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Université Blaise Pascal

63177 Aubière Cedex, France

Jean.Picard@math.univ-bpclermont.fr

Abstract
Considering trees as simple examples of singular metric spaces, we

work out a stochastic calculus for tree-valued processes. We study suc-
cessively continuous processes and processes with jumps, and define
notions of semimartingales and martingales. We show that martin-
gales of class (D) converge almost surely as time tends to infinity, and
prove on some probability spaces the existence and uniqueness of a
martingale of class (D) with a prescribed integrable limit; to this end,
we use either a coupling method or an energy method. This problem is
related with tree-valued harmonic maps and with the heat semigroup
for tree-valued maps.

Résumé

Considérant que les arbres sont des exemples simples d’espaces
métriques singuliers, nous développons un calcul stochastique pour
les processus à valeurs dans les arbres. Nous étudions successive-
ment les processus continus et avec sauts, et définissons les notions de
semimartingales et martingales. Nous montrons que les martingales
de classe (D) convergent presque sûrement quand le temps tend vers
l’infini, et établissons sur certains espaces de probabilité l’existence et
l’unicité d’une martingale de classe (D) avec limite intégrable fixée;
pour cela, nous utilisons soit une méthode de couplage, soit une mé-
thode d’énergie. Ce problème a des liens avec les applications har-
moniques à valeurs dans les arbres, et avec le semi-groupe de la chaleur
pour les applications à valeurs dans les arbres.
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1 Introduction

The relationship between manifold-valued harmonic maps and manifold-
valued continuous martingales have been investigated in several works in the
two last decades, see for instance [18, 19, 25, 28] for the stochastic construc-
tion of harmonic maps. In this type of problem, one considers two manifolds
M and N . On M , one is given a second-order differential operator L, or
equivalently a diffusion Xt; for instance, if M is Riemannian, one can con-
sider the Laplace-Beltrami operator L, or equivalently the Brownian motion
Xt on M . Then one can associate to L the notions of heat semigroup and
harmonic functions on M , and these notions have stochastic counterparts;
for instance, it is well known that a harmonic function h transforms the diffu-
sion Xt into a real local martingale h(Xt). On the other hand, on the second
manifold N (the target), one is given a connection (more precisely a linear
connection on the tangent bundle T (N)); for instance, if N is Riemannian,
one can consider the Levi-Civita connection. The operator L acts on func-
tions f : M → R, but the connection enables to also define it on functions
f : M → N , and one obtains a function LNf : M → T (N) (called the tension
field). Then it is again possible to consider the notions of heat semigroup
and harmonic maps; for instance, a smooth map h : M → N is harmonic
if LNh = 0 (see [16]). These notions have a stochastic interpretation; the
connection enables to consider continuous martingales in N (see [24, 7, 10])
which are transformed into submartingales by convex functions, and h is
harmonic if it transforms the diffusion Xt into a martingale h(Xt). This is
the stochastic analogue of the analytical property stating that a harmonic
map composed with a convex function is subharmonic. In particular, the
Dirichlet problem or the heat equation with values in N are strongly related
to the problem of finding a continuous martingale on N with a prescribed
final value. Thus

• the stochastic calculus for the diffusion Xt and the N -valued martin-
gales can be applied to the construction and the properties of harmonic
maps and of the heat semigroup; in particular, coupling properties of
Xt are very useful for this purpose, see for instance [18, 19];

• conversely, a functional analytic construction of harmonic maps (such
as energy minimisation when L is a symmetric operator) can be applied
to the construction of a family of martingales, see [28].

A basic tool in all these studies is Itô’s stochastic calculus involving smooth
(at least C2) functions.

However, it would be interesting to consider more singular spaces M and
N . In particular, an analytical theory for energy minimising maps has been
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Figure 1: Stochastic interpretation of harmonic maps

worked out in [20] (see also [9] for the case of Riemannian polyhedra, and [15]
for another method); a functional analytic approach to the heat semigroup is
also given by [31]; it would be desirable to obtain a stochastic interpretation
of these theories. For M , the analytical theory requires a harmonic structure,
and the stochastic theory requires a diffusion (a continuous Markov process);
the relationship between these two notions has been extensively studied for
a long time (see for instance the link between regular Dirichlet forms and
symmetric Hunt processes in [14]); we will not insist on it and only consider
some properties of these diffusions which will be useful to us, namely their
coupling properties; in particular, since this article focusses on trees, we will
study the coupling properties of some classical diffusions on trees.

