - f'(y_k)y_{k+1} + f(y_k), k \ge 0$$

where (y_{k+1}, v_{k+1}) is the optimal state-control pair for the cost

$$J(y, v) = \|v\|_{L^2(q_T)}^2$$

Method 2: Zero order linearization and Carleman weights

$$y_{k+1,t(t)} - \Delta y_{k+1} = v_{k+1} \mathbf{1}_{\omega} - f(y_k), k \ge 0$$

where (y_{k+1}, v_{k+1}) is the optimal null state-control pair for the cost

$$J(y, v) = \|\rho(s)v\|_{L^2(q_T)}^2 + s\|\rho_0(s)y\|_{L^2(q_T)}^2$$

involving Carleman weights $\rho(x, t, s)$, $\rho_0(x, t, s)$ and parameter s > 0

Assuming

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \sup \frac{|f'(r)|}{\ln^p(r)} \le \beta$, $p \in (0, 2)$

we design convergent sequences (y_k, v_k) from two different approaches :

Method 1 : Least-squares approaches (Newton type linearization)

$$y_{k+1,t(t)} - \Delta y_{k+1} + f'(y_k)y_{k+1} = v_{k+1}\mathbf{1}_{\omega} - f'(y_k)y_{k+1} + f(y_k), k \ge 0$$

where (y_{k+1}, v_{k+1}) is the optimal state-control pair for the cost

$$J(y, v) = \|v\|_{L^2(q_T)}^2$$

Method 2: Zero order linearization and Carleman weights

$$y_{k+1,t(t)} - \Delta y_{k+1} = v_{k+1} \mathbf{1}_{\omega} - f(y_k), k \ge 0$$

where (y_{k+1}, v_{k+1}) is the optimal null state-control pair for the cost

$$J(y,v) = \|\rho(s)v\|_{L^2(q_T)}^2 + s\|\rho_0(s)y\|_{L^2(q_T)}^2$$

involving Carleman weights $\rho(x, t, s)$, $\rho_0(x, t, s)$ and parameter s > 0

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q ()

Method 1 : A least-squares approach (Damped Newton method)

We consider the nonconvex minimization problem

$$\inf_{(y,v)\in\mathcal{A}} E(y,v), \quad E(y,v) := \frac{1}{2} \left\| \partial_{tt} y - \Delta y + f(y) - v \mathbf{1}_{\omega} \right\|_{L^{2}(Q_{T})}^{2}$$
(8)

$$\begin{split} \mathcal{A} &:= \Big\{ (y, v) \in \mathcal{H} \mid (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), (y(\cdot, T), \partial_t y(\cdot, T)) = (0, 0) \text{ in } \Omega \Big\}, \\ \mathcal{H} &:= \Big\{ (y, v) \in L^2(Q_T) \times L^2(q_T) \mid \partial_{tt} y - \Delta y \in L^2(Q_T), \ y = 0 \text{ on } \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) \in \mathbf{V} \Big\} \end{split}$$

Proposition

$$\forall (y,v) \in \mathcal{A}, \quad \sqrt{E(y,v)} \leq C e^{C \|\ell'(y)\|_{L^{\infty}(L^d)}^2} \|E'(y,v)\|_{\mathcal{A}_{n}'}.$$

Consequence:

Any *critical* point $(y, v) \in A$ of *E* is a zero of *E*, and thus is a pair solution of the controllability problem. Moreover:

given any sequence $(y_k, v_k)_{k \in \mathbb{N}}$ in \mathcal{A} such that $||E'(y_k, v_k)||_{\mathcal{A}'_0} \xrightarrow[k \to +\infty]{} 0$ and such that $||f'(y_k)||_{L^{\infty}(L^d)}$ is uniformly bounded, we have $E(y_k, v_k) \xrightarrow[k \to +\infty]{} 0$.

A minimizing sequence for *E* cannot be stuck in a local minimum, even though E_{\pm}

Method 1 : A least-squares approach (Damped Newton method)

We consider the nonconvex minimization problem

$$\inf_{(y,v)\in\mathcal{A}} E(y,v), \quad E(y,v) := \frac{1}{2} \left\| \partial_{tt} y - \Delta y + f(y) - v \mathbf{1}_{\omega} \right\|_{L^{2}(Q_{T})}^{2}$$
(8)

$$\begin{split} \mathcal{A} &:= \Big\{ (y, v) \in \mathcal{H} \mid (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1), (y(\cdot, T), \partial_t y(\cdot, T)) = (0, 0) \text{ in } \Omega \Big\}, \\ \mathcal{H} &:= \Big\{ (y, v) \in L^2(Q_T) \times L^2(q_T) \mid \partial_{tt} y - \Delta y \in L^2(Q_T), \ y = 0 \text{ on } \Sigma_T, \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) \in \mathbf{V} \Big\} \end{split}$$

