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A TREE APPROACH TO p-VARIATION AND TO INTEGRATION

BY JEAN PICARD

Université Blaise Pascal

We consider a real-valued path; it is possible to associate a tree to
this path, and we explore the relations between the tree, the properties of
p-variation of the path, and integration with respect to the path. In particular,
the fractal dimension of the tree is estimated from the variations of the path,
and Young integrals with respect to the path, as well as integrals from the
rough paths theory, are written as integrals on the tree. Examples include
some stochastic paths such as martingales, Lévy processes and fractional
Brownian motions (for which an estimator of the Hurst parameter is given).

1. Introduction. Consider a continuous path ω : [0,1] → R. The p-variation
of ω is defined for p ≥ 1 by

Vp(ω) := sup
(ti )

∑
i

|ω(ti+1) − ω(ti)|p

for subdivisions (ti) of [0,1]. It is well known that the finiteness of Vp(ω) is closely
related to the possibility of constructing integrals

∫ 1
0 ρ dω for some functions ρ.

The simplest case is when V1(ω) is finite (ω has finite variation); then a signed
measure dω = dω+ − dω− (the Lebesgue–Stieltjes measure) is defined from ω,
and the integral is well defined for any bounded Borel function ρ; if moreover ρ

has left and right limits, then the integral is also a Riemann–Stieltjes integral (it
is the limit of Riemann sums). If now ω has infinite variation (V1(ω) = ∞) but
Vp(ω) is finite for a larger value of p, it was proved by Young [36] that a Riemann–
Stieltjes integral can still be constructed as soon as Vq(ρ) is finite for q such that
1/p+1/q > 1; as an application, one can consider and solve stochastic differential
equations driven by a multidimensional path with finite p-variation if p < 2 (in
particular a typical fractional Brownian path with Hurst parameter H > 1/2). If
now p is greater than 2, Lyons’s theory of rough paths [20–23] provides a richer
framework which is still suitable to consider and solve these equations.

On the other hand, one can associate to ω a metric space (T, δ) which is a com-
pact real tree and which can be used to describe the excursions of ω above any
level; see [6, 8] or Chapter 3 of [10]. The tree T can be endowed with its length
measure λ, and our aim is to relate the properties of (T, δ, λ) to the questions of
p-variation of ω and of integration with respect to ω. These questions are also
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considered for càdlàg paths ω (paths which are right-continuous and have left lim-
its), since these paths can be considered as time-changed continuous paths. As an
application, we consider the case where ω is a path of a stochastic process such as
a Lévy process or a fractional Brownian motion (the case of a standard Brownian
path has been considered in [30]).

In Section 2, we introduce the tree T and study its basic properties. In particular,
in the finite variation case, we work out the interpretation of its length measure λ

by means of the Lebesgue–Stieltjes measure of ω, extending a result of [6]; this
result is fundamental for the construction of integrals in Section 4 (see below). We
also explain how the tree can be defined in the càdlàg case.

In Section 3, we see in Theorem 3.1 (Theorem 3.10 for the càdlàg case) that the
finiteness of Vp(ω) is related to some metric properties of T, particularly its upper
box dimension dim T; more precisely,{

Vp(ω) = ∞, if 1 ≤ p < dim T,
Vp(ω) < ∞, if p > dim T.

(1.1)

We give applications of these results to martingales, fractional Brownian motions
and Lévy processes. We prove in particular that upper box and Hausdorff dimen-
sions of T coincide for fractional Brownian motions (with Hurst parameter H )
and stable Lévy processes (with index α); we also construct an estimator of H

based on T, which can be computed by means of a sequence of stopping times
(Proposition 3.9).

The aim of Section 4 is to construct integrals with respect to ω by means of the
tree. Let us assume that ω is continuous and ω(0) = ω(1) = infω (considering the
general case adds some notational complication). The construction of the integral
is based on the following remark (Propositions 2.2 and 2.3): when ω has finite
variation, the positive and negative parts dω+ and dω− of dω can be viewed as
the images of the length measure λ by two maps τ �→ τ↗ and τ �→ τ↖ from T to
[0,1]; thus ∫ 1

0
ρ dω =

∫
T

(
ρ(τ↗) − ρ(τ↖)

)
λ(dτ).(1.2)

When ω has infinite variation, this procedure can still be applied to construct dω+
and dω−; these measures are σ -finite but no more finite. However, (1.2) can be
viewed as a definition of

∫
ρ dω provided the term in the right-hand side is inte-

grable; this means that the tree can provide a mechanism by means of which dω+
and dω− compensate each other. For instance, if 1/p + 1/q > 1,

Vp(ω) < ∞, Vq(ρ) < ∞ 	⇒
∫

T

|ρ(τ↗) − ρ(τ↖)|λ(dτ) < ∞.

Moreover, in this case, the integral defined by (1.2) coincides with the Young inte-
gral (Theorems 4.1 and 4.5). Consequently, differential equations driven by multi-
dimensional paths with finite p-variation with p < 2 enter our framework. Actu-
ally, we may take p > 2 for one of the components (Theorem 4.8); this is due to
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the fact that the condition Vq(ρ) < ∞ can be replaced by some weaker condition
Vq(ρ|ω) < ∞. We also prove that the tree approach can be used to consider multi-
dimensional fractional Brownian motions with parameter H > 1/3 (Theorem 4.9);
in this case, the right-hand side of (1.2) should be understood as a generalized in-
tegral on T (a limit of integrals on subtrees T

a obtained by trimming T), and we
recover the integrals of the rough paths theory.

The Appendix is devoted to two results which are needed in the article, and
which may also be of independent interest. In Appendix A.1, we prove that in-
crements of fractional Brownian motions are asymptotically independent from the
past. In Appendix A.2, we study the time discretization of integrals in the rough
paths calculus, in a spirit similar to [13, 15].

REMARK 1.1. A lot of work has been devoted to the links between random
trees and excursions of some stochastic processes; these links are an extension
of the classical Harris correspondence between random walks and random finite
trees. Historically, they have first been investigated in the context of Brownian
excursions in [1, 18, 26] (see also the courses [10, 32]) with the aim of studying
branching processes. In order to consider more general branching mechanisms,
Lévy trees, defined by means of Lévy processes X without negative jumps, have
been introduced and studied in [7, 19]; they have been related to the notion of real
tree in [8]. However, we will not focus here on properties of Lévy trees; a Lévy
tree is indeed a tree which is associated to some continuous process related to X

(the height process), whereas we will rather consider in our applications the tree
which is associated directly to the Lévy process X.

REMARK 1.2. We work out here a nonlinear approach to integration with re-
spect to one-dimensional paths; consequently, the integral with respect to ω1 + ω2
is not simply related to integrals with respect to ω1 and ω2; moreover, integration
with respect to a multidimensional path can be worked out by summing integrals
with respect to each component, but this depends on the choice of a frame.

REMARK 1.3. In the proofs of this article, the letter C will denote constant
numbers which may change from line to line. For quantities depending on the
path ω of a stochastic process, we will rather use the notation K = K(ω).

2. Paths and trees. In this section, we first define the tree associated to a
continuous path, describe its length measure, and extend these objects to càdlàg
paths.

2.1. Basic definitions and properties. Consider a continuous function (ω(t);
0 ≤ t ≤ 1). The function

δ(s, t) := ω(s) + ω(t) − 2 inf[s,t]ω(2.1)
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is a semi-distance on [0,1], where

δ(s, t) = 0 ⇐⇒ ω(s) = ω(t) = inf[s,t]ω.

The quotient metric space T = ([0,1]/δ, δ) is a real tree; this means that between
any two points τ1 and τ2 in T, there is a unique arc denoted by [τ1, τ2] (T is a
topological tree), and that [τ1, τ2] is isometric to the interval [0, δ(τ1, τ2)] of R;
see [8]. Actually, real trees can also be characterized as connected metric spaces
satisfying the so-called four-point condition, and one can use this condition to
prove that T is a real tree; see [6, 10]. We will denote by π the projection of [0,1]
onto T; notice that if ω is constant on some interval [s, t], then all the points of this
interval are projected on the same point of T. The continuity of π follows from the
continuity of ω; in particular, T is compact. In this article we implicitly assume
that ω is not constant, so that T is not reduced to a singleton.

We now suppose π(0) = π(1), or equivalently

ω(0) = ω(1) = inf[0,1]ω.(2.2)

An example is given in Figure 1. We explain at the end of the subsection how
general paths can be reduced to this case. Under this condition, T becomes a rooted
tree by considering π(0) = π(1) = O as the root of the tree, and we can say that a
point τ1 is above τ2 if τ2 ∈ [O,τ1].

FIG. 1. An example of path ω with its tree T represented by dashed lines (the vertical lines represent
points of the skeleton, and each branching point is represented by a horizontal line); maps τ �→ τ↗,
τ �→ τ↖ and s �→ π(s) are also depicted.
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We consider on T the level function 
 defined by


(τ ) := ω(0) + δ(O, τ).(2.3)

Then ω = 
 ◦ π . For τ in T, define

τ↗ := infπ−1(τ ), τ↖ := supπ−1(τ ),

so that

ω(τ↗) = ω(τ↖) = inf
[τ↗,τ↖]

ω = 
(τ ).

In particular O↗ = 0 and O↖ = 1. The set π([τ↗, τ↖]) is exactly the set of
points above τ . If now we consider the set π([τ↗, τ↖]) \ {τ } of points which
are strictly above τ , it is made of connected components which are subtrees, and
which are called the branches above τ ; each of these branches is the projection of
a connected component of [τ↗, τ↖] \ π−1(τ ), and corresponds to an excursion
of ω above level 
(τ ). If there is more than one branch above τ , then τ is said to
be a branching point; this means that there is more than one excursion, and the
times between these excursions are local minima of ω (a local minimum may be
a constancy interval). On the other hand, if there is no branch above τ , then τ is
said to be a leaf; this means that π−1(τ ) = [τ↗, τ↖], so this holds when τ↗ = τ↖
or when [τ↗, τ↖] is a constancy interval of ω. Local maxima of ω are projected
on leaves of T, but there may be leaves which are not associated to local maxima.
Points which are not leaves constitute the skeleton S(T) of the tree.

We say that ω is piecewise monotone if there exists a finite subdivision (ti) of
[0,1] such that ω is monotone on each [ti , ti+1]. We also say that T is finite if it has
finitely many leaves. If T is not finite, then it has infinitely many branching points,
or it has at least a branching point with infinitely many branches above it; in both
of these cases, ω has infinitely many local minima and is therefore not piecewise
monotone. Conversely, if ω is not piecewise monotone, then it has infinitely many
local maxima, and each of them is projected on a different leaf of T, so T is not
finite. Thus

ω is piecewise monotone ⇐⇒ T is finite.(2.4)

We shall also need an operation called trimming, or leaf erasure, due to [25]
(see also [10, 11, 17, 26]); to this end, we introduce the function

h(τ) := sup{ω(t) − 
(τ ); τ↗ ≤ t ≤ τ↖}.(2.5)

This is the height of the (or of the highest) branch above τ . In particular, h(τ) = 0
if and only if τ is a leaf.

Now consider the trimmed tree

T
a := {τ ∈ T;h(τ) ≥ a}.(2.6)
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FIG. 2. The trimmed tree T
a is represented by dashed lines, and its leaves by double arrows; the

flattened path ωa is represented by dots when it differs from ω; times T a
i , Sa

i and Ua
i , i ≥ 1, are

respectively represented on the curve by bullets, circles and triangles.

Then T
a is nonempty if and only if ‖ω‖ := supω − infω ≥ a, and in this case, it is

a rooted subtree of T (it contains the root O). An example is drawn in Figure 2. As
a ↓ 0, the tree T

a increases to the skeleton of T; each branch grows at unit speed,
and a new branch appears at τ if τ is a branching point of T such that one of the
branches above τ has height exactly a, and another one has height at least a. This
subtree has been introduced in [26] and is related to a-minima and a-maxima of
the path. More precisely, starting with Sa

0 = T a
0 = 0, define⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T a
i+1 := inf

{
t ∈ [Sa

i ,1];ω(t) − sup
[Sa

i ,t]
ω < −a

}
,

Sa
i+1 := inf

{
t ∈ [T a

i+1,1];ω(t) − inf
[T a

i+1,t]
ω > a

}
,

Na := inf{i;T a
i or Sa

i = inf ∅}.