In this article, we will be mainly concerned by the singularity of N . In
the analytical theory, the main assumption on N is that it is a metric space
which is geodesic (the distance between two points is given by the minimal
length of a curve joining these two points) and which has nonpositive (or
at least bounded above) curvature in the sense of Alexandrov; our aim is
therefore to construct a theory of martingales and semimartingales on these
spaces, and to explore the links between analytical and probabilistic theories.
On a geodesic space, one can consider the notion of convex functions (which
are convex on geodesics parameterised by arc length), so the idea is to use
stochastic calculus for convex rather than C2 functions. This point of view is
already used on smooth manifolds; a continuous process is a martingale if (at
least locally) any convex function maps it to a submartingale, so extending
this definition to singular geodesic spaces is tempting. However, there are
some difficulties with too general spaces, so here, we only consider a simple
type of such spaces, namely trees. Multidimensional generalisations such as
Riemannian polyhedra would of course be interesting, but are postponed to
future work. In a large part of this article, we will focus on a toy example of
tree, namely a star Y` with ` rays Ri and a common origin O.

It appears that martingales of class (D) in N converge almost surely as
in the real case, and the basic problem for the interpretation of harmonic
maps is the existence and uniqueness of a martingale in N with a prescribed
limit. In particular, given a diffusion Xt on a space M , we first consider
limits of type g(X1) or g(Xτ ) for a first exit time τ ; then we are able to
consider general functionals of the diffusion. Our main result will be to
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prove the existence and uniqueness of such a martingale under two different
frameworks (coupling method, energy method), and to relate it to analytical
problems (heat semigroup, energy minimisation). The difference between the
two frameworks lies in the assumptions on the M -valued diffusion; either it
will satisfy some coupling properties, or it will be symmetric and associated
to a regular Dirichlet form. The advantage of the coupling method (which
is also used in [31]) is that it also yields smoothness properties on the heat
semigroup and that it does not require the symmetry of the diffusion; its
disadvantage is that the coupling property is not always easy to check; on
the other hand, the energy method has been successfully applied in [20, 9].
As a particular framework, we will consider the case where both M and N
are trees.

Another problem is to extend this theory to non continuous Markov pro-
cesses on M (which are associated to non local operators L) and non contin-
uous martingales on N . This has been considered in [26] when N is smooth;
in this case, the connection (which is a local object) is not sufficient, and one
needs a global object, namely a notion of barycentre. Fortunately, it is known
that barycentres can be constructed on geodesic spaces with nonpositive cur-
vature, so in particular on trees. Thus we want to use them and deduce a
notion of martingale with jumps. The definitions which were used in [26] in
the smooth case cannot be handled in the case of trees, so we suggest a new
definition (which probably is also useful in the smooth case). Then we can
extend the results of the continuous case to this setting.

Let us outline the contents of this article. We begin with some geomet-
ric preliminaries such as the construction and properties of barycentres in
Section 2. Then we work out in Section 3 a stochastic calculus in N = Y`

(involving semimartingales), and define a notion of continuous martingale;
we will see that we also have a notion of quasimartingale. The existence of
a martingale with prescribed final value is proved either from the coupling
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properties of the diffusion Xt in Section 4 (Theorem 4.1.4 and Corollary
4.1.13), or by energy minimisation (when Xt is a symmetric diffusion) in
Section 5 (Theorems 5.2.8 and 5.3.1). The techniques which are used for
N = Y` are extended to a more general class of trees in Section 6 (Theorems
6.5.2 and 6.5.6).

In order to apply the results of Section 4, we will give in Section 7 exam-
ples of trees M and of diffusions on them satisfying the coupling property.
For instance, if M is itself a star, we will see that the Walsh process intro-
duced in [34] satisfies it. We will also consider some other examples such as
the Evans process ([13]) and the Brownian snake ([22]).

Finally, we define in Section 8 a notion of martingale with jumps, and
extend the above theory to this case (Theorems 8.2.5 and 8.2.9).
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2 Geometric preliminaries

Let us consider the metric space (N, δ) where N = Y` is the star with ` rays
(for ` ≥ 3) and δ is the tree distance (Figure 2). More precisely, we first
consider the disjoint union of ` rays (Ri, δi), each of them being isometric
to R+; then we glue their origins into a single point O, and we consider the
distance

δ(A,B) =

{
δi(A,B) if A,B ∈ Ri,

δi(O,A) + δj(O,B) if A ∈ Ri, B ∈ Rj for i 6= j.

Such a space can be embedded in an Euclidean space by choosing ` different
unit vectors ei, and by putting

Y` =
⋃
i

Ri, Ri = {r ei; r ≥ 0}. (2.0.1)

Different choices for ei lead to different isometric embeddings of the same
metric space Y` (“isometric” means that the length of a curve in Y` is the
same when computed for the metric of Y` or the Euclidean metric). One can
for instance embed Y` in R2, but we will generally embed it in R` and choose
(ei; 1 ≤ i ≤ `) as the canonical basis of R`; this will be called the standard
embedding of N into R`; then the distance in Y` is equal to the distance of
R` induced by the norm |y| =

∑
|yi|; in particular, |y| is the distance of y

to O, and the coordinate yi of y is |y| if y is in Ri, and 0 otherwise. We put
R?

i = Ri \ {O}.