Proposition

$$\forall (y,v) \in \mathcal{A}, \quad \sqrt{E(y,v)} \leq Ce^{C\|f'(y)\|_{L^{\infty}(L^d)}^2} \|E'(y,v)\|_{\mathcal{A}'_0}.$$

Consequence:

Any *critical* point $(y, v) \in A$ of *E* is a zero of *E*, and thus is a pair solution of the controllability problem. Moreover:

given any sequence $(y_k, v_k)_{k \in \mathbb{N}}$ in \mathcal{A} such that $\|E'(y_k, v_k)\|_{\mathcal{A}'_0} \xrightarrow[k \to +\infty]{} 0$ and such that $\|f'(y_k)\|_{L^{\infty}(L^d)}$ is uniformly bounded, we have $E(y_k, v_k) \xrightarrow[k \to +\infty]{} 0$.

A minimizing sequence for *E* cannot be stuck in a local minimum, even though *E* fails to be convex (it has multiple zeros)

A minimizing sequence for E

Let the sequence $(y_k, v_k)_{k \in \mathbb{N}}$ in \mathcal{A} defined by

$$\begin{cases} (y_0, v_0) \in \mathcal{A} \\ (y_{k+1}, v_{k+1}) = (y_k, v_k) - \lambda_k(Y_k, V_k) & \forall k \in \mathbb{N} \\ \lambda_k = \underset{\lambda \in [0, 1]}{\operatorname{argmin}} E((y_k, v_k) - \lambda(Y_k, V_k)) \end{cases}$$
(9)

where $(Y_k, V_k) \in A_0$ is the solution of minimal control norm of

$$\begin{cases} \partial_{tt} Y_k - \Delta Y_k + f'(y_k) Y_k = V_k \mathbf{1}_{\omega} + (\partial_{tt} y_k - \Delta y_k + f(y_k) - v_k \mathbf{1}_{\omega}) & \text{in } Q_T, \\ Y_k = 0 & \text{on } \Sigma_T, \\ (Y_k(\cdot, 0), \partial_t Y_k(\cdot, 0)) = (0, 0) & \text{in } \Omega. \end{cases}$$
(10)

Lemma $\forall k \geq 0, E'(y_k, v_k) \cdot (Y_k, V_k) = 2E(y_k, v_k)$

Theorem (Münch-Trélat 2022, Bottois-Lemoine-Münch 2023)

Assume that $f'' \in L^{\infty}(\mathbb{R})$ and that $\lim_{r\to\infty} \frac{|I_{r}(t)|}{|I_{r}(t)|}$ is small enough. for any $(y_{0}, v_{0}) \in A$, $(y_{k}, v_{k}) \to (y, v)$ a controlled pair for the nonlinear wave eq. The convergence of these sequences is at least linear, and is at least of order 2 after a finite number of iterations.

A minimizing sequence for E

Let the sequence $(y_k, v_k)_{k \in \mathbb{N}}$ in \mathcal{A} defined by

$$\begin{cases} (y_0, v_0) \in \mathcal{A} \\ (y_{k+1}, v_{k+1}) = (y_k, v_k) - \lambda_k(Y_k, V_k) & \forall k \in \mathbb{N} \\ \lambda_k = \underset{\lambda \in [0, 1]}{\operatorname{argmin}} E((y_k, v_k) - \lambda(Y_k, V_k)) \end{cases}$$
(9)

where $(Y_k, V_k) \in A_0$ is the solution of minimal control norm of

$$\begin{cases} \partial_{tt} Y_k - \Delta Y_k + f'(y_k) Y_k = V_k \mathbf{1}_{\omega} + (\partial_{tt} y_k - \Delta y_k + f(y_k) - v_k \mathbf{1}_{\omega}) & \text{in } Q_T, \\ Y_k = 0 & \text{on } \Sigma_T, \\ (Y_k(\cdot, 0), \partial_t Y_k(\cdot, 0)) = (0, 0) & \text{in } \Omega. \end{cases}$$
(10)

Lemma $\forall k \geq 0, E'(y_k, v_k) \cdot (Y_k, V_k) = 2E(y_k, v_k)$

Theorem (Münch-Trélat 2022, Bottois-Lemoine-Münch 2023)

Assume that $f'' \in L^{\infty}(\mathbb{R})$ and that $\limsup_{r \to \infty} \frac{|f'(r)|}{\ln^{p}(r)}$ is small enough. for any $(y_{0}, v_{0}) \in A$, $(y_{k}, v_{k}) \to (y, v)$ a controlled pair for the nonlinear wave eq. The convergence of these sequences is at least linear, and is at least of order 2 after a finite number of iterations.