(2.7)

Actually, in the case π(0) = π(1), T a
Na is still well defined, but not Sa

Na (notice in
particular that if ω is a path of an adapted stochastic process, then Sa

i and T a
i are

stopping times). Then Na is the number of leaves of T
a ; the set of leaves ∂T

a and
the set of times (T a

i ;1 ≤ i ≤ Na) are in bijection by means of π and its inverse
map τ �→ τ↖. Moreover

inf
[T a

i ,T a
i+1]

ω = inf
[T a

i ,Sa
i ]

ω = ω(Sa
i ) − a for 1 ≤ i < Na .(2.8)

The approximation of T by T
a can also be interpreted as an approximation

of the path ω; trimming the tree is equivalent to flattening some excursions of the
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path. More precisely, let πa(t) be the projection of π(t) on T
a (assuming T

a �= ∅),
and let

ωa = 
 ◦ πa(2.9)

for the level function 
 defined in (2.3). Then T
a is the associated tree of ωa . The

path ωa is continuous, is obtained from ω by means of the change of time

ωa(t) = ω
(
inf{u ≥ t;π(u) ∈ T

a}),
and satisfies 0 ≤ ω − ωa ≤ a. Since T

a is finite, it follows from (2.4) that ωa is
piecewise monotone. Actually, if Ua

i is a time of [T a
i , Sa

i ] at which ω is minimal
(for 1 ≤ i < Na) and if Ua

0 := 0, Ua
Na := 1, then

ω(Ua
i ) = ω(Sa

i ) − a for 1 ≤ i < Na ,(2.10)

and {
ωa is nondecreasing on [Ua

i , T a
i+1],

ωa is nonincreasing on [T a
i ,Ua

i ].(2.11)

Consider now a general continuous map ω which does not satisfy π(0) = π(1).
Then we can again associate the tree T by means of δ defined by (2.1), but some of
the above properties differ. However, it is still possible to apply the above discus-
sion to an extended path ω′ defined on a greater interval, say [−1,2], coinciding
with ω on [0,1], and satisfying ω′(−1) = ω′(2) = inf[−1,2] ω′. Then the associated
tree T

′ contains T as a subtree, and the projection π : [0,1] → T is the restric-
tion of π ′ : [−1,2] → T

′ to [0,1]. Among these paths, we will only consider the
minimal extensions; they are those such that T

′ = T. This means that{
ω′(−1) = ω′(2) = inf[0,1]ω,

ω′ is nondecreasing on [−1,0], nonincreasing on [1,2].(2.12)

Let U be a time of [0,1] at which ω is minimal and consider

O := π(U), A := π(0), B := π(1)(2.13)

(these points are drawn in Figure 3 below, in the more general case of paths with
jumps). We choose O as the root of T. Then O belongs to [A,B], the points of
[O,A] are those such that τ↗ ≤ 0 ≤ τ↖ ≤ 1, and the points of [O,B] are those
such that 0 ≤ τ↗ ≤ 1 ≤ τ↖; for the points of T \ [A,B], one has 0 < τ↗ ≤ τ↖ <

1.
In particular, if we trim the tree T and if T

a �= ∅, then the flattened path ωa

of (2.9) is the restriction of ω′a to [0,1]. Moreover, the quantities Na , T a
i and Sa

i

defined in (2.7) and the similar quantities for ω′ satisfy

Na = N ′a, Sa
i = (S′)ai , T a

i = (T ′)ai for 1 ≤ i < Na .

At i = Na , the time (T ′)aNa may be after time 1, and in this case T a
Na is not defined.



2242 J. PICARD

FIG. 3. A path with jumps, and its tree (dashed lines). The graph G is the curve augmented by the
jumps (dotted lines). Are also depicted the map π from G to T, the maps τ �→ τ↗, τ �→ τ↖ from T

to [0,1]; in particular, A = π(0,ω(0)) and B = π(1,ω(1)).

2.2. The length measure on the tree. The length measure on T is the unique
measure λ which is supported by the skeleton (the set of leaves have zero measure)
and such that the measure of an arc is equal to its length; in particular, this measure
is σ -finite and atomless. The existence and uniqueness of λ is elementary for the
finite subtrees T

a , and it is not difficult to deduce the result for T by letting a ↓ 0.
It can be identified to either of the two following measures.

PROPOSITION 2.1. Define

λ1 :=
∫

R

∑
τ∈S(T) : 
(τ )=x

δτ dx, λ2 :=
∫ ∞

0

∑
τ∈∂Ta

δτ da =
∫ ∞

0

∑
τ : h(τ)=a

δτ da,

where δτ denotes the Dirac mass at τ . Then λ = λ1 = λ2.

Notice that the number of terms in the sum is at most countable for any x in
the definition of λ1, whereas it is finite for any a > 0 in the definition of λ2.
The integrals are supported by the interval [infω, supω] for the first one, and
[0, supω − infω] for the second one.

PROOF OF PROPOSITION 2.1. The two measures are supported by the skele-
ton of the tree; in order to check that they are equal to λ, it is sufficient to verify
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that they coincide with it on arcs [O,τ ] for any τ in the skeleton S(T). The maps 


and h are injective on [O,τ ], so, if λR denotes the Lebesgue measure on R,

λ1([O,τ ]) = λR(
([O,τ ])), λ2([O,τ ]) = λR(h([O,τ ])).
Moreover, 
 induces a bijection between [O,τ ] and [
(O), 
(τ )], so

λ1([O,τ ]) = 
(τ ) − 
(O) = δ(O, τ) = λ([O,τ ]).
Thus λ1 = λ. For the study of λ2, notice that h(τ0) is the distance between τ0
and any of the highest points above it. When τ0 goes from O to τ , then h(τ0) is
decreasing; more precisely, it jumps at τ0, when τ0 is a branching point so that
no highest point above it is in the direction of τ ; thus h has a finite number of
negative jumps, and between these jumps, it is affine with slope −1. Consequently,
h induces a bijection from [O,τ ] onto its image, and this image has Lebesgue
measure δ(O, τ). We deduce that λ2 = λ. �

The measure λ is closely related to the two following measures on [0,1]. Say
that an excursion begins at time t above level ω(t) if for some ε > 0, ω(s) > ω(t)

for t < s < t + ε. Let E↗ be the set of beginnings of excursions above any level;
we can define similarly the set E↖ of ends of excursions. These two sets are in
bijection with each other; to each beginning t of an excursion we can associate
its end inf{s > t;ω(s) = ω(t)}. If we restrict ourselves to a fixed level x, the sets
of beginnings and ends of excursions above x are at most countable, and we can
define

ω↗ :=
∫ ∑

s∈E↗;ω(s)=x

δs dx, ω↖ :=
∫ ∑

s∈E↖;ω(s)=x

δs dx.(2.14)

PROPOSITION 2.2. Assume (2.2). The measures ω↗ and ω↖ are σ -finite and
are respectively the images of λ by the maps τ �→ τ↗ and τ �→ τ↖, and λ is
the image of ω↗ and ω↖ by the projection π . If (2.2) does not hold, then, with
the notation (2.13), the maps τ �→ τ↗ and τ �→ τ↖ are respectively defined on
T \ [O,A] and T \ [O,B]; the relation between ω↗ and λ (or between ω↖ and
λ) again holds by restricting λ to T \ [O,A] (or T \ [O,B]).

PROOF. We only work out the proof under (2.2); the general case is easily de-
duced by considering an extension of ω satisfying (2.12). We want to compare the
measure ω↗ carried by the set E↗ of beginnings of excursions, with the measure λ

carried by the skeleton S(T). If s is in E↗, then π(s) is in S(T) and s = π(s)↗ ex-
cept if s is at a local minimum, or the end of a constancy interval of ω; on the other
hand, if τ is in S(T), then τ = π(τ↗) and τ↗ is in E↗ except if it is the beginning
of a constancy interval of ω. Since there are at most countably many local minima
and constancy intervals, we deduce that there exists E

↗
0 ⊂ E↗ and S0(T) ⊂ S(T)
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such that E↗ \E
↗
0 and S(T)\S0(T) are at most countable, and the maps τ �→ τ↗

and π are inverse bijections between E
↗
0 and S0(T). Moreover, λ and ω↗ are

atomless, so they are supported respectively by S0(T) and E
↗
0 . Thus the relation

between λ and ω↗ claimed in the proposition follows from this one-to-one prop-
erty, the definition (2.14) of ω↗ and the property λ = λ1 of Proposition 2.1. The
case of ω↖ is similar, and the σ -finiteness follows from the σ -finiteness of λ. �

We now give a condition on T with which one can decide whether ω has finite
or infinite variation (this characterization is also given in [6]).

PROPOSITION 2.3. The measures λ, ω↗ and ω↖ are finite if and only if ω has
finite variation. In this case, ω↗ and ω↖ are respectively the positive and negative
parts of the Lebesgue–Stieltjes measure of ω. Moreover,∫ 1

0
|dω| = 2λ(T) − δ(0,1).(2.15)

PROOF. We first work out the proof under the condition (2.2), so that δ(0,1) =
0. Suppose also that T is finite, so that λ is finite and ω is piecewise monotone [as
explained in (2.4)]. If, for instance, ω is nondecreasing on [t1, t2], then it is easily
checked from the definitions (2.14) that

ω↗([t1, t2]) = ω(t2) − ω(t1), ω↖([t1, t2]) = 0.

A similar result holds for intervals on which ω is nonincreasing, so we deduce
that the proposition holds true in this case. If T is not finite, consider the tree T

a

of (2.6) and its path ωa of (2.9). Notice that λ(Ta) ↑ λ(T) as a ↓ 0. For b < a,
one has T

a ⊂ T
b, and the path ωa is obtained from ωb by a change of time, so

the variation of ωa increases as a decreases, and is bounded by the variation of ω;
since the variation is a lower semicontinuous function of the path, it follows that
the variation of ωa converges to the variation of ω as a ↓ 0, so∫ 1

0
|dω| = lim

∫ 1

0
|dωa| = 2 limλ(Ta) = 2λ(T)(2.16)

(we have applied the first part of the proof to ωa and T
a). Thus ω has finite varia-

tion if and only if λ is finite. Moreover, if ω has finite variation, one checks simi-
larly that the positive part dω+ of the Lebesgue–Stieltjes measure of ω satisfies

(dω+)([s, t]) = lim(dωa)+([s, t]) = limω↗([s, t] ∩ π−1(Ta)
) = ω↗([s, t])

where we have used the fact that (ωa)↗ is the restriction of ω↗ to π−1(Ta). If (2.2)
does not hold, we can consider an extension of ω satisfying (2.12) and then restrict
to [0,1]. In this case, with the notation (2.13), the points τ of [A,B] are such
that τ↗ ≤ 0 or τ↖ ≤ 1 and should not be counted twice in the total variation
of ω in (2.16). The correction which has to be made is λ([A,B]) = δ(0,1), so we
obtain (2.15). �
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2.3. Paths with jumps. Let us explain how our construction of T can be ex-
tended to càdlàg paths ω (paths which are right-continuous and have left limits),
see Figure 3; we apply the classical idea of embedding these paths into continuous
paths by opening temporal windows at times of jumps and considering interpolated
continuous paths (this idea has been used for the rough paths theory in [35]).

Let G be the set of points (t, x) such that 0 ≤ t ≤ 1 and x is between ω(t−)

and ω(t). This is the graph of ω augmented by the segments joining (t,ω(t−))

and (t,ω(t)). Then define

δ((t, x), (t, x ′)) := |x′ − x|
and

δ((s, x), (t, x′)) := x + x′ − 2
(

inf
(s,t)

ω ∧ x ∧ x′
)

if s < t . If ω is continuous, then G and [0,1] are naturally identified, in such a way
that δ coincides with the previous definition (2.1).

Let us say that two points of G satisfy (t, x) ≤ (t ′, x′) if either t < t ′, or t = t ′
and x is between ω(t−) and x′. This is a total order, and G can be endowed with
the topology generated by open intervals for this order; actually, this topology
coincides with the topology of G considered as a subset of R

2.

PROPOSITION 2.4. The map δ is a semi-distance on G, and T = (G/δ, δ)

is a compact real tree. Actually, there exists a continuous map ω′ such that ω is
obtained from ω′ by an increasing (not necessarily surjective) time change, and T

is the tree associated to ω′.

PROOF. Suppose that ω is not continuous (the result is evident otherwise).
Let J be the set of times where ω jumps, and let (S(t); t ∈ J ) be a family of
(strictly) positive numbers such that

∑
S(t) = 1. Let

(t, x) := 1

2

(
t + ∑

u<t

S(u) + S(t)
x − ω(t−)

ω(t) − ω(t−)
1J (t)

)
.