2.1 Geodesics and convex functions

The singular manifold N = Y` is an example of a metric space which is a
geodesic space; this means that locally (and here also globally), the distance
between two points of N is the length of an arc with minimal length joining
these two points; this arc is called a geodesic. Here, all these arcs are parts of
the `(`− 1)/2 infinite geodesics Ri ∪Rj, i 6= j. Moreover, N has nonpositive
curvature in the sense of Alexandrov (see for instance [9]; this property is
crucial for our study, but we will not need the precise definition of curvature).
A property which is more specific to trees is that the connected subsets of
N are also its convex subsets (a subset is convex if the geodesic arc linking
two points of the subset is included in the subset). Convex functions can be
defined similarly to smooth manifolds.

Definition 2.1.1. A real function f defined on N is said to be convex if it
is convex on the geodesics of N when they are parameterised by arc length.
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Consider the restriction fi : r 7→ f(rei) of f to the ray Ri; it is not
difficult to check that f is convex if it is continuous, and the functions fi are
convex on R+ and satisfy

f ′i(0) + f ′j(0) ≥ 0 for i 6= j. (2.1.2)

Notice in particular that all but at most one of the functions fi are non
decreasing.

Example 2.1.3. The function y 7→ |y|, and more generally the distance func-
tions δ(y0, .) are convex.

Example 2.1.4. The distance to a convex subset, for instance the component
function y 7→ yi, is convex.

Example 2.1.5. The ` Busemann functions γi associated to Ri are convex;
these functions are defined (see Figure 3) by

γi(y) = lim
r→∞

(
δ(y, rei)− r

)
=

∑
j 6=i

yj − yi. (2.1.6)

Thus the absolute value of γi(y) is |y|, and its sign is negative on R?
i , positive

on the other rays.

2.2 Barycentre

We now introduce the notion of barycentre which replaces the notion of
expectation on the real line (see also [32] for more general spaces). Let Y
be a square integrable variable (this means that |Y | is square integrable,
or equivalently that δ(y0, Y ) is square integrable for any y0). The function
y 7→ δ2(y, z) is strictly convex on N (this again means that it is strictly
convex on the geodesics), so

φY (y) = Eδ2(y, Y )/2

is also strictly convex. It tends to +∞ at infinity and is therefore minimal
at a unique point.
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Definition 2.2.1. The barycentre of a square integrable N-valued variable
Y is defined as

B[Y ] = argminφY .

The barycentre is computed by solving the variational problem. If φi(r) =
φY (r ei), then its derivative can be written with the Busemann function γi

of (2.1.6) as
φ′i(r) = Eγi(Y ) + r.

Thus, if there exists a i such that Eγi(Y ) < 0, then

B[Y ] = −Eγi(Y ) ei.

On the other hand, if Eγi(Y ) ≥ 0 for any i, then φi is non decreasing for any
i, so B[Y ] = O. By using the standard embedding N ⊂ R` and the linear
extensions (2.1.6) of the functions γi to R`, we deduce that

B[Y ] = Π(E[Y ]) (2.2.2)

with

Π : R`
+ −→ Y`

z 7−→ Π(z) =
∑

γi(z)
−ei.

One can compare this result with the case of smooth Riemannian manifolds; if
one uses an isometric embedding into a Euclidean space, then the barycentre
is approximately (for variables with small support) the orthogonal projection
of the expectation on the manifold. Here, the function Π can also be viewed
as a projection. The inverse image of O is a cone CO, and each of the `
connected components Ci of R`

+ \CO is projected onto a different ray R?
i (see

Figure 4).
A consequence of (2.2.2) is that the barycentre can be extended to inte-

grable variables.
An equivalent way of characterising the barycentre (which will be useful

for more general trees) is as follows. If y0 ∈ N , then N \ {y0} has two or `
connected components which are denoted by yα

0 for α in {−,+} or {1, . . . , `}.
The derivative at y0 of a function f in the direction of yα

0 is denoted by
∂αf(y0). Consider (as in Section 7 of [31]) the oriented distance function

ψ(yα
0 , y) = δ(y0, y)

(
1{y∈yα

0 } − 1{y/∈yα
0 }

)
. (2.2.3)

These functions are the functions −γi, 1 ≤ i ≤ ` if y0 = O, and the functions
±(γj(y)− γj(y0)) if y0 ∈ R?

j .
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i and O for the projection Π : R3

+ → Y3

restricted to the triangle {z1 + z2 + z3 = 1}.

Proposition 2.2.4. If Y is a square integrable variable, then B[Y ] = y0 if
and only if

Eψ(yα
0 , Y ) ≤ 0 (2.2.5)

for all the connected components yα
0 of N \ {y0}.

Proof. The derivatives of φY at y0 are

∂αφY (y0) = −Eψ(yα
0 , Y ),

and B[Y ] = y0 if and only if all these derivatives are nonnegative.

In particular, we have

B[Y ] = O ⇐⇒ ∀i Eγi(Y ) ≥ 0. (2.2.6)

2.3 Properties of the barycentre

The barycentre satisfies the Jensen inequality

f(B[Y ]) ≤ Ef(Y ) (2.3.1)

for convex Lipschitz functions f (and also for non Lipschitz functions if f(Y )
is integrable); this inequality has been proved for more general metric spaces
with nonpositive curvature in [9] (Proposition 12.3); for N = Y`, we will
actually prove a generalised form (see Proposition 2.3.5 below).