Rk. Link with a Damped Newton method

The sequence $(y_k, v_k)_{k\geq 0}$ coincides with the one associated to a damped Newton method to find a zero of the map $\mathcal{F} : \mathcal{A} \to L^2(Q_T)$ defined by $\mathcal{F}(y, v) := (\partial_{tt}y - \Delta y + f(y) - v1_{\omega})$

$$\begin{cases} (y_{0}, v_{0}) \in \mathcal{A} \\ D\mathcal{F}(y_{k}, v_{k}) \cdot ((y_{k+1}, v_{k+1}) - (y_{k}, v_{k})) = -\lambda_{k} \mathcal{F}(y_{k}, v_{k}), k \ge 0 \\ \lambda_{k} = \underset{\lambda \in [0, 1]}{\operatorname{argmin}} \| \mathcal{F}((y_{k}, v_{k}) - \lambda D \mathcal{F}^{-1}(y_{k}, v_{k}) \mathcal{F}(y_{k}, v_{k})) \|_{L^{2}(Q_{T})} \end{cases}$$
(11)

For $\lambda_k = 1$, the least-squares algorithm coincides with the Newton algorithm applied to \mathcal{F} (explaining the quadratic convergence property).

Optimizing the parameter λ_k ensures the global convergence of the algorithm

Numerical experiments in the 2d case

We consider a two-dimensional case for which $\Omega=(0,1)^2$ and $\mathcal{T}=3.$

$$\begin{cases} \partial_{tt}y - \Delta y - 10 y \ln^{1/2}(2 + |y|) = v \mathbf{1}_{\omega} & \text{in } Q_T := \Omega \times (0, T), \\ y = 0 & \text{on } \Sigma_T := \partial \Omega \times (0, T), \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (100 \sin(\pi x_1) \sin(\pi x_2), 0) & \text{in } \Omega, \end{cases}$$
(12)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical experiments in the 2d case

‡iterate <i>k</i>	$\sqrt{2E(y_k,v_k)}$	$\frac{\ y_k - y_{k-1}\ _{L^2(Q_T)}}{\ y_{k-1}\ _{L^2(Q_T)}}$	$\frac{\ v_k - v_{k-1}\ _{L^2_{\chi}(q_T)}}{\ v_{k-1}\ _{L^2_{\chi}(q_T)}}$	$\ y_k\ _{L^2(Q_T)}$	$\ v_k\ _{L^2_{\chi}(q_T)}$	λ_k
0	7.44×10^{2}	-	-	38.116	732.22	1
1	$1.63 imes 10^{2}$	$1.79 imes10^{0}$	$9.30 imes 10^{-1}$	58.691	667.602	1
2	1.62×10^{0}	$8.42 imes 10^{-2}$	1.41×10^{-1}	60.781	642.643	1
3	$1.97 imes 10^{-3}$	$1.21 imes 10^{-3}$	$4.66 imes 10^{-3}$	60.745	643.784	1
4	5.11×10^{-10}	$6.43 imes10^{-7}$	$2.63 imes 10^{-6}$	60.745	643.785	-

Arnaud Münch

Approximation of exact controls

Method 2 (Boundary controllability case)

$$\begin{cases} y_{tt} - \Delta y + f(y) = 0 & \text{in } Q_T, \\ y = v \, \mathbf{1}_{\Gamma_0} \text{in } \partial \Omega \times (0, T), \quad (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) & \text{in } \Omega, \end{cases}$$
(13)

Theorem (Bhandari-Lemoine-Münch 2022, Claret-Lemoine-Münch, 2023)

Assume T > 0 and $\Gamma_0 \subset \partial \Omega$ large enough. Assume that there exists $\beta^* > 0$ such that if $f \in C^1(\mathbb{R})$ satisfies

 $\begin{aligned} (\mathbf{H}_{2}') \quad \exists \alpha > 0, \ s.t. \ |f'(r)| &\leq \alpha + \beta^{\star} \ln_{+}^{p} |r|, \quad \forall r \in \mathbb{R}, \qquad 0$

$$\begin{cases} \partial_{tt} y_{k+1} - \Delta y_{k+1} = -f(y_k) & \text{in } Q_T, \\ y_{k+1} = v_{k+1} \mathbf{1}_{\Gamma_0} & \text{in } \partial \Omega \times (0, T), \\ (y_{k+1}(\cdot, 0), \partial_t y_{k+1}(\cdot, 0)) = (u_0, u_1) & \text{in } \Omega, \end{cases}$$
(14)

minimizer of a functional $J_s(y, v) := s \int_{Q_T} \rho^2(s) y^2 + \int_0^T \int_{\Gamma_0} \eta^{-2} \rho_1^2(s) v^2$ converges strongly to a controlled pair (y, v) in $(\mathcal{C}^0([0, T]; L^2(\Omega)) \cap \mathcal{C}^1([0, T]; H^{-1}(\Omega))) \times H_0^1(0, T)$ for the semilinear eq. The convergence holds with a linear rate for the norm $\|\rho(s) \cdot \|_{L^2(Q_T)} + \|\rho_1(s) \cdot \|_{L^2(0,T)}$ and $s \ge \max(s_0, C \ln \|u_0, u_1\|_{H})$.