Then  is an increasing bijection from G onto [0,1], so G and [0,1] can be
identified, and previous results on the tree representation for continuous functions
defined on [0,1] can also be applied to continuous functions on G. Thus, in or-
der to prove the proposition, it is sufficient to find a map ω′ defined on G. Put
ω′(t, x) := x. It induces the semi-distance

ω′(s, x) + ω′(t, x′) − 2 inf[(s,x),(t,x′)]ω
′ = δ((s, x), (t, x′)),

so its tree is T. Moreover, ω = ω′ ◦ Q for the increasing time change Q(t) :=
(t,ω(t)). �
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In this setting, let π be the projection of G on T. We extend the notation (2.13)
by

O := π
(
U,ω(U) ∧ ω(U−)

)
, A := π(0,ω(0)), B := π(1,ω(1)),

where U is a time at which ω(U) ∧ ω(U−) = infω. Let E↗ be the set of (t, x)

in G such that ω(s) > x for any t < s < t +ε and some ε > 0, define E↖ similarly,
and let

ω↗ :=
∫ ∑

s : (s,x)∈E↗
δs dx, ω↖ :=

∫ ∑
s : (s,x)∈E↖

δs dx.

Notice also that all the points of π−1(τ ) are at the same level; we let τ↗ and τ↖
be the infimum and supremum of the time component of this set.

PROPOSITION 2.5. The measures ω↗ and ω↖ are the images of λ by τ �→ τ↗
and τ �→ τ↖ [after restricting λ as in Proposition 2.2 if (2.2) does not hold]. The
statements of Proposition 2.3 about the finite variation case again hold true.

PROOF. Let us use the notation of the proof of Proposition 2.4. The set E↗ is
the set of beginnings of excursions of ω′, so ω↗ is the projection on the time com-
ponent of (ω′)↗; we deduce the first statement. Moreover, ω′ is monotone on the
intervals corresponding to the jumps of Q, so the total variations of ω and ω′ co-
incide (a more general result will be proved in Theorem 3.10), and the Lebesgue–
Stieltjes measure of ω is again deduced from its analogue for ω′ by projection on
the time component. �

3. p-variation and trees. Let us now assume that ω has finite p-variation for
some p ≥ 1, so that

Vp(ω) := sup
(ti )

Vp(ω, (ti)) := sup
(ti )

∑
i

|ω(ti+1) − ω(ti)|p < ∞,(3.1)

where the supremum is with respect to all the subdivisions of [0,1] (notice that a
nonconstant continuous map cannot have finite p-variation for p < 1). Let us first
assume that ω is continuous (the càdlàg case will be dealt with in Section 3.3).
We first want to describe the property (3.1) by means of the geometry of T. In
particular, Vp(ω) < ∞ implies Vq(ω) < ∞ for q ≥ p, and we are interested in the
variation index

V(ω) := inf{p ≥ 1;Vp(ω) < ∞}.(3.2)
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3.1. The variation index. Let us recall that we have defined in (2.6) approxi-
mations T

a of T obtained by trimming the tree, that Na , defined by (2.7), is the
number of leaves of T

a , and that the flattened path ωa of (2.9) is associated to T
a ;

let La := λ(Ta) be its total length. As a ↓ 0, each branch of T
a grows at unit speed

at its leaves, so

La =
∫ ∞
a

Nb db.(3.3)

If π(0) = π(1), we deduce from Proposition 2.3 that La is the mass of the positive
part of dωa , so, by applying (2.11) and (2.10),

La = ω(T a
1 ) +

Na∑
i=2

(
ω(T a

i ) − ω(Ua
i−1)

)

= ω(T a
1 ) +

Na∑
i=2

(
ω(T a

i ) − ω(Sa
i−1) + a

)

=
Na∑
i=1

(
ω(T a

i ) − ω(Sa
i−1)

) + (Na − 1)a.

If π(0) �= π(1), then this equation has to be corrected as in (2.15); notice, however,
that the correction is bounded, so if ω has infinite variation, then

La ∼
Na−1∑
i=1

(
ω(T a

i ) − ω(Sa
i−1)

) + aNa as a ↓ 0.(3.4)

Thus La is easily estimated from the path ω, the times Sa
i and T a

i , and the num-
ber Na of (2.7).

We consider two other metric characteristics of T, namely its upper box (or
Minkowski) dimension (see, for instance, [12]) defined by

dim T := lim sup
a↓0

logN (a)

log(1/a)

where N (a) is the minimal number of balls of radius a which are needed to
cover T, and the index

H(T) := inf
{
p ≥ 1;

∫
T

(h(τ ))p−1λ(dτ) < ∞
}

where h(τ) is the height of the highest branch above τ . The aim of this subsection
is to prove that all these quantities are related to the variation index V(ω) defined
in (3.2), and in particular prove the result announced in (1.1).
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THEOREM 3.1. Let ω be a (nonconstant) continuous function. Then

V(ω) = H(T)

= lim sup
a→0

logLa

log(1/a)
+ 1

= lim sup
a→0

logNa

log(1/a)
∨ 1

= dim T.

PROOF. Denoting by I1, . . . , I5 the successive terms of the theorem, we prove
that

I1 ≤ I2 ≤ I3 ≤ I4 ≤ I5 ≤ I1.

These five inequalities are proved in the five following steps.
PROOF OF I1 ≤ I2. Let s < t be two times, and let τ0 be the most recent common

ancestor of π(s) and π(t). Then


(τ0) = min[s,t] ω

so

|ω(t) − ω(s)| ≤ max
(
ω(s) − 
(τ0),ω(t) − 
(τ0)

)
and

|ω(t) − ω(s)|p ≤ (
ω(s) − 
(τ0)

)p + (
ω(t) − 
(τ0)

)p
.

On the other hand,(
ω(t) − 
(τ0)

)p = p

∫
[τ0,π(t)]

(
ω(t) − 
(τ )

)p−1
λ(dτ)

≤ p

∫
[τ0,π(t)]

(
h(τ) − h(π(t))

)p−1
λ(dτ)

≤ p

∫
[τ0,π(t)]

(h(τ ))p−1λ(dτ)

where we have used in the second line the property

h(τ) − h(π(t)) = max
[τ↗,τ↖]


 − 
(τ ) − max
[π(t)↗,π(t)↖]


 + ω(t)

≥ ω(t) − 
(τ )

valid for π(t) above τ . The same property holds at time s, so by addition,

|ω(t) − ω(s)|p ≤ p

∫
[π(s),π(t)]

(h(τ ))p−1λ(dτ).
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If (ti) is a subdivision of [0,1], we can sum up these estimates for s = ti and
t = ti+1. Since almost any τ appears at most twice in the right-hand sides (at times
τ↗ and τ↖), we deduce

Vp(ω) ≤ 2p

∫
T

(h(τ ))p−1λ(dτ).(3.5)

In particular I1 ≤ I2.
PROOF OF I2 ≤ I3. It follows from λ = λ2 (Proposition 2.1) and from (3.3) that

for p > 1,∫
T

(h(τ ))p−1λ(dτ) =
∫ ∞

0
ap−1Na da = (p − 1)

∫ ∞
0

ap−2La da.

We deduce that if La ≤ Ca1−κ for some κ < p, then the integral is finite, so
I2 ≤ I3.

PROOF OF I3 ≤ I4. This inequality follows from (3.3).
PROOF OF I4 ≤ I5. Above each τ ∈ ∂T

a there is a τ ′ such that δ(τ, τ ′) = a, and
the Na balls with centers τ ′ and radius a are disjoint; this implies that the number
of balls of radius a/2 which is needed to cover T is at least Na ; we also have
dim T ≥ 1, so we deduce that I4 ≤ I5.

PROOF OF I5 ≤ I1. For a > 0, let t0 = 0 and

ti+1 = inf{t ≥ ti; |ω(t) − ω(ti)| ≥ a}.
Let τi be the most recent common ancestor of π(ti) and π(ti+1), so that 
(τi) =
inf[ti ,ti+1] ω. Consider the closed ball Bi of T with center τi and with radius 2a,
so that π([ti , ti+1]) is included in this ball. Then the union of Bi is a covering
of T. Moreover, the number of these balls is dominated by Vp(ω)/ap , so the upper
box dimension of T is dominated by p as soon as p > V(ω). We deduce that
I5 ≤ I1. �

REMARK 3.2. If π(0) = π(1), we have

Vp(ω) ≥ ∑
τ∈∂Ta

((
sup

[τ↗,τ↖]
ω − ω(τ↗)

)p

+
(

sup
[τ↗,τ↖]

ω − ω(τ↖)

)p)
= 2apNa.

If π(0) �= π(1), we have to omit the first term for the first leaf of T
a (τ↗ may

be before time 0), and the second term for the last leaf of T
a (τ↖ may be after

time 1). Thus

Vp(ω) ≥ apNa(3.6)

and the right-hand side can be doubled if π(0) = π(1).

REMARK 3.3. Other related estimates of Vp(ω) using numbers of upcrossings
were previously known; see [4, 34].
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REMARK 3.4. The link between the dimension of T and the behavior of Na

is similar to the link between the dimension of the boundary of discrete trees and
their growth (see page 201 of [29]).

REMARK 3.5. A more classical fractal dimension related to a path ω is the
dimension of its graph as a subset of R

2. This dimension (which is bounded by 2)
is of course generally different from the dimension of T.

Other well-known notions of dimensions ([12]) are the packing dimension
dimP T and the Hausdorff dimension dimH T, and we always have

dimH T ≤ dimP T ≤ dim T.(3.7)

Some of these inequalities may be strict. For instance, consider the path ω which
is affine on each interval [1/(n + 1),1/n], and such that

ω
(
1/(2k + 1)

) = 0, ω
(
1/(2k)

) = 1/kα.

Then

Vp(ω) = 2
∑

k−αp

for p ≥ 1, so dim T = V(ω) = 1/α ∨ 1. On the other hand, the tree is a star with a
countable number of branches, and its Hausdorff and packing dimensions are 1.

On the other hand, if ω has the same variation index V(ω) on any interval [s, t]
with s < t , then any open subset of T has the same upper box dimension, so in this
case ([12])

dimP T = dim T = V(ω).

We will now see an example where the Hausdorff dimension is also equal
to V(ω).

3.2. The fractional Brownian case. We now consider the case where ω is
a typical path of a fractional Brownian motion W . This is a centered Gaussian
process (Wt ; t ∈ R) with covariance function

cov(Ws,Wt) = σ 2

2
(|s|2H + |t |2H − |t − s|2H)

for the Hurst parameter 0 < H < 1 and the coefficient σ 2 > 0. It satisfies the
scaling property

(Wct ; t ∈ R)
law= (cHWt ; t ∈ R)(3.8)

for c > 0. In this subsection, we let ω be a path of W restricted to [0,1] and ex-
tended to [−1,2] by the technique of (2.12); we compute the Hausdorff dimension
of the tree T, and describe an estimator of H based on T.
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The property Vp(W) < ∞ for p > 1/H is well known; it is classically obtained
from the (1/p)-Hölder continuity of the paths, which itself is obtained by means
of the Kolmogorov criterion and the estimation

‖Wt − Ws‖q = Cqσ(t − s)H

on the Lq norm of the increments for any q ≥ 1. It actually follows from this
estimation that the moments of Vp(W) are finite.

PROPOSITION 3.6. For almost any path ω of W , one has

dimH T = V(ω) = 1/H.

PROOF. The property V(W) ≤ 1/H follows from the discussion preceding
the proposition. From (3.7) and Theorem 3.1, it is therefore sufficient to prove that
dimH T ≥ 1/H . The constants involved in this proof depend on H and σ . It is
known from [24] that

P

[
inf[0,1/2]W > −u

]
= O(uγ )(3.9)

as u ↓ 0, for any γ < 1/H − 1. Moreover, if (Ft ;0 ≤ t ≤ 1) is the filtration of W ,
the conditional law of W1 − W1/2 given F1/2 is a Gaussian law with deterministic
positive variance, so

P[|W1| < u | F1/2] ≤ Cu.(3.10)

The event {δ(0,1) < u} is included in the intersection of the two events of (3.9)
and (3.10), so

P[δ(0,1) < u] = O(uγ+1).