Remark 2.3.2. Contrary to the Euclidean case, the barycentre is not charac-
terised by the Jensen inequality; the set of points y0 satisfying f(y0) ≤ Ef(Y )
for any convex Lipschitz function f is called the convex barycentre of Y ,
see [11]; the Jensen inequality says that the convex barycentre contains the
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barycentre, but it generally contain other points. For instance, if Y is uni-
formly distributed on {|y| ≤ 1} in Y3, its barycentre is O and its convex
barycentre is {|y| ≤ 1/6}. On smooth manifolds also, the convex barycen-
tre is not a singleton; however, an important difference is in its size. For
small enough smooth manifolds, the diameter of the convex barycentre is
dominated by the third order moment of the law, see [2]; this means that

δ(z1, z2) ≤ C inf
y

Eδq(y, Y ) (2.3.3)

for q = 3 and for any z1 and z2 in the convex barycentre of Y . On our space
N = Y`, notice that if z1 and z2 are in the convex barycentre, then

δ(y, zi) ≤ Eδ(y, Y )

for any y, because δ(y, .) is convex. Thus (2.3.3) holds with C = 2 and q = 1.
Actually, it is not possible to obtain a higher value for q; for instance, if Y
is uniformly distributed on {|y| ≤ ε} in Y3, then its convex barycentre is
{|y| ≤ ε/6}, so the left and right sides of (2.3.3) are respectively of order ε
and εq.

Remark 2.3.4. The functions γi are convex, so we see from (2.2.6) that O
is in the convex barycentre if and only if it is the barycentre; actually, it
can be seen that the convex barycentre is a closed convex subset of N , and
the barycentre is the point of this subset which is the closest to the origin
(this property is particular to our baby tree and cannot be extended to other
trees).

Proposition 2.3.5. Let Y be a square integrable variable and let f be a
Lipschitz function f which is convex on all the geodesics containing B[Y ].
Then (2.3.1) holds true.

Proof. Put y0 = B[Y ]. The inequality (2.3.1) is evident if f is minimal at y0.
Otherwise, there is exactly one connected component yα

0 of N \{y0} such that
the derivative ∂αf(y0) is negative; for all the other connected components yβ

0 ,
we have

∂βf(y0) ≥ −∂αf(y0).

This inequality is indeed (2.1.2) if y0 = O, and follows easily from the con-
vexity of f on Ri if y0 is in R?

i . If y is in yα
0 , the fact that f is convex on the

arc [y0, y] implies that

f(y) ≥ f(y0) + ∂αf(y0)δ(y0, y)

and if y is in another yβ
0 , we have

f(y) ≥ f(y0) + ∂βf(y0)δ(y0, y) ≥ f(y0)− ∂αf(y0)δ(y0, y).

11



Thus, in both cases,

f(y) ≥ f(y0) + ∂αf(y0)ψ(yα
0 , y),

where ψ was defined in (2.2.3). We put y = Y , take the expectation and use
(2.2.5) to conclude.

Proposition 2.3.5 is a semi-localised version of Jensen’s inequality (we use
the word “semi-localised” because the function satisfies a global condition on
a set of geodesics which can be called “local” at B[Y ]). If the barycentre is O,
there is no gain with respect to the classical Jensen inequality, but otherwise
f is only required to be convex on (` − 1) of the `(` − 1)/2 geodesics. As
an example, the functions ψ(yα

0 , .) of (2.2.3) are convex on the geodesics
intersecting yα

0 , and concave on the geodesics intersecting its complement, so
we have

B[Y ] ∈ yα
0 =⇒ ψ(yα

0 ,B[Y ]) ≤ Eψ(yα
0 , Y ), (2.3.6a)

B[Y ] /∈ yα
0 =⇒ ψ(yα

0 ,B[Y ]) ≥ Eψ(yα
0 , Y ). (2.3.6b)

In particular, by taking y0 = B[Y ], we find again (2.2.5), so the semi-localised
Jensen inequality is a characterisation of the barycentre (this will be in par-
ticular useful for the definition of martingales with jumps).

Proposition 2.3.7. For any square integrable variables Y and Z, one has

δ(B[Y ],B[Z]) ≤ Eδ(Y, Z).

Proof. Suppose y0 = B[Y ] 6= B[Z], let yα
0 be the connected component of

N \ {y0} containing B[Z]. Then the relations (2.3.6) imply that

δ(B[Y ],B[Z]) = ψ(yα
0 ,B[Z])− ψ(yα

0 ,B[Y ])

≤ Eψ(yα
0 , Z)− Eψ(yα

0 , Y )

≤ Eδ(Y, Z)

because ψ(yα
0 , .) is non expanding.