nan

Contraction of the operator within a suitable class

• For any $s \ge s_0$, we introduce the class $\mathcal{C}(s)$, defined as the closed convex subset of $L^2(\mathcal{Q}_T)$

$$\mathcal{C}(s) := \left\{ y \in L^{\infty}(0, T; L^{2}(\Omega)) : \|\rho y\|_{L^{2}(Q)} \le s, \|\rho y\|_{L^{\infty}(0, T; L^{2}(\Omega))} \le s^{3} \right\}.$$
(15)

and assume that the nonlinear function $f' \in C^0(\mathbb{R})$ in (33) satisfies the logarithmic assumption for some β^* positive precisely chosen later.

• We introduce the operator

$$\Lambda_s : \mathcal{C}(s) \mapsto \mathcal{C}(s), \qquad \Lambda_s(\widehat{y}) = y$$
 (16)

where y solves

$$\begin{cases} y_{tt} - \Delta y = -f(\widehat{y}) & \text{in } Q_T, \\ y = v \, \mathbf{1}_{\Gamma_0} & \text{on } \Sigma, \\ (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) & \text{in } \Omega, \end{cases}$$
(17)

satisfies $(y(\cdot, T), y_t(\cdot, T)) = (z_0, z_1)$ in Ω , and (y, v) corresponds to the minimizer of a functional J_s

$$J_{s}(z,u) := s \int_{Q} \rho^{2} |z|^{2} \, \mathrm{d}x \mathrm{d}t + \int_{\delta}^{T-\delta} \int_{\partial \Omega} \eta^{-2} \Psi^{-1} \rho^{2} |u|^{2} \, \mathrm{d}x \mathrm{d}t \tag{18}$$

over the set $\{(z, u) \in L^2(Q_T) \times L^2(0, T) \text{ solution of } (17) \text{ with } z(\cdot, T) = z_t(\cdot, T) = 0 \text{ in } \Omega \}$.

$$\rho(x,t) := e^{-s\phi(x,t)} \quad \forall (x,t) \in Q.$$
(19)

Remark that $e^{-cs} \le \rho \le e^{-s}$ in Q with $c := \|\phi\|_{L^{\infty}(Q)}$ and $\rho, \rho^{-1} \in \mathcal{C}^{\infty}(\overline{Q})$. Let then $P := \{w \in \mathcal{C}^{0}([0, T]; H^{1}_{0}(\Omega)) \cap \mathcal{C}^{1}([0, T]; L^{2}(\Omega)), Lw \in L^{2}(Q)\}$

Proposition (Baudouin, De Buhan, Ervedoza, 2013)

Assume T > 0 and $\Sigma \subset \partial\Omega \times (0, T)$ large enough. There exists $s_0 > 0$, $\lambda > 0$ and C > 0, such that for any $s \ge s_0$ and every $w \in P$

$$s \int_{Q} \rho^{-2} (|w_{t}|^{2} + |\nabla w|^{2}) dx dt + s^{3} \int_{Q} \rho^{-2} |w|^{2} dx dt + s \int_{\Omega} \rho^{-2} (0) (|w_{t}(\cdot, 0)|^{2} + |\nabla w(\cdot, 0)|^{2}) dx + s^{3} \int_{\Omega} \rho^{-2} (0) |w(\cdot, 0)|^{2} dx \leq C \Big(\int_{Q} \rho^{-2} |w_{tt} - \Delta w|^{2} dx dt + s \int_{\Sigma} \eta^{2} (t) \Psi(x) \rho^{-2} |\partial_{\nu} w|^{2} dx dt \Big).$$
(20)

2

²Lucie Baudouin, Maya De Buhan, and Sylvain Ervedoza, Global Carleman estimates for waves and applications. Comm. Partial Differential Equations, 2013.