We deduce that δ(0,1)−p is integrable for p < 1/H . From the scaling prop-
erty (3.8), δ(s, t)−p is also integrable, and

Eδ(s, t)−p = C(t − s)−pH ,

so

E

∫ ∫
T×T

δ(τ1, τ2)
−pν(dτ1)ν(dτ2) = E

∫ 1

0

∫ 1

0
δ(s, t)−p ds dt < ∞(3.11)

for the projection ν of the Lebesgue measure of [0,1] on T. The double integral
of the left-hand side is the p-energy of the measure ν on the metric space (T, δ).
Its almost sure finiteness implies that dimH T ≥ p for any p < 1/H (see, for in-
stance, [12]), so dimH T ≥ 1/H . �

Dimensions of Lévy trees have been computed in [8]. This includes our tree T

for H = 1/2, and for this tree, the exact Hausdorff measure has been obtained
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in [9]. Here, we do not look for a so precise result, but verify that the normalization
of the length measure λ on T

a converges to the measure ν of the previous proof;
the same property is verified for the uniform measure on leaves of T

a . In this
sense, ν can be viewed as a uniform measure on the leaves of the tree. This will be
a corollary of the following result (Proposition 3.8).

PROPOSITION 3.7. For almost any path ω of W , we have

Na ∼ C(H)σ 1/Ha−1/H , La ∼ C(H)
H

1 − H
σ 1/Ha1−1/H

as a ↓ 0, for some C(H) > 0.

PROOF. Since Na and La are related to each other by means of (3.3), it is
sufficient to study Na . Moreover, σ acts as a multiplicative coefficient on the path,
so Na for the process with parameter σ has the same law as Na/σ for the process
with parameter 1; thus it is sufficient to consider the case σ = 1. If p > 1/H , it
follows from the finiteness of the moments of Vp(W) and from (3.6) that

‖Na‖q ≤ Ca−p(3.12)

for any q ≥ 1 and some C = C(p,q,H). In the two following steps, we study
successively the expectation and the variance of Na .

STUDY OF E[Na]. Consider in this proof the whole path (ω(t); t ∈ R) of W ,
and its associated (noncompact) tree T−∞,+∞. For s < t , let Na

s,t , respectively
Ña

s,t , be the numbers of leaves of the trimmed tree T
a−∞,+∞ such that s < τ↗ <

τ↖ < t , respectively s ≤ τ↗ < t . Then

Ña
s,t − Na

s,t ∈ {0,1}, Na − Na
0,1 ∈ {0,1,2}(3.13)

(actually one may have Ña
s,t − Na

s,t = 2 if s is some τ↗, but this happens with
zero probability for any fixed s). On the other hand, it follows from the scaling
property (3.8) of W that

E[Ña
0,1] = E[Ñ1

0,a−1/H ].
The law of W is shift invariant and [s, t) �→ Ñ1

s,t is additive, so E[Ñ1
s,t ] is propor-

tional to t − s, and

E[Ña
0,1] = a−1/H

E[Ñ1
0,1].

Thus the result of the proposition holds in expectation for C(H) = E[Ñ1
0,1].

STUDY OF var(Na). It follows from (3.13) and the additivity of [s, t) �→ Ña
s,t

that

|Na
s,u + Na

u,t − Na
s,t | ≤ 2
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for s ≤ u ≤ t . Thus, by considering a regular subdivision of [0,1] with mesh �t ,
we have ∣∣∣Na − ∑

Na
ti ,ti+1

∣∣∣ ≤ 2�t−1 + 2.(3.14)

Moreover,

var(Na
ti ,ti+1

) = var(Na
0,�t ) = var(Na�t−H

0,1 )

≤ E[(Na�t−H

0,1 )2] ≤ E[(Na�t−H

)2] ≤ Ca−2p(�t)2pH

for p > 1/H , where we have used the scaling property in the second equality,
and (3.12) in the last inequality. Since Na

ti ,ti+1
depends only on the increments of ω

on [ti , ti+1], we deduce from the result (A.1) of Appendix A.1 that

var
(∑

Na
ti ,ti+1

)
≤ Ca−2p(�t)2pH

∑
k,j≤�t−1

1

1 + |k − j |1−H

(3.15)
≤ C′a−2p(�t)2pH−H−1,

so, by joining (3.14) and (3.15),

var(Na) ≤ C
(
a−2p(�t)2pH−H−1 + (�t)−2)

.

We choose �t ∼ aα for 0 < α < 1/H , so

var(Na) ≤ C
(
a−2α + a−2p+α(2pH−H−1)).

By choosing p and α close enough to 1/H , we have

var(Na) ≤ Ca2ε−2/H

for some ε > 0.
CONCLUSION OF THE PROOF. The two previous steps show that a1/H Na con-

verges in L2 to a constant, and that the rate of convergence is at most of order aε .
From the Borel–Cantelli lemma, the convergence is almost sure on a sequence
an = n−β for β large enough. Since a �→ Na is monotone, we deduce from

a
1/H
n+1 Nan ≤ a1/H Na ≤ a1/H

n Nan+1

for an+1 ≤ a ≤ an, that the convergence is actually almost sure as a ↓ 0. �

PROPOSITION 3.8. For almost any path ω of W , the measures

νa
1 := 1

Na

∑
τ∈∂Ta

δτ and νa
2 := 1

La
λ|Ta

converge weakly to the projection ν on T of the Lebesgue measure of [0,1].
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PROOF. Let μa
1 and μa

2 be the images of νa
1 and νa

2 by τ �→ τ↗. One has
π(τ↗) = τ , so νa

1 and νa
2 are the images of μa

1 and μa
2 by π . Since π is continuous,

it is sufficient to prove that μa
1 and μa

2 converge weakly to the Lebesgue measure of
[0,1], and therefore that μa

1([s, t]) and μa
2([s, t]) converge to t − s. But μa

1([s, t])
counts the proportion of leaves of T

a which satisfy s ≤ τ↗ ≤ t ; the number of
such leaves is close to the number Ña

s,t of the proof of Proposition 3.7; it can be
estimated from Proposition 3.7 and the scaling property, and we can conclude. The
study of μa

2 is similar. �

We can deduce estimators for H from Proposition 3.7. Our result is an alter-
native to the generalized quadratic variation approach [16]. For instance, we can
consider N2a/Na or L2a/La , so that the unknown coefficient σ is eliminated.
However, we can also use

lim
a↓0

aNa

La
= 1

H
− 1.

Roughly speaking, the estimator aNa/La counts the normalized number of
changes in the sense of variation of ωa . The smaller H is, the more often the
sense of variation of ωa changes. From (3.4), we deduce the following result.

PROPOSITION 3.9. The Hurst parameter H of the fractional Brownian mo-
tion (Wt ;0 ≤ t ≤ 1) can be estimated from the relation

lim
a↓0

1

aNa

Na−1∑
i=1

(WT a
i

− WSa
i−1

) = 2H − 1

1 − H

which holds almost surely, where Na , Sa
i , T a

i were defined in (2.7).

3.3. The case with jumps. We now consider a càdlàg path ω. We have seen
in Proposition 2.4 how it can be written as a time-changed path ω = ω′ ◦ Q for
a continuous ω′ defined on G, and the trees of ω and ω′ coincide. Actually, the
variations also coincide, so the tree T can again be used to study the variations
of ω.

THEOREM 3.10. Let ω be a càdlàg path and ω′ the associated continuous
path. One has Vp(ω) = Vp(ω′) for any p ≥ 1. In particular, V(ω′) = V(ω) and
Theorem 3.1 again holds.

PROOF. The relation ω = ω′ ◦ Q immediately implies Vp(ω) ≤ Vp(ω′). In
order to verify the reverse inequality, we notice that when computing Vp(ω′), it is
sufficient to consider subdivisions (ti) consisting of local extrema of ω′; thus these
times are in the closure of the image of Q; consequently, from the continuity of ω′,
it is sufficient to consider times in the image of Q, so that we can conclude. �
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We now give applications of the tree representation to martingales and Lévy
processes. In the following result, we recover with our method a result of [31]
(which was given in discrete time). Notice, however, that our results are only for
the real-valued case, whereas [31] considers the Banach space-valued case.

PROPOSITION 3.11. Consider a purely discontinuous martingale X = (Xt ;
0 ≤ t ≤ 1) for a filtration (Ft ;0 ≤ t ≤ 1). Let 1 < p < 2; then

E[Vp(X)] ≤ CpE
∑ |�Xt |p.(3.16)

PROOF. The proof is divided into two steps; in the first step, we reduce the
problem to a particular case.

STEP 1. Let S0 := 0 and (Sk;k ≥ 1) be the times of jumps of an independent
standard Poisson process, and consider

Xε
t = ∑

XεSk
1{εSk≤t<εSk+1}

(X is supposed to be constant after time 1). Then Xε is a martingale in its filtration;
if the proposition were proved for Xε , we would have

Vp(Xε) ≤ CpE
∑
k

|XεSk+1 − XεSk
|p

≤ C′
pE

∑
k

(∑ |�Xt |21{εSk≤t<εSk+1}
)p/2

(3.17)

≤ C′
pE

∑ |�Xt |p
where we have used in the second line the classical Burkholder–Davis–Gundy
inequalities; it is then sufficient to let ε tend to 0. Thus it is sufficient to prove the
result for martingales varying only on a sequence of totally inaccessible stopping
times. By separating the positive and negative parts of the jumps, such a martingale
is the difference of two martingales with finite variation and with no negative jump,
so we only have to prove the result for these martingales.

STEP 2. We suppose therefore that X has finite variation with positive jumps
at a sequence of stopping times Sk . Thus the positive part dX+ = X↗ of the
Lebesgue–Stieltjes measure of X is purely atomic; it is carried by the times of
jumps of X. Let τ be in T; it is the projection of some (τ↗, x) of G, and

h(τ) = sup{Xs − x; τ↗ ≤ s ≤ T (τ↗, x)}
with

T (t, x) := inf{s ≥ t;Xs ≤ x}.
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Then (3.5) implies that

Vp(X) ≤ 2p

∫ X0

infX
sup{Xs − x; s ≤ T (0, x)}p−1 dx

+ 2p
∑
t∈J

∫ Xt

Xt−
sup{Xs − x; t ≤ s ≤ T (t, x)}p−1 dx

where J = {Sk;k ≥ 1}. The first term corresponds to the integral on the arc [A,O]
of T, on which τ↗ ≤ 0; its expectation is dominated by the expectation of |X1 −
X0|p (Doob’s inequality) which can be estimated by the right-hand side of (3.16)
with the technique of (3.17). The second term corresponds to the integral on the
remaining part of the tree, for which τ↗ ∈ J . In order to estimate it, consider some
jump S = Sk and notice that since X is a martingale with no negative jump,

P[sup{Xs − x;S ≤ s ≤ T (S, x)} ≥ a | FS] ≤ XS − x

a

for XS− ≤ x ≤ XS and a ≥ XS − x. We deduce that

E[sup{Xs − x;S ≤ s ≤ T (S, x)}p−1 | FS] ≤ (XS − x)

∫ M

XS−x
ap−3 da,

so

E

[∫ XS

XS−
sup{Xs − x;S ≤ s ≤ T (t, x)}p−1 dx | FS

]
≤ (�XS)p/

(
p(2 − p)

)
and we can conclude by summing on the times of jumps S = Sk . �

We now give for Lévy processes the analogue of Proposition 3.6.

PROPOSITION 3.12. Let X be an α-stable Lévy process. Then, for almost any
path ω of X,

dimH T = dim T = V(ω) = α ∨ 1.

PROOF. For α < 1, the process has finite variation, so V(X) = 1 and the di-
mension is 1. For α ≥ 1, the fact that V(X) ≤ α is classical and can be deduced
from Proposition 3.11; thus

1 ≤ dimH T ≤ dim T = V(X) ≤ α.

Our result is therefore proved for α = 1. Suppose now α > 1. We will use the
notation

δ(s, t) = δ((s,Xs), (t,Xt)) = Xs + Xt − 2 inf[s,t]X.
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It is known (Proposition VIII.2 of [3]) that

P

[
inf[0,1/2]X > −u

]
≤ Cuαβ = O(uα−1)

as u ↓ 0, for β = P[Xt ≤ 0] ≥ (α − 1)/α. We also have

P[|X1| < u | F1/2] ≤ sup
x

P[x − u < X1 − X1/2 < x + u]
= sup

x
P[x − u < X1/2 < x + u] = O(u)

because X1/2 has a bounded density, so by taking the intersection of these two
events,

P[δ(0,1) < u] = O(uα).