Proposition 2.3.7 also holds for more general spaces with nonpositive cur-
vature, see [32]; it says that the barycentre is a non expanding operator.
Like (2.2.2), this property can be used to extend barycentres to integrable
variables. Then the result of Proposition 2.3.5 is also extended to integrable
variables.

12



3 Stochastic calculus on a star

We now want to study stochastic calculus on N = Y`. To this end, we
suppose given a probability space Ω with a filtration (Ft). The expression
“càdlàg process” will designate a right continuous process with left limits.
We assume that Ω is a Lusin space; in particular, conditional probabilities
exist. We refer to [8] for the classical real stochastic calculus. Let us first
give an example of N -valued process which can be considered as the standard
diffusion on N .

Example 3.0.1. Given ` parameters pi ≥ 0 such that
∑
pi = 1, the Walsh

process (or spider) Xt constructed in [34, 4] is the continuous Markov process
which is a standard Brownian motion on each ray Ri and which, when hitting
O, immediately quits it and chooses one of the rays according to the proba-
bilities pi; thus PO[Xt ∈ Ri] is pi for t > 0. In particular, the isotropic Walsh
process corresponds to pi = 1/`. This process can be defined rigorously by
using excursion theory, from its semigroup, or from its Dirichlet form. It has
been studied in the last years because its filtration has interesting proper-
ties; in particular, it is not the filtration of a Euclidean Brownian motion
(see [33]).

3.1 Semimartingales

Definition 3.1.1. An adapted càdlàg process Yt on N is said to be a semi-
martingale if f(Yt) is a semimartingale for any real convex function f .

In smooth manifolds, continuous semimartingales are defined by means
of C2 functions, and they are transformed into real semimartingales by (not
necessarily C2) convex functions (see [12]); however, non constant convex
functions may not exist, so one generally needs a localisation in order to
characterise manifold-valued semimartingales. Here, convex functions are
numerous enough.

By taking into account the fact that N is piecewise smooth and by using
(3.1.3), we can replace in Definition 3.1.1 convex functions by continuous
functions f which are C2 on each ray (but this notion will have no sense on
general trees).

Proposition 3.1.2. By using the standard embedding of N = Y` in R`, an
adapted càdlàg process Yt with values in N is a semimartingale if and only
if its components Y i

t are real semimartingales for any i.

Proof. The component functions are convex, so it is clear that the condition
is necessary. Conversely, if Y i

t are real semimartingales and if f is a convex

13



function, then f(Yt) can be written as

f(Yt) = f(O) +
∑

i

(
fi(Y

i
t )− f(O)

)
(3.1.3)

with fi convex, so f(Yt) is a semimartingale.

In the continuous case, we only need a single function f(y) = |y| to test
the semimartingale property.

Proposition 3.1.4. An adapted continuous process Yt with values in N is a
semimartingale if and only if |Yt| is a real semimartingale.

This result can be deduced from [30]. We give a proof for completeness
and because we use it several times. It is actually sufficient to apply the
following lemma to Ut = |Yt| and Vt = Y i

t .

Lemma 3.1.5. Let Ut be a real continuous semimartingale, and let Vt be a
continuous nonnegative adapted process such that dV = dU on {V > 0}; this
means that Vt − Vs = Ut − Us as soon as Vr > 0 for s ≤ r ≤ t. Then Vt is a
semimartingale which can be written as

Vt = V0 +

∫ t

0

1{Vs>0}dUs +
1

2
Lt (3.1.6)

for a nondecreasing process Lt which is the local time of V at 0.

Proof. Let ε > 0, let τ ′0 = 0 and consider the sequences of stopping times

τk = inf
{
t ≥ τ ′k−1; Vt = 0

}
, τ ′k = inf

{
t ≥ τk; Vt ≥ ε

}
which increase to infinity. The process Ut is a semimartingale, so Vt is a
semimartingale on the intervals [τ ′k−1, τk] with dV = dU . Thus Tanaka’s
formula yields

d(V ∨ ε) = 1{V >ε}dU +
1

2
dLε (3.1.7)

on these time intervals, for a local time Lε
t . On the time intervals [τk, τ

′
k],

then V ≤ ε so V ∨ ε = ε is again a semimartingale and (3.1.7) again holds
with dLε = 0. Thus, by pasting the intervals, we deduce that Vt ∨ ε is a
semimartingale on the whole time interval satisfying

Vt ∨ ε = V0 ∨ ε+

∫ t

0

1{Vs>ε}dUs +
1

2
Lε

t .

By taking the limit as ε ↓ 0, the stochastic integral converges to the integral
of (3.1.6), so we deduce that Lε

t also converges to a non decreasing process,
and the proof is complete.
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In our case, (3.1.6) can be written as

Y i
t = Y i

0 +

∫ t

0

1R?
i
(Ys)d|Ys|+

1

2
Li

t,

where Li
t is the local time at O on R?

i ; if f is a convex function, then f(Yt)
can be written from (3.1.3) as

f(Yt) = f(Y0) +
∑

i

∫ t

0

1{Y i
s >0}dfi(Y

i
s ) +

1

2

∑
i

f ′i(0)L
i
t, (3.1.8)

where dfi(Y
i
s ) can be written with the classical Itô-Tanaka formula. Subse-

quently, we will also consider the total local time Lt =
∑
Li

t.
It is not difficult to check that one can replace in Proposition 3.1.4 the

function y 7→ |y| by another one such as a Busemann function, or the distance
to a fixed point.