A small piece of the proof

Lemma

Assume there exists $0 \le p < 3/2$ such that $|f'(r)| \le \alpha + \beta \ln_p^+ |r|$ with $\beta > 0$ small enough. Take $s \ge \max(s_0, \ln(\|u_0, u_1\|_H))$. Let $d(y, z) := \|\rho(s)(y - z)\|_{L^2(\Omega)}$. Then,

 $d(\Lambda_{s}(\widehat{y}_{2}),\Lambda_{s}(\widehat{y}_{1})) \leq C(s^{-p}\alpha + \beta^{\star}c^{p})d(\widehat{y}_{2},\widehat{y}_{1}), \qquad \forall \widehat{y}_{1},\widehat{y}_{2} \in \mathcal{C}(s)$ (21)

• For $s \ge s_0$, $r \in [0, 1]$, $r \ne 1/2$ and $(u_0, u_1) \in H$, there exists a constant $C_r > 0$ independent of s such that

$$\begin{aligned} \|\rho y\|_{L^{2}(\Omega)} + s^{-1/2} \left\| \frac{\rho}{\eta \Psi^{1/2}} v \right\|_{L^{2}(\Sigma)} + s^{-2} \|\rho y\|_{L^{\infty}(0,T;L^{2}(\Omega))} + s^{-2} \|(\rho y)_{t}\|_{L^{\infty}(0,T;H^{-1}(\Omega))} \\ &\leq C_{r} \left(s^{r-3/2} \|\rho f(\hat{y})\|_{L^{2}(0,T;H^{-r}(\Omega))} + s^{-1/2} \|\rho(0)u_{0}\|_{L^{2}(\Omega)} + s^{-1/2} \|\rho(0)u_{1}\|_{H^{-1}(\Omega)} \right). \end{aligned}$$

$$\bullet \text{ Let } \widehat{y}_{1}, \widehat{y}_{2} \in \mathcal{C}(s). \text{ From (22), for all } 0 \leq r < 1/2 , \end{aligned}$$

$$d(\Lambda_{\mathcal{S}}(\widehat{y}_2),\Lambda_{\mathcal{S}}(\widehat{y}_1)) \leq C_r s^{r-3/2} \|\rho(f(\widehat{y}_2)-f(\widehat{y}_1))\|_{L^2(0,T;H^{-r}(\Omega))}.$$

Let r = 3/2 - p > 0. There exists $1 \le q < 2$ such that $L^q(\Omega) \hookrightarrow H^{-r}(\Omega)$. We then have

$$d(\Lambda_{s}(\widehat{y}_{2}),\Lambda_{s}(\widehat{y}_{1})) \leq C_{r}s^{-\rho}\|\rho(f(\widehat{y}_{2})-f(\widehat{y}_{1}))\|_{L^{2}(0,T;L^{q}(\Omega))}.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

$$d(\Lambda_s(\widehat{y}_2), \Lambda_s(\widehat{y}_1)) \leq C_r s^{-\rho} \|\rho(f(\widehat{y}_2) - f(\widehat{y}_1))\|_{L^2(0,T;L^q(\Omega))}.$$

But, for all $(m_1, m_2) \in \mathbb{R}^2$ there exists \bar{c} such that

$$\begin{aligned} |f(m_1) - f(m_2)| &\leq |m_1 - m_2| |f'(\bar{c})| \leq |m_1 - m_2| (\alpha + \beta^* \ln_{\mu}^{\rho} |\bar{c}|) \\ &\leq |m_1 - m_2| (\alpha + \beta^* \ln_{\mu}^{\rho} (|m_1| + |m_2|)) \end{aligned}$$

and therefore, using that $0 \leq \ln^{p}_{+} \rho \leq c^{p} s^{p}$ and that p = 3/2 - r, we get

$$d(\Lambda_{s}(\hat{y}_{2}),\Lambda_{s}(\hat{y}_{1})) \leq Cs^{-\rho} \|(\alpha + \beta^{\star} \ln^{\rho}_{+}(|\hat{y}_{1}| + |\hat{y}_{2}|))\rho(\hat{y}_{2} - \hat{y}_{1})\|_{L^{2}(0,T;L^{q}(\Omega))} \\ \leq Cs^{-\rho} \|(\alpha + \beta^{\star} \ln^{\rho}_{+}(|\hat{y}_{1}| + |\hat{y}_{2}|))\|_{L^{\infty}(0,T;L^{q}(\Omega))} d(\hat{y}_{2},\hat{y}_{1}) \\ \leq Cs^{-\rho} (\alpha + \beta^{\star} c^{\rho} s^{\rho} + \beta^{\star} \|\ln^{\rho}_{+}(\rho(|\hat{y}_{1}| + |\hat{y}_{2}|)))\|_{L^{\infty}(0,T;L^{q}(\Omega))}) d(\hat{y}_{2},\hat{y}_{1})$$
(23) with *a* such that $1/q = 1/2 + 1/a$. Now, using that, for $\varepsilon = \inf\{\frac{2}{a}, \frac{p}{3}\}$