We deduce that δ(0,1)−p is integrable for any p < α. The variables δ(s, t) satisfy
the same property, and by scaling,

Eδ(s, t)−p = C(t − s)−p/α.

This can be used to prove (3.11) for any p < α, so we deduce as in Proposition 3.6
that the Hausdorff dimension is bounded below by α. �

REMARK 3.13. Another real tree, called the Lévy tree, has been associated
to X in [19] when X has only positive jumps. This tree is different from T but is
related to it; times which project on the same point of T also project on the same
point of the Lévy tree, but an arc of T associated to a jump of X is concentrated in
the Lévy tree into a single point.

Let us now give an analogue of Proposition 3.7 for Lévy processes.

PROPOSITION 3.14. Let X be a Lévy process. Suppose that almost surely,
X has no interval on which it is monotone, and define

ξ(a) = E[Sa + T a]
for

T a := inf
{
t; Xt < sup

[0,t]
X − a

}
, Sa := inf

{
t; Xt > inf[0,t]X + a

}
.

Then lim0 ξ = 0, and ξ(a)Na(X) (for the process X on the time interval [0,1])
converges in probability to 1 as a ↓ 0. If ξ(a) = O(aα) for some α > 0, then the
convergence is almost sure.
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When the assumption about X is not satisfied, then X or −X is the sum of a
subordinator and a compound Poisson process. In this case, T is finite, so Na is
bounded.

PROOF OF PROPOSITION 3.14. Consider the times T a
i = T a

i (X) and Sa
i =

Sa
i (X) defined by (2.7). On the other hand, notice that our assumption implies

that Sa and T a tend almost surely to 0 as a ↓ 0. Since X is a Lévy process, times
T a

i+1 − Sa
i and Sa

i − T a
i are independent, and have the same law as T a and Sa .

Thus

sup
0≤t≤kμ

(
Xt − inf[0,t]X

)
≥ sup

1≤j≤k

(
sup

(j−1)μ≤t≤jμ

(
Xt − inf[(j−1)μ,t]X

))
and the right-hand side is the supremum of k independent identically distributed
variables, so

P[Sa > kμ] = P

[
sup

0≤t≤kμ

(
Xt − inf[0,t]X

)
< a

]
≤ (P[Sa ≥ μ])k

for μ > 0. This probability is smaller than 1 from our assumption on X. We deduce
that the moments of Sa (and T a) are finite, so lim0 ξ = 0 and

P[Sa > 2kE[Sa]] ≤ 1/2k.

Thus Sa/(2E[Sa]), and similarly T a/(2E[T a]), are dominated by a geometric
variable, so the variances of Sa and T a are dominated by (E[Sa])2 and (E[T a])2.
Thus

E[Sa
n ] = nξ(a), var(Sa

n) = n
(
var(Sa) + var(T a)

) ≤ Cnξ(a)2.(3.18)

If n = n(a) ↑ ∞ as a ↓ 0, then n(a)−1ξ(a)−1Sn(a) has expectation 1 and has a
variance dominated by 1/n(a); in particular it converges in probability to 1. By
taking n = n(a,±) ∼ (1 ± ε)ξ(a)−1, we see from (3.18) and the definition of Na

in (2.7) that Na is between n(a,−) and n(a,+) with a high probability, so the
convergence in probability of the proposition is proved. Moreover, for the second
statement, it follows from the Borel–Cantelli lemma that n(ak)

−1ξ(ak)
−1Sn(ak)

converges almost surely to 1 as soon as
∑

1/n(ak) < ∞. We can apply this result
to the above n = n(ak,±) for ak = 1/kβ and β large enough, and we deduce that
ξ(ak)N

ak converges almost surely to 1. We conclude as in Proposition 3.7 from
the monotonicity of Na . �

The almost sure convergence holds in particular for α-stable processes such
that |X| is not a subordinator. In this case indeed, ξ(a) is proportional to aα from
the scaling property. For the standard Brownian motion, S1 and T 1 are the first
hitting time of 1 by a reflected Brownian motion, and have expectation 1. Thus
ξ(a) = 2a2 and Na ∼ 1/(2a2). This means that C(1/2) = 1/2 in Proposition 3.7.

We can deduce an estimation of La when the process has infinite variation.
However, (3.4) cannot be directly applied; one has to use the associated continuous
path, since times Sa

i and T a
i can be jump times.
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4. Integrals and trees.

4.1. An integral on the tree. We now want to integrate some bounded func-
tion ρ(t) against ω. First suppose that ω is continuous and π(0) = π(1). Let us
remember (Proposition 2.3) that if ω has finite variation, then ω↗ and ω↖ are
finite measures, and are the positive and negative parts of the Lebesgue–Stieltjes
measure dω; moreover, since the images of the finite length measure λ by τ �→ τ↗
and τ �→ τ↖ are respectively ω↗ and ω↖ (Proposition 2.2), we have∫ 1

0
ρ(t)ω↗(dt) =

∫
T

ρ(τ↗)λ(dτ),

∫ 1

0
ρ(t)ω↖(dt) =

∫
T

ρ(τ↖)λ(dτ),

so ∫ 1

0
ρ dω =

∫
T

(
ρ(τ↗) − ρ(τ↖)

)
λ(dτ).(4.1)

If π(0) �= π(1), we extend ω to [−1,2] as in (2.12), put ρ(t) = 0 for t /∈ [0,1],
and we can use the same formula to define the integral; actually, with the notation
(2.13), we have∫ 1

0
ρ dω =

∫
T\[A,B]

(
ρ(τ↗) − ρ(τ↖)

)
λ(dτ)

(4.2)
−

∫
[A,O]

ρ(τ↖)λ(dτ) +
∫
[O,B]

ρ(τ↗)λ(dτ).

In this form, one can notice that the integral on [0,1] depends on ρ and ω on [0,1],
and not on the extension of ω out of [0,1].

More generally, even if ω has infinite variation, we can define the integral by
the right-hand side of (4.1) or (4.2), provided∫

T

|ρ(τ↗) − ρ(τ↖)|λ(dτ) < ∞.(4.3)

Notice that the right-hand side of (4.1) is the limit as a ↓ 0 of the integral on the
trimmed tree T

a which is the tree of ωa defined by (2.9), so
∫

ρ dω is the limit of∫
ρ dωa . This means that in this sense our approach is similar to other approaches

using a regularization of ω; another example for which there has been a lot of work
recently is the Russo–Vallois approach [33].

We now verify that we can apply our technique in the Young framework.

THEOREM 4.1. Assume that ω is continuous. One has∫
T

|ρ(τ↗) − ρ(τ↖)|λ(dτ) ≤ CVp(ω)1/p(
Vq(ρ)1/q + sup |ρ|)(4.4)

for some C = C(p,q), as soon as 1/p + 1/q > 1. Thus (4.3) is satisfied as soon
as 1/V(ω) + 1/V(ρ) > 1, and in this case we can define

∫
ρ dω by the right-hand

side of (4.1) or (4.2). It satisfies∣∣∣∣∫ 1

0
ρ dω

∣∣∣∣ ≤ CVp(ω)1/p(
Vq(ρ)1/q + sup |ρ|)(4.5)
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for 1/p + 1/q > 1. Moreover, this integral coincides with the Riemann–Stieltjes
integral constructed by Young [36] (see also [22, 23]); this means that∫ 1

0
ρ dω = lim

∑
i

ρ(si)
(
ω(ti+1) − ω(ti)

)
for ti ≤ si ≤ ti+1, as the mesh of the subdivision (ti) of [0,1] tends to 0. The
integral

∫ t
s ρ dω can be defined similarly by replacing ρ by ρ1(s,t]; it satisfies the

Chasles relation, and

Vp

(∫ .

0
ρ dω

)1/p

≤ CVp(ω)1/p(
Vq(ρ)1/q + sup |ρ|).(4.6)

PROOF. Let us first assume π(0) = π(1). It follows from the disintegration
formula λ = λ2 of Proposition 2.1 that

Ia := − ∂

∂a

∫
Ta

|ρ(τ↗) − ρ(τ↖)|λ(dτ) = ∑
τ∈∂Ta

|ρ(τ↗) − ρ(τ↖)|.

Define 0 ≤ r < 1 by 1/q + r/p = 1. Then

Ia ≤
( ∑

τ∈∂Ta

|ρ(τ↗) − ρ(τ↖)|q
)1/q

(Na)r/p

(4.7)

≤ 1

2r/par
Vq(ρ)1/qVp(ω)r/p

from Hölder’s inequality and (3.6). Consequently, Ia is of order 1/ar and is inte-
grable with respect to a near 0; more precisely, with ‖ω‖ = supω − infω,∫

T

|ρ(τ↗) − ρ(τ↖)|λ(dτ) =
∫ ‖ω‖

0
Ia da

≤ 1

2r/p(1 − r)
‖ω‖1−rVq(ρ)1/qVp(ω)r/p(4.8)

≤ 1

21/p(1 − r)
Vq(ρ)1/qVp(ω)1/p

where we have used Vp(ω) ≥ 2‖ω‖p in the last line. If A = π(0) �= π(1) = B , we
decompose T into [A,B] and T \ [A,B]; we can apply the above procedure to the
integral on the latter part, and again prove (4.8), but without the factor 2. On the
other hand, [A,B] has finite length so the integral is finite on it; more precisely,∫

[A,B]
|ρ(τ↗) − ρ(τ↖)|λ(dτ) =

∫
[A,O]

|ρ(τ↖)|λ(dτ) +
∫
[O,B]

|ρ(τ↗)|λ(dτ)

≤ δ(0,1) sup |ρ| ≤ 2Vp(ω)1/p sup |ρ|.
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The result (4.4) follows by adding these two estimates. Thus we can define the
integral

∫ 1
0 ρ dω by (4.1); this integral satisfies (4.5), and similarly,∣∣∣∣∫ t

s
ρ dω

∣∣∣∣ ≤ CVp(ω; s, t)1/p(
Vq(ρ)1/q + sup |ρ|)

where the p-variation of ω is limited to [s, t]. One easily deduces (4.6) by applying∑
i

Vp(ω; ti , ti+1) ≤ Vp(ω).(4.9)

More precisely, by considering the variations of ρ and ω on [s, t],∣∣∣∣∫ t

s
ρ dω − ρ(s)

(
ω(t) − ω(s)

)∣∣∣∣
=

∣∣∣∣∫ t

s

(
ρ(·) − ρ(s)

)
dω

∣∣∣∣
≤ CVp(ω; s, t)1/p(

Vq(ρ; s, t)1/q + sup |ρ(·) − ρ(s)|)
≤ C′Vp(ω; s, t)1/pVq(ρ; s, t)1/q .

Thus ∣∣∣∣∫ ti+1

ti

ρ dω − ρ(si)
(
ω(ti+1) − ω(ti)

)∣∣∣∣
≤ CVq(ρ; ti , ti+1)

1/qVp(ω; ti , ti+1)
1/p(4.10)

≤ C′(Vq(ρ; ti , ti+1) + Vp(ω; ti , ti+1)
)
Vp(ω; ti , ti+1)

(1−r)/p.

By applying (4.9) and the similar estimate for ρ, we get∣∣∣∣∣
∫ 1

0
ρ dω − ∑

i

ρ(si)
(
ω(ti+1) − ω(ti)

)∣∣∣∣∣
≤ C

(
Vq(ρ) + Vp(ω)

)
sup

i

Vp(ω; ti , ti+1)
(1−r)/p

which converges to 0 since ω is continuous. �

REMARK 4.2. In the proof, we have considered separately the arc [A,B].
Actually, ∫

[A,B]
(
ρ(τ↗) − ρ(τ↖)

)
λ(dτ) =

∫
ρ dω(4.11)

with

ω(t) = inf[0,t]ω ∨ inf[t,1]ω.(4.12)
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REMARK 4.3. In the framework of Theorem 4.1, the fact that our integral is a
Riemann–Stieltjes integral implies that it is linear with respect to ω; this property
was not evident on our definition, since the tree associated to the sum of two paths
is not simply related to the trees of the two paths. Actually, we do not know whether
the space of ω satisfying (4.3) is linear.

REMARK 4.4. Young integrals can also be written as classical integrals on
the time interval by means of a completely different technique, namely fractional
differential calculus (see [37]).

THEOREM 4.5. Theorem 4.1 holds for càdlàg paths ω, provided ρ is contin-
uous at times of discontinuity of ω.