Remark 3.1.9. If Yt is not continuous but càdlàg, the semimartingale prop-
erty of |Yt| is no more sufficient; it is indeed not difficult to construct a
deterministic path yt such that |yt| = t but yt has not finite variation (let the
ray change at each time t = 1/n).

Example 3.1.10. A Walsh process (Example 3.0.1) is a continuous semi-
martingale since |Xt| is a reflected Brownian motion, and its local time at O
satisfies

Li
t = piLt. (3.1.11)

3.2 Quasimartingales

As soon as a metric space is endowed with a notion of barycentre, one can
also consider conditional barycentres (recall that conditional probabilities
exist on Ω) and define a notion of quasimartingale similarly to the real case
(see quasimartingales up to infinity of [8]).

Definition 3.2.1. An integrable adapted process (Yt; 0 ≤ t <∞) with values
in N is said to be a quasimartingale if

sup E
∑

k

δ
(
Ytk ,B[Ytk+1

|Ftk ]
)
<∞, (3.2.2)

where the supremum is taken over all the subdivisions (tk) of [0,∞], and
where Y∞ = O.
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One can replace O by another point (or an integrable variable). Definition
3.2.1 is also equivalent to the finiteness of (3.2.2) for subdivisions of compact
intervals of R+, and the boundedness of |Yt| in L1 (the boundedness in L1

follows from (3.2.2) by considering the subdivisions {0, t,∞}).
Proposition 3.2.3. If Yt is an adapted process in N = Y`, then the three
following conditions are equivalent.

1. The process Yt is a quasimartingale in N .

2. The process f(Yt) is a real quasimartingale for any Lipschitz convex
real function f .

3. The components Y i
t are real quasimartingales.

Proof. Let Yt be a quasimartingale and f be a convex Lipschitz function. We
deduce from the Jensen inequality (2.3.1) that

f(Ytk)− E
[
f(Ytk+1

)
∣∣ Ftk

]
≤ f(Ytk)− f(B[Ytk+1

|Ftk ])

≤ C δ
(
Ytk ,B[Ytk+1

|Ftk ]).

One can replace the left-hand side by its positive part and deduce from (3.2.2)
that

sup
∑

k

E
(
f(Ytk)− E

[
f(Ytk+1

)
∣∣ Ftk

])+

<∞.

On the other hand,∑
k

E
(
f(Ytk)− E

[
f(Ytk+1

)
∣∣ Ftk

])
= Ef(Y0)− f(O),

so
sup

∑
k

E
∣∣∣f(Ytk)− E

[
f(Ytk+1

)
∣∣ Ftk

]∣∣∣ <∞.

Thus f(Yt) is a quasimartingale, and the first condition of the proposition
implies the second one. The fact that the second condition implies the third
one is trivial. Finally, we assume that Y i

t are quasimartingales; the processes
γi(Yt) are quasimartingales, and

δ
(
Ytk ,B[Ytk+1

|Ftk ]
)

= max
i

(
γi(B[Ytk+1

|Ftk ])− γi(Ytk)
)

≤ max
i

(
E

[
γi(Ytk+1

)
∣∣ Ftk

]
− γi(Ytk)

)
≤

∑
i

∣∣∣E[
γi(Ytk+1

)
∣∣ Ftk

]
− γi(Ytk)

∣∣∣,
where we have used (2.3.1) in the second line. We deduce (3.2.2), so Yt is a
quasimartingale on N .
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In particular, càdlàg quasimartingales are semimartingales. In the con-
tinuous case, by applying the result of [30], it is actually sufficient to suppose
that |Yt| is a quasimartingale.

3.3 Continuous martingales

Our aim is now to define a notion of continuous martingale in N = Y` (càdlàg
martingales will be considered in Section 8). We first define the class Σ+ as in
[33]; it consists of the nonnegative local submartingales Yt, the non decreasing
part of which increases only on {Yt = 0}. This implies that

∫
1{Y >0}dY is a

local martingale. Now consider a continuous real semimartingale Yt; it can
be decomposed as

Yt = Y0 +

∫ t

0

1R?(Ys)dYs +
1

2
(L+

t − L−t )

for the local times L±t at 0 on the two rays R?
±, and

Y ±
t = Y ±

0 +

∫ t

0

1R?
±
(Ys)dYs +

1

2
L±t .

Then Yt is a local martingale if and only if Y ±
t are in Σ+ and L+

t = L−t . If
now Yt is N -valued, one can ask for the same properties, so that Y i

t is in
Σ+ and Li

t = Lj
t (in particular Y i

t is a local submartingale). These processes
have been called spider martingales in [35]. For instance, the Walsh process
is a spider martingale if and only if it is isotropic (recall (3.1.11)).