$$\begin{split} \|\ln_{+}^{p}(\rho(|\widehat{y}_{1}|+|\widehat{y}_{2}|))\|_{L^{\infty}(0,T;L^{a}(\Omega))} &\leq C\big(\|(\rho\widehat{y}_{1})^{\varepsilon}\|_{L^{\infty}(0,T;L^{a}(\Omega))} + \|(\rho\widehat{y}_{2})^{\varepsilon}\|_{L^{\infty}(0,T;L^{a}(\Omega))}\big) \\ &\leq C\big(\|\rho\widehat{y}_{1}\|_{L^{\infty}(0,T;L^{2}(\Omega))}^{\varepsilon} + \|\rho\widehat{y}_{2}\|_{L^{\infty}(0,T;L^{2}(\Omega))}^{\varepsilon}\big) &\leq Cs^{p} \end{split}$$

we infer that

$$d(\Lambda_s(\widehat{y}_2),\Lambda_s(\widehat{y}_1)) \leq C(s^{-\rho}\alpha + \beta^* c^{\rho})d(\widehat{y}_2,\widehat{y}_1).$$
(24)

Numerical illustration - 1d case - boundary control

$$\begin{cases} y_{tt} - y_{xx} - 5y(1 + \ln^{3/2}(2 + |y|)) = 0 & \text{in } (0, 1) \times (0, 2.5), \\ y(0, \cdot) = 0, \ y(1, \cdot) = v & \text{in } (0, 2.5), \\ (y(\cdot, 0), y_t(\cdot, 0)) = (20\sin(\pi x), 0) & \text{in } \Omega, \end{cases}$$
(25)

Arnaud Münch Approximation of exact controls

ヨトーヨ

Numerical illustration - 1d case - boundary control

Let $P := \{w \in \mathcal{C}^0([0, T]; H_0^1(\Omega)) \cap \mathcal{C}^1([0, T]; L^2(\Omega)), Lw \in L^2(Q)\}$ and The optimal pair (y, v) for $J_s(z, u) = s \int_Q \rho^2 |z|^2 dx dt + \int_{\delta}^{T-\delta} \int_{\partial\Omega} \eta^{-2} \Psi^{-1} \rho^2 |u|^2 dx dt$ and solution of

$$\begin{cases} \partial_{tt}y - \Delta y = -f(\hat{y}) & \text{in } Q_T, \\ y = v \, \mathbf{1}_{\Gamma_0} & \text{in } \partial\Omega \times (0, T), \\ (y(\cdot, 0), \partial_t y(\cdot, 0)) = (u_0, u_1) & \text{in } \Omega, \end{cases}$$
(26)

is given by $y := \rho^{-2}Lw$ and $v := s\eta^2 \Psi \rho^{-2} \partial_{\nu} w$ where $w \in P$ is the unique solution of the variational formulation

$$\int_{Q} \rho^{-2} LwLz \, \mathrm{d}x \mathrm{d}t + s \int_{\Sigma} \eta^{2}(t) \Psi(x) \rho^{-2} \partial_{\nu} w \partial_{\nu} z \, \mathrm{d}x \mathrm{d}t =$$

$$< u_{1}, \ z(\cdot, 0) >_{H^{-1}(\Omega), H^{1}_{0}(\Omega)} - \int_{\Omega} u_{0} z_{t}(\cdot, 0) \, \mathrm{d}x$$

$$+ < f(\hat{y}), z >_{L^{2}(0, T; H^{-1}(\Omega)), L^{2}(0, T; H^{1}_{0}(\Omega))}, \quad \forall z \in P$$

$$(27)$$

(recall that $Lw := w_{tt} - \Delta w$)

A word about the (space-time) discretization

Let $P_h \subset P$ a finite conformal approximation of P. Then, $y_h := \rho^{-2}Lw_h$ and $v_h := s\eta^2 \Psi \rho^{-2} \partial_{\nu} w_h$ where $w_h \in P_h$ is the unique solution of the variational formulation

$$\int_{\Omega} \rho^{-2} L w_h L z \, dx dt + s \int_{\Sigma} \eta^2(t) \Psi(x) \rho^{-2} \partial_{\nu} w_h \partial_{\nu} z \, dx dt =$$

$$< u_1, \ z(\cdot, 0) >_{H^{-1}(\Omega), H^1_0(\Omega)} - \int_{\Omega} u_0 \ z_l(\cdot, 0) \, dx$$

$$+ < f(\hat{\gamma}), z >_{L^2(0, T; H^{-1}(\Omega)), L^2(0, T; H^1_0(\Omega))}, \quad \forall z \in P_h$$
(28)

is a convergent approximation of (y, v): $\|\rho(s)(y - y_h)\|_{L^2(Q_T)} \to 0$ and $\|\rho(s)(v - v_h)\|_{L^2(Q_T)} \to 0$.