PROOF. The tree is associated to a continuous path (ω′(t, x); (t, x) ∈ G), as it
has been explained in Proposition 2.4, and ω′ has the same variations as ω. One
can also consider ρ′(t, x) = ρ(t) which has the same variations as ρ. Then the
left-hand side of (4.4) is the integral for ρ′ and ω′, so (4.4) holds true. For the
Riemann sums, we modify (4.10) in the previous proof by introducing r ′ < 1 such
that 1/p + 1/q = 1/r ′; then∣∣∣∣∫ ti+1

ti

ρ dω − ρ(si)
(
ω(ti+1) − ω(ti)

)∣∣∣∣
≤ C

(
Vq(ρ; ti , ti+1) + Vp(ω; ti , ti+1)

)
× Vp(ω; ti , ti+1)

(1−r ′)/pVq(ρ; ti , ti+1)
(1−r ′)/q,

so that∣∣∣∣∣
∫ 1

0
ρ dω − ∑

i

ρ(si)
(
ω(ti+1) − ω(ti)

)∣∣∣∣∣
≤ C

(
Vq(ρ) + Vp(ω)

)
sup

i

(Vp(ω; ti , ti+1)
1/pVq(ρ; ti , ti+1)

1/q)1−r ′
.

We have to prove that the supremum tends to 0 as the mesh of the subdivision
tends to 0. For any ε > 0, let us consider

Jε := {i; |�ω(t)| ≥ ε for some ti < t ≤ ti+1}.
Then

lim sup sup
i /∈Jε

Vp(ω; ti , ti+1)
1/p ≤ ε,

and the number of jumps greater than ε is finite, so from the continuity of ρ at
these points,

lim sup
i∈Jε

Vq(ρ; ti , ti+1)
1/q = 0.

We deduce the convergence from these two properties. �
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REMARK 4.6. If ρ and ω have common discontinuity times, our integral can
still be defined, but the Riemann–Stieltjes approach has to be modified, as in the
classical Young work [36].

This theory can be applied to paths of fractional Brownian motions with Hurst
parameter H > 1/2, or to Lévy processes without Brownian part and such that
|x|p ∧ 1 is integrable with respect to the Lévy measure for some p < 2.

4.2. Beyond the Young integral. A limitation of the Young integral concerns
its iteration. If ω and ρ have respectively p- and q-finite variation for 1/p+1/q >

1 and ω is continuous, then we can consider the function

x(t) := x0 +
∫ t

0
ρ dω,

and (4.6) implies that x has p-finite variation; however, it generally does not have
q-finite variation so, unless p < 2, one cannot construct

∫
x dω. Nevertheless,

we now check that this is possible with our framework (for a continuous one-
dimensional path ω). The idea is to look for a weaker condition than Vq(ρ) < ∞
for (4.3).

For instance, if ρ(t) = f (ω(t)), (4.3) holds for any bounded f and any contin-
uous ω, and ∫ 1

0
f (ω(t)) dω(t) = F(ω(1)) − F(ω(0))

for a primitive function F of f ; this is because the integral on T \ [A,B] in (4.2)
is 0 (f (ω(τ↗)) = f (ω(τ↖))), and the integral on [A,B] is easily computed
from (4.11). However, in this case, the integral is not always the limit of Riemann
sums, as it is easily seen for f (x) = x. We want to generalize this example.

Define

Vq(ρ|ω) := sup
∑
k

|ρ(t2k+2) − ρ(t2k+1)|q

where the supremum is with respect to subdivisions (ti) of [0,1] such that
ω(t2k+1) = ω(t2k+2), and put

V(ρ|ω) := inf{q ≥ 1;Vq(ρ|ω) < ∞} ≤ V(ρ).

THEOREM 4.7. Let ω be continuous. The integrability condition (4.3) holds
as soon as

1/V(ω) + 1/V(ρ|ω) > 1.

Moreover, if 1/p + 1/q > 1 and ω fixed with Vp(ω) < ∞, the space of bounded
functions ρ such that Vq(ρ|ω) < ∞ is a Banach space Bq,ω for the norm

‖ρ‖q,ω := Vq(ρ|ω)1/q + sup |ρ|,
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and we have

Vq

(∫ .

0
ρ dω

∣∣ ω

)1/q

≤ CVp(ω)1/pVq(ρ|ω)1/q,(4.13)

∥∥∥∥∫ .

0
ρ dω

∥∥∥∥
q,ω

+ Vp

(∫ .

0
ρ dω

)1/p

≤ CVp(ω)1/p‖ρ‖q,ω,(4.14)

for some C = C(p,q).

PROOF. In the estimation (4.7), we can use Vq(ρ|ω) instead of Vq(ρ) since
we consider the subdivisions defined by t2k+1 = τ↗ and t2k+2 = τ↖ for τ ∈ ∂T

a .
Thus (4.4) is replaced by∫

T

|ρ(τ↗) − ρ(τ↖)|λ(dτ) ≤ CVp(ω)1/p‖ρ‖q,ω.(4.15)

This proves the first statement. The Banach property is easily verified from
the lower semicontinuity of ρ �→ Vq(ρ|ω) with respect to uniform convergence.
By applying (4.15) on [s, t], we estimate

∫ t
s ρ dω, and deduce that

∫ .
0 ρ dω and

Vp(
∫

ρ dω)1/p are bounded by the right-hand side of (4.15) [for the estimation of
the p-variation, we use (4.9)]. The last property which has to be proved in order to
conclude is (4.13). To this end, we are going to check that∣∣∣∣∫ 1

0
ρ dω

∣∣∣∣ ≤ CVp(ω)1/pVq(ρ|ω)1/q(4.16)

as soon as ω(0) = ω(1); then (4.13) follows by applying (4.16) on the intervals
[t2k+1, t2k+2] in order to estimate Vq(·|ω). The left-hand side of (4.16) is written
as an integral on the tree; the integral on T \ [A,B] is estimated by the right-hand
side of (4.16) as in (4.8); for the integral on [A,B], it can be written as∫

[A,B]
(
ρ(τ↗) − ρ(τ↖)

)
λ(dτ) =

∫ ω(0)

infω

(
ρ(β2(x)) − ρ(β1(x))

)
dx

with

β1(x) = inf{t;ω(t) = x}, β2(x) = sup{t;ω(t) = x}.
This expression is also easily estimated by the right-hand side of (4.16). �

As an application, we can solve differential equations driven by a multidimen-
sional path, provided all the components of the path but one are smooth enough.

THEOREM 4.8. For 1/p + 1/q > 1 and q ≤ p, consider a continuous real-
valued map ω with finite p-variation, and let Bp,q,ω be the Banach space of func-
tions ρ such that

‖ρ‖p,q,ω := Vp(ρ)1/p + Vq(ρ|ω)1/q + sup |ρ|
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is finite. Consider also a continuous function η with values in R
d−1 and with finite

q-variation, and let ξ = (ω,η) with values in R
d . Let f be a C2 function with

bounded derivatives from R
n into the space of linear maps L(Rd,R

n). Consider,
for x0 in R

n, the equation

x(t) = x0 +
∫ t

0
f (x(s)) dξ(s)

where the integral should be understood as the sum of integrals with respect to
each component, each one being given by an expression of type (4.1) or (4.2).
Then this equation has a unique solution in the Banach space B

n
p,q,ω.

PROOF. In this proof, the constants C may depend on f and x0, but not on ξ .
It is not difficult to deduce from the Lipschitz property of f that

F :
(
x(t);0 ≤ t ≤ 1

) �→ (
f (x(t));0 ≤ t ≤ 1

)
maps (Bp,q,ω)n into (Bp,q,ω)nd and has at most linear growth:

‖F(x)‖p,q,ω ≤ C(‖x‖p,q,ω + 1).(4.17)

Let us prove that F is locally Lipschitz. It is easy to verify

sup |F(x2) − F(x1)| ≤ C sup |x2 − x1|,(4.18)

and let us estimate Vq(F (x2) − F(x1)|ω). Let (ti) be a subdivision satisfying
ω(t2k+1) = ω(t2k+2), and use the notation �iv = v(ti+1) − v(ti). It follows from
the boundedness of the derivatives of f that

|f (x2(ti+1)) − f (x1(ti+1)) − f (x2(ti)) + f (x1(ti))|
≤ C

(|x2(ti+1) − x1(ti+1)| + |x2(ti) − x1(ti)|)
× (|�ix2| + |�ix1|) + C|�ix2 − �ix1|

≤ 2C sup |x2 − x1|(|�ix2| + |�ix1|) + C|�ix2 − �ix1|.
By taking the qth power and summing over indices i = 2k + 1, we deduce

Vq

(
F(x2) − F(x1) | ω)
≤ C sup |x2 − x1|q(

Vq(x1|ω) + Vq(x2|ω)
) + CVq(x2 − x1|ω)(4.19)

≤ C‖x2 − x1‖q
p,q,ω

(
Vq(x1|ω) + Vq(x2|ω) + 1

)
.

We prove similarly that

Vp

(
F(x2) − F(x1)

) ≤ C‖x2 − x1‖p
p,q,ω

(
Vp(x1) + Vp(x2) + 1

)
.(4.20)

It follows from (4.18), (4.19) and (4.20) that F is locally Lipschitz; more precisely,

‖F(x2) − F(x1)‖p,q,ω ≤ C(‖x1‖p,q,ω + ‖x2‖p,q,ω + 1)‖x2 − x1‖p,q,ω.(4.21)
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On the other hand, the property q ≤ p and Theorem 4.1 (applied with an exchange
of p and q) show that∥∥∥∥∫ .

0
ρ dη

∥∥∥∥
p,q,ω

≤ C sup
∣∣∣∣∫ .

0
ρ dη

∣∣∣∣ + CVq

(∫ .

0
ρ dη

)1/q

≤ C′‖ρ‖p,q,ωVq(η)1/q

if ρ takes its values in L(Rd−1,R
n). If now ρ takes its values in L(Rd,R

n), we
deduce by using also (4.14) that∥∥∥∥∫ .

0
ρ dξ

∥∥∥∥
p,q,ω

≤ C‖ρ‖p,q,ω

(
Vp(ω)1/p + Vq(η)1/q)

.(4.22)

Thus, by joining (4.17), (4.21) and (4.22), we obtain that the map

� :
(
ρ(t);0 ≤ t ≤ 1

) �→
(
x0 +

∫ t

0
ρ dξ ;0 ≤ t ≤ 1

)
satisfies

‖(� ◦ F)(x)‖p,q,ω ≤ C + C
(
Vp(ω)1/p + Vq(η)1/q)

(1 + ‖x‖p,q,ω)

and

‖(� ◦ F)(x2) − (� ◦ F)(x1)‖p,q,ω

≤ C
(
Vp(ω)1/p + Vq(η)1/q)

(‖x1‖p,q,ω + ‖x2‖p,q,ω + 1)‖x2 − x1‖p,q,ω.

It is then classical to deduce that �◦F has a unique fixed point if Vp(ω) and Vq(η)

are small enough. We conclude like for usual differential equations by dividing
[0,1] into subintervals where ω and η have small variation. �

In particular, we can work out a calculus for one-dimensional fractional Brown-
ian motions of any Hurst parameter, and the stochastic integrals can be interpreted
as integrals on the tree; another interpretation can be worked out by modifying
Russo–Vallois integrals [14, 28].

4.3. Integration for fractional Brownian motion. Up to now, we have found
sufficient conditions ensuring that the integral

∫
ρ dω can be defined as an integral

on the tree. However, by means of the disintegration λ = λ2 of the length measure
(Proposition 2.1), the strong integrability condition (4.3) can be replaced by the
weaker condition ∫ ∣∣∣∣∣ ∑

τ∈∂Ta

(
ρ(τ↗) − ρ(τ↖)

)∣∣∣∣∣da < ∞(4.23)

(where the number of terms in the sum is finite), and in this case we can define∫ 1

0
ρ dω :=

∫ ∑
τ∈∂Ta

(
ρ(τ↗) − ρ(τ↖)

)
da(4.24)
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[with a form similar to (4.2) if π(0) �= π(1)]. This is a generalization of the pre-
vious framework, and the integral, when it exists, is again the limit of

∫
ρ dωa .

If (4.23) is satisfied for ρ replaced by 0 out of [s, t], we can define similarly∫ t
s ρ dω satisfying the Chasles relation. Our aim is now to check that this inte-

gral is well adapted to the differential calculus with respect to a finite-dimensional
H -fractional Brownian motion, for 1/3 < H ≤ 1/2 (made of independent one-
dimensional fractional Brownian motions), and that the integrals coincide with
those of the rough paths theory [5, 20–23]. Some related results for the standard
Brownian case H = 1/2 are also given in [30]; in this case, the integrals which
are considered here are Stratonovich integrals, but it is also explained in [30] how
one can use the tree T to obtain Itô integrals. We are going to consider the two-
dimensional case (higher dimension is similar).