However, this notion suffers an important limitation with respect to the
problem of finding a martingale with prescribed final value. If for instance
F0 is trivial and F is a bounded variable on N = Y3 such that

P[F ∈ R?
1] > 0, P[F ∈ R?

2] > 0, P[F ∈ R?
3] = 0, (3.3.1)

then there is no bounded spider martingale converging to F . One should
indeed have Y 3

t = 0 (because it is a bounded nonnegative submartingale
converging to 0), so L3

t = 0; thus the condition Li
t = Lj

t implies that all the
local times are 0, so the process cannot quit O when it has hit it; such a
process cannot satisfy (3.3.1).

Let us give another annoying property of spider martingales; Theorem
6.1 of [33] says that for a Brownian filtration, one has

dL1
t ∧ dL2

t ∧ dL3
t = 0 (3.3.2)

17



for any N -valued process such that Y i
t is in Σ+. Thus if Yt is a spider

martingale for a Brownian filtration, then the condition Li
t = Lj

t again implies
that the local times are 0 and that Yt cannot quit O.

Our aim is therefore to find another notion of continuous martingale. As
in the smooth case (see [7] or Theorem 4.39 of [10]), martingales will be
defined by means of convex functions; moreover, we only define local martin-
gales (and as in the manifold-valued case they are simply called martingales).

Definition 3.3.3. A continuous adapted process Yt in N is said to be a
martingale if f(Yt) is a local submartingale for any Lipschitz convex function
f .

In the real valued case, this definition corresponds to the notion of local
martingale. On the other hand, following another terminology used for real
processes (Definition VI.20 of [8]), we say that Yt is of class (D) if the family
of variables |Yτ |, for τ finite stopping time, is uniformly integrable. Then
Yt is a martingale of class (D) if f(Yt) is a submartingale of class (D) for
any Lipschitz convex function f . In this case Yt has almost surely a limit
Y∞ in N (because the components Y i

t are submartingales of class (D) and
therefore have limits), and f(Yt) should be a submartingale on the compact
time interval [0,∞].

Proposition 3.3.4. Let Yt be a continuous adapted process in N . The fol-
lowing conditions are equivalent.

1. The process Yt is a martingale.

2. The processes γi(Yt) are local submartingales (where γi are the Buse-
mann functions of (2.1.6)).

3. The components Y i
t are in the class Σ+ (local nonnegative submartin-

gales, the finite variation parts of which increase only on {Y i = 0}),
and the local times Li

t and total local time Lt =
∑
Li

t satisfy

dLi
t/dLt ≤ 1/2. (3.3.5)

Proof. It is clear that the first condition implies the second one. Let us
prove that the second condition implies the third one. If γi(Yt) are local
submartingales, then Yt is in particular a semimartingale, and (3.1.8) for γi

is written as

γi(Yt) = γi(Y0)−
∫ t

0

1{Y i
s >0}dY

i
s +

∑
j 6=i

∫ t

0

1{Y j
s >0}dY

j
s −

1

2
Li

t +
1

2

∑
j 6=i

Lj
t .
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These processes should be local submartingales for all i. We deduce that∫ t

0

1R?
j
(Ys)dγi(Ys) =

(
1{j 6=i} − 1{j=i}

) ∫ t

0

1R?
j
(Ys)dY

j
s

are local submartingales for all i and j, so the integrals of the right-hand
side are actually local martingales; this means that Y i

t is in the class Σ+.
Moreover, the finite variation part of γi(Yt) should be non decreasing on
{Y = O}, so ∑

j 6=i

dLj
t − dLi

t = dLt − 2 dLi
t ≥ 0

and (3.3.5) holds. The only thing which has still to be proved is that the
third condition of the proposition implies the first one. Let us write (3.1.8)
for a convex Lipschitz function f , and let us prove that f(Yt) is a local
submartingale. The property Y i ∈ Σ+ and the convexity of fi implies that
the stochastic integrals are local submartingales, so it is sufficient to check
that

∑
f ′i(0)Li

t is non decreasing; this is evident if the values of f ′i(0) are
nonnegative, and if one of them, say f ′1(0), is negative, then f ′i(0) ≥ |f ′1(0)|
for i 6= 1 (see (2.1.2)), so∑

f ′i(0)dLi
t ≥ |f ′1(0)|

(∑
i6=1

dLi
t − dL1

t

)
≥ 0

from (3.3.5).

Remark 3.3.6. Look at Picture 4 about barycentres (for ` = 3), and notice
that the vector (dLi

t/dLt) is necessarily in the triangle {z1 + z2 + z3 = 1} of
R3

+. Then (3.3.5) says that for martingales, this vector should lie in CO. For
a Brownian filtration, (3.3.2) says that it is necessarily on the boundary of
the triangle, so for Brownian martingales, it can only take three values.