Rk. This implies an approximation of the strong limit (y_{\star}, v_{\star}) of the sequence (y_k, v_k) :

$$\|y_{\star} - y_{k,h}\| \le \|y_{\star} - y_{k}\| + \|y_{k} - y_{k,h}\|$$

Least-squares approaches (Newton type linearization)

• Münch-Trélat. Constructive exact control of semilinear 1D wave equations by a least-squares approach, SICON 2022

• Bottois-Lemoine-Münch. Constructive proof of the exact controllability for semi-linear multi-dimensional wave equations, AMSA 2023

Zero order linearization and Carleman weights

• Bhandari-Lemoine-Münch. Exact boundary controllability of semilinear 1D wave equations through a constructive approach, MCSS 2023

• Claret-Lemoine-Münch. - Exact boundary controllability of semilinear wave equations through a constructive approach, arxiv, 2023

Least-squares approaches (Newton type linearization)

- Lemoine, Marin-Gayte, Münch, Approximation of null controls for semilinear heat equations using a least-squares approach, COCV, 2021
- Lemoine-Münch. Constructive exact control of semilinear 1D heat equations, MCRF 2023

Zero order linearization and Carleman weights

- Ervedoza-Lemoine-Münch. Exact controllability of semilinear heat equations through a constructive approach, EECT 2023
- Bhandari-Lemoine-Münch. Global boundary null controllability of one dimensional semi-linear heat equation, DCDS, 2023

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

$$\begin{cases} \partial_t y - \Delta y + f(y) = v \mathbf{1}_{\omega} & \text{in } Q_T, \\ y = 0 \text{ on } \Sigma_T, \quad y(\cdot, 0) = u_0 \text{ in } \Omega, \end{cases}$$
(29)

Theorem (Lemoine, Münch, 22)

Let T > 0 be given. Let d = 1. Assume that $f \in C^1(\mathbb{R})$ satisfies f(0) = 0 and

$$(\mathbf{H}'_{\mathbf{1}}) \quad \exists \alpha > \mathbf{0}, \ s.t. \ |f'(r)| \le (\alpha + \beta^* \ln_+ |r|)^{3/2}, \quad \forall r \in \mathbb{R}$$

for some $\beta^* > 0$ small enough and

$$(\overline{\mathbf{H}}_{\mathbf{p}}) \quad \exists p \in [0,1] \text{ such that } \sup_{\substack{a,b \in \mathbb{R} \\ a \neq b}} \frac{|f'(a) - f'(b)|}{|a - b|^p} < +\infty.$$

Then, for any $u_0 \in H_0^1(\Omega)$, one can construct a sequence $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a controlled pair for (30) satisfying y(T) = 0. Moreover, after a finite number of iterations, the convergence is of order at least 1 + p.

3

Heat eq. and zero order linearization/Carleman setting

$$\begin{cases} \partial_t y - \Delta y + f(y) = v \mathbf{1}_{\omega} & \text{in } Q_T, \\ y = 0 \text{ on } \Sigma_T, \quad y(\cdot, 0) = u_0 \text{ in } \Omega, \end{cases}$$
(30)

Theorem (Ervedoza-Lemoine-Münch 2022, Bandhari-Lemoine-Münch, 2023)

Let T > 0 be given and $d \le 5$. Assume that there exists $\beta^* > 0$ such that if $f \in C^1(\mathbb{R})$ satisfies f(0) = 0 and

 $(\mathbf{H}_{\mathbf{2}}') \quad \exists \alpha > 0, \ s.t. \ |f'(r)| \leq \alpha + \beta^{\star} \ln_{+}^{3/2} |r|, \quad \forall r \in \mathbb{R}$

Then, for any initial state $u_0 \in L^{\infty}(\Omega)$, the controlled sequence $(y_k, v_k)_{k \in \mathbb{N}^*}$ solution of

$$\begin{cases} \partial_{t} y_{k+1} - \Delta y_{k+1} = v_{k+1} \mathbf{1}_{\omega} - f(y_{k}) & \text{in } Q_{T}, \\ y_{k+1} = 0 & \text{in } \partial \Omega \times (0, T), \\ y_{k+1}(\cdot, 0) = u_{0} & \text{in } \Omega, \end{cases}$$
(31)

optimal for the cost $J_s(y, v) := s \int_{Q_T} \rho^2(s) y^2 + \int_0^T \int_{\omega} \rho_0^2(s) v^2$ converges strongly to a controlled pair (y, v) in $L^2(Q_T) \times L^2(q_T)$ for the system (33). The convergence holds with a linear rate for the norm $\|\rho(s) \cdot\|_{L^2(Q_T)} + \|\rho_1(s) \cdot\|_{L^2(0,T)}$ and *s* is chosen sufficiently large depending on $\|u_0\|_{L^\infty(\Omega)}$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

$$\begin{cases} y_t - y_{xx} - 5y(1 + \ln^{3/2}(2 + |y|)) = 1_{(0.2, 0.8)}(x) \nu & \text{in } (0, 1) \times (0, 0.5), \\ y(0, \cdot) = y(1, \cdot) = 0 & \text{in } (0, 0.5), \\ y(\cdot, 0) = 10 \sin(\pi x) & \text{in } (0, 1), \end{cases}$$
(32)

э

ъ

The distributed control ν in (0, 1) \times (0, 0.5) for $s \in \{2, 3, 4\}$.