THEOREM 4.9. Consider a two-dimensional H -fractional Brownian motion
for H ≤ 1/2. Then almost any path (ω,η) satisfies the following properties:

1. Suppose H > 1/4 and let 1/4 < r < H . Then the integral
∫ t
s η dω can be

defined in the sense of (4.24). Moreover

γ (s, t) :=
∫ t

s
η dω − η(s)

(
ω(t) − ω(s)

)
(4.25)

satisfies

|γ (s, t)| ≤ K(t − s)2r ,

where K depends on r and the path (ω,η), but not on (s, t).
2. Suppose H > 1/3 and let 1/3 < r < H . Let ρ, φ and ψ be bounded paths

such that∣∣ρ(t) − ρ(s) − φ(s)
(
ω(t) − ω(s)

) − ψ(s)
(
η(t) − η(s)

)∣∣ ≤ K1(t − s)2r(4.26)

and

|ψ(t) − ψ(s)| ≤ K2(t − s)r

for any s < t [where K1 and K2 may depend on (ω,η)]. Then the integral
∫ t
s ρ dω

can be defined in the sense of (4.24), and∣∣∣∣∫ t

s
ρ dω − ρ(s)

(
ω(t) − ω(s)

) − φ(s)

2

(
ω(t) − ω(s)

)2 − ψ(s)γ (s, t)

∣∣∣∣
(4.27)

≤ K3(t − s)3r .

PROOF. Let E
ω denote the integration with respect to the law of η, with ω

fixed, and let T be the tree of ω. We divide the proof of the two parts of the theorem
into two steps.
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STEP 1. Define a process Ua as follows: consider the points τ1, τ2, . . . of
∂T

a such that [τ↗
i , τ

↖
i ] ⊂ [0,1], and let Ua be 0 before τ

↗
1 , be constant on each

[τ↖
i , τ

↗
i+1] and after the last τ

↖
i , be affine on each [τ↗

i , τ
↖
i ], and have the same

increment on this interval as η. We will use the notation �τi = τ
↖
i −τ

↗
i . Since the

increments of η are negatively correlated, we have for j ≤ k and ε small enough

E
ω(

Ua(τ
↖
k ) − Ua(τ

↗
j )

)2 ≤ C

k∑
i=j

(�τi)
2H

≤ C

(
inf
i

�τi

)−2H+2ε k∑
i=j

(�τi)
4H−2ε

≤ C

(
inf
i

�τi

)−2H+2ε
(

k∑
i=j

�τi

)4H−2ε

≤ Ka−2+2ε(τ
↖
k − τ

↗
j )4H−2ε,

with K = K(ω) bounded in the spaces Lq ; in the last line, we have used the modu-
lus of continuity of ω. Thus Ua is Hölder continuous in L2(Pω) on the set of times
{τ↗

j , τ
↖
j }; since it is extended to [0,1] by affine interpolation, it satisfies the same

property on the whole interval, so

E
ω(

Ua(t) − Ua(s)
)2 ≤ Ka−2+2ε(t − s)4H−2ε.

Since the variable is conditionally Gaussian, estimates in Lq(Pω) can be deduced
for any q , so that, after integration with respect to ω,

‖Ua(t) − Ua(s)‖Lq ≤ Cqa
−1+ε(t − s)2H−ε.

By applying the Kolmogorov lemma,

|Ua(t) − Ua(s)| ≤ Kaa−1+ε(t − s)2r(4.28)

with Ka bounded in Lq , uniformly in a, and for 1/4 < r < H − ε/2. Moreover,

I a
s,t := ∑

τ∈∂Ta : [τ↗,τ↖]⊂[s,t]

(
η(τ↖) − η(τ↗)

)
is an increment of Ua on a subinterval of [s, t], so

|I a
s,t | ≤ Kaa−1+ε(t − s)2r .

Since Ka is bounded in L1,
∫ a0

0 Kaa−1+ε da is finite for any a0 and almost any
(ω,η); moreover, I a

s,t is 0 if a is greater than the oscillation of ω. Thus∫ ∞
0

|I a
s,t |da ≤ K(t − s)2r(4.29)
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for some finite variable K . This implies that the integral
∫ t
s η dω is well defined as

claimed in the theorem, and∫ t

s
η dω =

∫ ∞
0

I a
s,t da +

∫ t

s
η dω

where [0,1] is replaced by [s, t] in the notation (4.12). The estimation of γ (s, t)

follows from (4.29) and the moduli of continuity of ω and η.

STEP 2. Let us now consider the integral of ρ. As in the previous step, we
consider the term Ka of (4.28), and a path (ω,η) such that

∫ a0
0 Kaa−1+ε da is

finite. Consider as in the previous step the times τj of ∂T
a , and define ψa to be

ψ
τ

↗
j

on each [τ↗
j , τ

↗
j+1), and 0 before τ

↗
1 ; then, by limiting the sums to indices j

such that [τ↗
j , τ

↖
j ] ⊂ [s, t],

J a
s,t := ∑

j

(
ρ(τ

↖
j ) − ρ(τ

↗
j )

)
(4.30)

=
∫ t ′

s′
ψa dUa + ∑

j

(
ρ(τ

↖
j ) − ρ(τ

↗
j ) − ψ(τ

↗
j )

(
η(τ

↖
j ) − η(τ

↗
j )

))
where s′ and t ′ are the first τ

↗
j and the last τ

↖
j in [s, t]. Since 1/r + 1/(2r) > 1,

the first term is estimated as a Young integral by means of (4.5), so∣∣∣∣∫ t ′

s′
ψa dUa

∣∣∣∣ ≤ CV1/(2r)(U
a)2r(V1/r (ψ

a)r + sup |ψa|)
(4.31)

≤ KKaa−1+ε(t − s)2r

for a finite K , and for Ka obtained in the previous step. The second term of (4.30)
is dominated from (4.26) by∑

(τ
↖
j − τ

↗
j )2r ≤ Ka−1+ε

∑
(τ

↖
j − τ

↗
j )3r ≤ Ka−1+ε(t − s)3r(4.32)

where we have used the modulus of continuity of ω in the first inequality. Thus,
by adding (4.31) and (4.32), the expression J a

s,t of (4.30) is integrable with respect
to a, and

∫ t
s ρ dω is defined. Moreover,∫ t

s
ρ dω =

∫ t

s
ρ dω +

∫
J a

s,t da.

If ρ(s) = φ(s) = ψ(s) = 0, then ρ is at most of order (t −s)2r , so the first term is at
most of order (t − s)3r ; on the other hand, in this case, one can put the exponent 3r

instead of 2r in (4.31), so the integral of J a
s,t is also of order (t − s)3r ; thus

∫ t
s ρ dω

is of order (t − s)3r . This can be applied to the integral of

ρ(·) − ρ(s) − φ(s)
(
ω(·) − ω(s)

) − ψ(s)
(
η(·) − η(s)

)
,

and we deduce (4.27). �
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REMARK 4.10. The estimate (4.27) shows that the integral can be constructed
by time discretization as limits of generalized Riemann sums∫ 1

0
ρ dω = lim

∑
i

(
ρ(ti)

(
ω(ti+1) − ω(ti)

)
(4.33)

+ φ(ti)

2

(
ω(ti+1) − ω(ti)

)2 + ψ(ti)γ (ti, ti+1)

)
.

In the framework of Theorem 4.9, we can construct similarly integrals with
respect to η by means of the tree of η. Let (e1, e2) be the canonical basis of R

2.
Put ξ = (ω,η) and

�(s, t) :=
∫ t

s

(
ξ(u) − ξ(s)

) ⊗ dξ(u)

= (ω(t) − ω(s))2

2
e1 ⊗ e1 + (η(t) − η(s))2

2
e2 ⊗ e2

(4.34)

+
(∫ t

s

(
η(u) − η(s)

)
dω(u)

)
e2 ⊗ e1

+
(∫ t

s

(
ω(u) − ω(s)

)
dη(u)

)
e1 ⊗ e2.

It is easy to check that � is multiplicative [see the definition in (A.7)], and we
obtain a rough path (ξ,�). Moreover, Theorem 4.9 enables to consider integrals
with respect to ξ , and, by applying (4.33) and Theorem A.5, we see that they
coincide with the integrals of Appendix A.2, so they match the rough paths theory.

PROPOSITION 4.11. Let ξ be a two-dimensional H -fractional Brownian mo-
tion for 1/3 < H ≤ 1/2, and let � be defined by (4.34). Then the rough path (ξ,�)

coincides with the rough path constructed by Coutin and Qian [5] by means of
linear interpolation on dyadic subdivisions.

PROOF. It is sufficient to check that the integral γ (s, t) of (4.25) coincides
with the other approach, and actually, we only consider γ (0,1) = ∫ 1

0 η dω. For ω

fixed, the integral
∫

η dω is in the Gaussian space generated by η, so it is character-
ized by its covariance with the variables η(t). But, for ω fixed,

∫
η dωa converges

in L2 to
∫

η dω, so

E
ω

[
η(t)

∫ 1

0
η dω

]
= lim

a

∫ 1

0
E[η(t)η(s)]dωa(s)

= lim
a

∫ 1

0

(
ωa(1) − ωa(s)

) ∂

∂s
E[η(t)η(s)]ds

=
∫ 1

0

(
ω(1) − ω(s)

) ∂

∂s
E[η(t)η(s)]ds.
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Thus the integral is in the closed subspace of L2 generated by the variables
ω(u)η(t), and is characterized by

E

[
ω(u)η(t)

∫ 1

0
η dω

]
=

∫ 1

0
E

[
ω(u)

(
ω(1) − ω(s)

)] ∂

∂s
E[η(t)η(s)]ds

(4.35)

=
∫ 1

0
E[η(t)η(s)] ∂

∂s
E[ω(u)ω(s)]ds.

On the other hand, the Coutin–Qian integral
∫

η dCQω is also in this closed sub-
space, and is characterized by

E

[
ω(u)η(t)

∫ 1

0
η dCQω

]
= lim

n

∫ 1

0
E[η(t)ηn(s)] ∂

∂s
E[ω(u)ωn(s)]ds,(4.36)

where (ωn, ηn) are dyadic approximations of (ω,η). We have to prove that the two
expressions in (4.35) and (4.36) match. It is clear that the expectations in (4.36)
converge, and we can conclude by standard techniques as soon as we prove that

sup
n

∫ 1

0

∣∣∣∣ ∂

∂s
E[ω(u)ωn(s)]

∣∣∣∣1+ε

ds < ∞(4.37)

for some ε > 0. But s �→ E[ω(u)ωn(s)] is the dyadic approximation of s �→
E[ω(u)ω(s)] which contains two terms (s2H and |u − s|2H ) depending on s (the
term u2H disappears in the differentiation). If {s2H }n and {|u− s|2H }n denote their
dyadic approximations, then∣∣∣∣ ∂

∂s
{s2H }n

∣∣∣∣ ≤ s2H−1,

∣∣∣∣ ∂

∂s
{|u − s|2H }n

∣∣∣∣ ≤ |u − s|2H−1,

so (4.37) holds provided (1 + ε)(1 − 2H) < 1. �

REMARK 4.12. It is known from the construction of [5] that the rough path
(ξ,�) is geometric (it is the limit in p-variation of finite variation paths with their
double integrals). However, we do not know whether it is the limit of (ωa, ηa) with
its double integrals.

APPENDIX

A.1. A mixing property. We give a result about the long-range dependence
of increments of a fractional Brownian motion. This result was used in Proposi-
tion 3.7 but may also be of independent interest. After this work was completed,
a similar result was proved in [27] with a more functional analytic method.

THEOREM A.1. Consider a fractional Brownian motion (Wt ; t ∈ R) with pa-
rameter 0 < H < 1; for −∞ ≤ s ≤ t ≤ +∞, denote by F s

t the σ -algebra gener-
ated by the increments Wv − Wu, s < u ≤ v < t . Let t0 < t1 < t2, let F and G be
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real variables which are respectively measurable with respect to F −∞
t0

and F t1
t2

,
and let q > 1. We suppose that F and G are in Lq . Let

R(t0, t1, t2) :=
(

t2 − t1

t1 − t0

)1−H

.