The controlled solution in $(0,1) \times (0,0.5)$ for $s \in \{2,3,4\}$.

Arnaud Münch Approximation of exact controls

Controlled solutions from the boundary with $\nu \in \{0.3, 0.5\}$.

$$\begin{cases} y_t - \nu y_{xx} - 2.5y(1 + \ln^{3/2}(2 + |y|)) = 0 & \text{in } Q_T, \\ y(0, \cdot) = 0, \ y(1, \cdot) = \nu & \text{in } (0, T), \\ y(\cdot, 0) = e^{-100(x - 0.7)^2} & \text{in } \Omega, \end{cases}$$
(33)

ъ

э

For the semilinear wave/heat equations

$$\begin{cases} \partial_{t(t)} y - \Delta y + f(y) = 0 \\ + \text{ initial conditions and boundary conditions} \end{cases}$$

assuming mainly $f \in C^1(\mathbb{R})$ and the growth assumption

$$\exists \beta > 0$$
 such that $\lim_{r \to \infty} \frac{|f'(r)|}{\ln^{p}(r)} \le \beta$, $p \in (0, 2)$

one can now construct non trivial sequences $(y_k, v_k)_{k \in \mathbb{N}}$ converging strongly to a state-control pair for the semilinear equation.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Extension to Inverse problems !?

Inverse problem: given an observation $y_{\nu,obs} \in L^2(\Gamma \times (0, T))$, reconstruct y solution of

$$\begin{cases} \partial_{tt} y - \Delta y + f(y) = 0, \text{ in } \Omega \times (0, T), \\ y = 0 \text{ in } \partial \Omega \times (0, T) \\ (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) \text{ in } \Omega \end{cases}$$
(35)

such that $\partial_{\nu} y := y_{\nu,obs}$ on $\partial \Gamma \times (0, T)$.

Linearization + Least-squares approach : for any $z \in Y := \{y \in C(0, T; H_0^1(\Omega)) \cap C^1([0, T], L^2(\Omega)), \rho(s)(y_{tt} - \Delta y) \in L^2(Q)\},\$ • define $\Lambda_s : z \to y$ where (y, ϕ) solves the (well-posed) mixed formulation

$$\sup_{\phi \in L^2(Q_T)} \inf_{y \in Y} \left(\frac{1}{2} \| \rho(s)(y_{\nu,obs} - \partial_{\nu} y) \|_{L^2(Q)}^2 + \langle \phi, \rho(s)(\partial_{tt} y - \Delta y + f(z)) \rangle_{L^2(Q)} \right)$$

(for some $\rho(s) > 0$ in Q_T well chosen)

• prove that if f' does not grow too fast at infinity and s large enough then Λ_s is a contraction

THANK YOU VERY MUCH FOR YOUR ATTENTION

Extension to Inverse problems !?

Inverse problem: given an observation $y_{\nu,obs} \in L^2(\Gamma \times (0, T))$, reconstruct y solution of

$$\begin{cases} \partial_{tt} y - \Delta y + f(y) = 0, \text{ in } \Omega \times (0, T), \\ y = 0 \text{ in } \partial \Omega \times (0, T) \\ (y(\cdot, 0), y_t(\cdot, 0)) = (u_0, u_1) \text{ in } \Omega \end{cases}$$
(35)

such that $\partial_{\nu} y := y_{\nu,obs}$ on $\partial \Gamma \times (0, T)$.

Linearization + Least-squares approach : for any $z \in Y := \{y \in C(0, T; H_0^1(\Omega)) \cap C^1([0, T], L^2(\Omega)), \rho(s)(y_{tt} - \Delta y) \in L^2(Q)\},\$ • define $\Lambda_s : z \to y$ where (y, ϕ) solves the (well-posed) mixed formulation

$$\sup_{\phi \in L^2(Q_T)} \inf_{y \in Y} \left(\frac{1}{2} \| \rho(s)(y_{\nu,obs} - \partial_{\nu} y) \|_{L^2(Q)}^2 + \langle \phi, \rho(s)(\partial_{tt} y - \Delta y + f(z)) \rangle_{L^2(Q)} \right)$$

(for some $\rho(s) > 0$ in Q_T well chosen)

• prove that if f' does not grow too fast at infinity and s large enough then Λ_s is a contraction

THANK YOU VERY MUCH FOR YOUR ATTENTION

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●