Then if R(t0, t1, t2) is small enough, the product FG is integrable and

|E[FG] − E[F ]E[G]| ≤ C‖F‖q‖G‖qR(t0, t1, t2)

for some C = C(q,H).

In particular, for q = 2, we get an upper bound for the correlation coefficient

ρ(F −∞
t0

,F t3
t2

) := sup
{ | cov(F,G)|√

var(F )var(G)
;F ∈ F −∞

t0
,G ∈ F t1

t2

}
.

This bound is valid if R(t0, t1, t2) is small enough, but the coefficient is of course
bounded by 1 everywhere. We deduce that the mixing property

ρ
(
F −∞

jδ ,F kδ
(k+1)δ

) ≤ CH

1 + |k − j |1−H
(A.1)

holds for any δ > 0 and any integers j ≤ k in Z.

REMARK A.2. The order of magnitude claimed in the theorem is optimal,
as it can be seen by taking for F and G some increments of W . However, in
Proposition 3.7, we do not use the whole σ -algebra F −∞

jδ , but only F
(j−1)δ
jδ ; in

this case, our estimate is rough but sufficient for our result.

REMARK A.3. One can consider the similar problem for the σ -algebra gen-
erated by Wu, s ≤ u ≤ t , instead of the increments of W . This question is studied
in [2], but the result proved there is not sufficient for us.

For the proof of Theorem A.1, let us first introduce some notation concern-
ing fractional calculus. The fractional integral operator (or left-sided Riemann–
Liouville operator) of order α > 0 is defined by

Iαg(t) := 1

�(α)

∫ t

0
(t − s)α−1g(s) ds.

It satisfies Iα+β = IαIβ , and it coincides with the iterated integral of g if α is an
integer. Moreover Iα maps the space Lq([0, T ]) into itself, and

Iαφβ = φα+β for φβ(t) = tβ/�(β + 1), β > −1.(A.2)

Consider the fractional Brownian motion W of the theorem. The result is triv-
ial if H = 1/2, so we suppose H �= 1/2. From the shift invariance, we can also
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suppose t0 = 0. The Mandelbrot–Van Ness definition states that if (Bt ; t ∈ R) is a
double standard Brownian motion, then

Wt := C

∫
R

(
(t − s)

H−1/2
+ − (−s)

H−1/2
+

)
dBs(A.3)

is a fractional Brownian motion for C > 0; we will choose the normalization

C = CH := �(H + 1/2)−1.

We also consider an independent standard Brownian motion (Bt ; t ≤ 0), and
we let F0 and F ′

0 be the σ -algebras generated respectively by (Bs; s ≤ 0) and
(Bs,Bs; s ≤ 0).

LEMMA A.4. Let (f (t);0 ≤ t ≤ t2 − t1) be a random function which is mea-
surable with respect to F ′

0 and such that f (0) = 0. We suppose that f = IH+1/2g

for a function g in L2([0, t2 − t1]). Consider the perturbed process

W̃t := Wt + f (t − t1)1{t≥t1}, t ≤ t2.(A.4)

Then, if G(W) is a functional depending (as in Theorem A.1) on the increments of
W between times t1 and t2,

|E[G(W) | F0] − E[G(W̃) | F0]|
≤ CE[|G(W̃)|q | F0]1/q

E[(L1/2eCL)p | F0]1/p

for 1/p + 1/q = 1 and some C = C(q), and with

L :=
∫ t2−t1

0
g(s)2 ds.

PROOF. By definition, we have

f (t − t1)1{t≥t1} = CH

∫ t∨t1

t1

(t − s)H−1/2g(s − t1) ds,

so

W̃t = CH

∫
R

(
(t − s)

H−1/2
+ − (−s)

H−1/2
+

)
dB̃s

with

B̃t = Bt +
∫ t∨t1

t1

g(s − t1) ds.

The process B is perturbed after time t1 by an absolutely continuous process
which is F ′

0 -measurable, so by writing the Cameron–Martin theorem condition-
ally on F ′

0 ,

E[G(W) | F ′
0 ]

= E

[
G(W̃) exp

(
−

∫ t2

t1

g(s − t1) dBs − 1
2

∫ t2

t1

g(s − t1)
2 ds

) ∣∣∣ F ′
0

]
.
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By conditioning on F0 ⊂ F ′
0 ,

E[G(W) | F0] − E[G(W̃) | F0] = E
[
G(W̃)

(
exp(· · ·) − 1

) ∣∣ F0
]

and the result follows from Hölder’s inequality and standard estimates on the mo-
ments of exp(· · ·) − 1. �

PROOF OF THEOREM A.1. We use previous notation, and in particular sup-
pose H �= 1/2 and t0 = 0. Define

f (t) := CH

∫ 0

−∞
(
(t + t1 − s)H−1/2 − (t1 − s)H−1/2)

(dBs − dBs)(A.5)

for 0 ≤ t ≤ t2 − t1. Let us assume that f satisfies the assumption of Lemma A.4
(this will be proved later). Consider the process W̃ of (A.4), and the process W

obtained from W by replacing B by B on (−∞,0] in (A.3), so that

Wt = CH

∫ t∧0

−∞
(
(t − s)H−1/2 − (−s)H−1/2)

dBs + CH

∫ t

t∧0
(t − s)H−1/2 dBs.

Then W has the same law as W , is independent from F0, and

W̃t+t1 − W̃t1 = Wt+t1 − Wt1 + f (t) = Wt+t1 − Wt1,

so G(W̃) = G(W) is independent from F0 and has the same law as G = G(W).
Thus we can use

E[G(W̃) | F0] = E[G], E[|G(W̃)|q | F0]1/q = ‖G‖q

in Lemma A.4, so that

|E[G | F0] − E[G]| ≤ C‖G‖qE[(L1/2eCL)p | F0]1/p.

Thus

| cov(F,G)| ≤ C‖G‖qE[|F |E[(L1/2eCL)p | F0]1/p]
≤ C‖G‖q‖F‖q‖L1/2eCL‖p.

In order to conclude, we have to estimate this Lp norm. The formula (A.5) for f

can be differentiated, so f is smooth and

f (k)(t) = 1

�(H − k + 1/2)

∫ 0

−∞
(t + t1 − s)H−k−1/2(dBs − dBs)

for k ≥ 1. In particular,

‖f (k)(t)‖r = C(t + t1)
H−k

for any r and some C = C(r, k,H). On the other hand [recall the definition of φβ

in (A.2)],

f = f ′(0)φ1 + I 2(f ′′) = IH+1/2g
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for

g = f ′(0)φ1/2−H + I 3/2−H (f ′′).
In particular, f satisfies the assumption of Lemma A.4. Moreover,

‖f ′(0)‖rφ1/2−H (t) = CtH−1
1 t1/2−H ,

and

‖I 3/2−H (f ′′)(t)‖r ≤ C

∫ t

0
(t − s)1/2−H‖f ′′(s)‖r ds

≤ C′
∫ t

0
(t − s)1/2−H (t1 + s)H−2 ds

≤ C′′tH−1
1 t1/2−H

where the last estimate is easily obtained by considering separately the integrals
on [0, t/2] and [t/2, t]. Thus we have obtained an estimate for ‖g(t)‖r , and we
deduce that

‖L1/2‖r ≤ C
(
(t2 − t1)/t1

)1−H = CR(0, t1, t2)

for any r and some C = C(r,H). We still have to prove that the moments of
exp(L) are bounded; but, from Jensen’s inequality,

exp(rL) ≤ 1

EL

∫ t2−t1

0
exp

(
r

g(s)2

Eg(s)2 EL

)
E[g(s)2]ds,

so, since g(s) is Gaussian, this expression has bounded expectation provided
rEL < 1/2, and therefore if R(t0, t1, t2) is small enough. �

A.2. Rough paths. Our aim is to describe a part of the rough paths theory
through a point of view which is well adapted to our approach (Theorem 4.9). Our
result (Theorem A.5 below) is in particular comparable to [13, 15, 20], and we
include for completeness a short proof which is sufficient for our purpose. Let ξ(t)

be a path with finite p-variation, for p < 3. In this case, we learn from the theory
of rough paths that ξ is not sufficient for the construction of an integral calculus,
but we also need its double integrals. More precisely, let ξ(t) and �(s, t) take their
values respectively in R

d and R
d ⊗ R

d . We suppose that

|ξ(t) − ξ(s)| ≤ μ(t − s)r , |�(s, t)| ≤ μ(t − s)2r(A.6)

for r = 1/p (continuous paths with finite p-variation can be reduced to this case
by a change of time). The path is supposed to be multiplicative in the sense

�(s, t) = �(s,u) + �(u, t) + (
ξ(u) − ξ(s)

) ⊗ (
ξ(t) − ξ(u)

)
(A.7)

for s ≤ u ≤ t . If r > 1/2, then � is necessarily the Young integral

�(s, t) =
∫ t

s

(
ξ(u) − ξ(s)

) ⊗ dξ(u),
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but if 1/3 < r ≤ 1/2, the function �, when it exists, is not unique; one can add
to it φ(t) − φ(s) for any (2r)-Hölder continuous φ. Let us now explain how one
can define integrals

∫
ρ dξ , in a way which coincides with the tree approach of

Theorem 4.9.

THEOREM A.5. Consider paths (ξ,�) satisfying (A.6) and (A.7), ρ with val-
ues in L(Rd,R

n) (the space of linear maps), and � with values in the space
L(Rd,L(Rd,R

n)) = L(Rd ⊗ R
d,R

n). We suppose that∣∣ρ(t) − ρ(s) − �(s)
(
ξ(t) − ξ(s)

)∣∣ ≤ μ′(t − s)2r

and

|�(t) − �(s)| ≤ μ′(t − s)r .

For any s < t and any subdivision � = (tk) of [s, t], put

g(�) := ∑
k

(
ρ(tk)

(
ξ(tk+1) − ξ(tk)

) + �(tk)�(tk, tk+1)
)
.(A.8)

Then g(�) converges as max(tk+1 − tk) tends to 0, and the limit
∫ t
s ρ dξ satisfies∣∣∣∣∫ t

s
ρ dξ − ρ(s)

(
ξ(t) − ξ(s)

) − �(s)�(s, t)

∣∣∣∣ ≤ Cμμ′(t − s)3r(A.9)

for some C = C(r).

REMARK A.6. The identification L(Rd,L(Rd,R
n)) = L(Rd ⊗ R

d,R
n) is

made through [G(x)](y) = G(x ⊗ y).

REMARK A.7. We use the simple notation
∫

ρ dξ though the integral actually
depends on (ρ,�) and (ξ,�). Notice, however, that if

lim sup
t↓s

|ξ(t) − ξ(s)|/(t − s)2r = +∞

for almost any s (and this is the case for an H -fractional Brownian motion and
1/3 < r < H ≤ 1/2), then � is uniquely determined by ρ.

PROOF OF THEOREM A.5. In the proof we will use the following result taken
from Young integration. Let g(�) be a function defined on finite subdivisions � =
(tk) of [s, t] and let �k be the subdivision with tk removed. We suppose that

|g(�) − g(�k)| ≤ Cg(tk+1 − tk−1)
κ(A.10)

for some κ > 1. Then g(�) converges as the mesh of � tends to 0, and

| limg − g(o)| ≤ C(κ)Cg(t − s)κ
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where the trivial subdivision o = (s, t). Let g be the functional of (A.8). Then

g(�) − g(�k) = ρ(tk−1)
(
ξ(tk) − ξ(tk−1)

) + �(tk−1)�(tk−1, tk)

+ ρ(tk)
(
ξ(tk+1) − ξ(tk)

) + �(tk)�(tk, tk+1)

− ρ(tk−1)
(
ξ(tk+1) − ξ(tk−1)

) − �(tk−1)�(tk−1, tk+1)

= (
ρ(tk) − ρ(tk−1)

)(
ξ(tk+1) − ξ(tk)

)
− �(tk−1)

(
ξ(tk) − ξ(tk−1)

) ⊗ (
ξ(tk+1) − ξ(tk)

)
+ (

�(tk) − �(tk−1)
)
�(tk, tk+1)

where we have used the multiplicative property of �. The condition (A.10) is sat-
isfied with κ = 3r and Cg = 2μμ′, so the result is proved. �

In particular, we can compute the integral
∫

f (ξ) dξ of a one-form by consid-
ering ρ = f (ξ) and � = f ′(ξ); the property (A.9) implies that the integral is the
limit of generalized Riemann sums, so it coincides with the standard rough paths
approach.
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