Example 3.3.7. Consider a continuous local martingale on a geodesic, say
R1∪R2, which is isometric to R; it is a N -valued martingale. In this case, one
has L1

t = L2
t and Li

t = 0 for i ≥ 3; in particular, a martingale for a Brownian
filtration does not necessarily stop at O (contrary to spider martingales).

Example 3.3.8. The spider martingales of [35] are martingales; the property
Li

t = Lj
t easily implies (3.3.5).

Example 3.3.9. From (3.1.11), a Walsh process is a martingale if and only if
pi ≤ 1/2 for any i (no ray should have a probability greater than 1/2).

As it is the case for smooth manifolds (Theorem 4.43 of [10]), the class
of martingales is stable with respect to uniform convergence in probability.
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Proposition 3.3.10. Let Y n
t be a sequence of continuous N-valued martin-

gales and let Yt be a continuous process such that

lim
n

sup
t≤T

δ(Y n
t , Yt) = 0

in probability for any T . Then Yt is a martingale.

Proof. It is sufficient to prove the martingale property for the process Yt

stopped at the first time at which |Yt| ≥ C, for C > 0. This stopped process
is the limit of the processes Y n stopped at τ ∧ τn, where τn is the first time
at which |Y n

t | ≥ 2C. Thus we are reduced to prove the proposition for
uniformly bounded processes. In this case, the submartingale property of
f(Y n

t ) in Definition 3.3.3 is easily transferred to f(Yt).

Proposition 3.3.11. If Yt and Zt are continuous N-valued martingales, then
the distance Dt = δ(Yt, Zt) is a local submartingale.

Proof. It is sufficient to prove that Dt ∨ ε is a local submartingale for any
ε > 0. Let τ0 = 0 and consider the sequence of stopping times

τk+1 = inf
{
t ≥ τk; δ(Yτk

, Yt) ∨ δ(Zτk
, Zt) ≥ ε/5

}
which tends to infinity. We want to prove that Dt∨ε is a local submartingale
on each time interval Ik = [τk, τk+1]. If Dτk

≤ ε/2, then Dt ≤ ε on Ik so
Dt ∨ ε = ε is constant. Otherwise, let A be the midpoint on the arc linking
Yτk

and Zτk
. Then Yt and Zt do not cross A on Ik, so

Dt = δ(A, Yt) + δ(A,Zt).

The function δ(A, y) is convex, so δ(A, Yt) and δ(A,Zt) are local submartin-
gales, and Dt is therefore a local submartingale on Ik. This completes the
proof.

Corollary 3.3.12. If Y and Z are continuous martingales of class (D) such
that Y∞ = Z∞, then Yt = Zt for any t.

This property immediately follows from Proposition 3.3.11 since Dt is a
nonnegative submartingale of class (D) converging to 0. It is called the non
confluence property. This is the uniqueness to the problem of constructing a
martingale with prescribed limit.

Corollary 3.3.13. Let (Y n
t ) be a sequence of continuous martingales of class

(D) with limits Y n
∞ and suppose that Y n

∞ converges in L1 to a variable Y∞.
Then there exists a continuous process Yt with limit Y∞, such that

lim
n

sup
0≤t≤∞

δ(Y n
t , Yt) = 0 (3.3.14)

in probability, and Yt is a martingale of class (D).
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Proof. It follows from Proposition 3.3.11 that δ(Y n
t , Y

m
t ) are submartingales

of class (D). In particular,

P
[

sup
0≤t≤∞

δ(Y n
t , Y

m
t ) ≥ C

]
≤ 1

C
Eδ(Y n

∞, Y
m
∞ )

converges to 0 as m,n→∞, so (Y n
t ) converges in the sense of (3.3.14) to a

continuous process Yt. If f is a convex Lipschitz function, then (f(Y n
t ); 0 ≤

t ≤ ∞) is a submartingale, and this property is transferred to f(Yt) by means
of

δ(Y n
t , Yt) ≤ E

[
δ(Y n

∞, Y∞)
∣∣ Ft

]
.

This means that Yt is a martingale of class (D).

Corollary 3.3.13 means that the set of variables which are limits of mar-
tingales of class (D) is closed in the space L1(N) of integrable N -valued
variables. The aim of subsequent sections is to find conditions ensuring that
this set is the whole space L1(N). Before considering this question, let us
give some remarks comparing N -valued martingales with the real and the
manifold-valued cases.

Remark 3.3.15. If Y∞ is integrable, we can consider its conditional barycen-
tres B[Y∞|Ft]. On Y`, contrary to the Euclidean case, this is generally not a
martingale. Let us give an example; let Y∞ = Xτ where Xt is the isotropic
Walsh process (Example 3.0.1) with X0 = O, and let τ be the first time at
which |Xt| ≥ 1. On {t ≤ τ}, the conditional law of Xτ given Ft is

P[Xτ = ei|Ft] =

{
((`− 1)|Xt|+ 1)/` if Xt ∈ Ri,

(1− |Xt|)/` otherwise.

After some calculation, we can deduce that

B[Xτ |Ft] =

{
2(`−1)Xj

t +2−`

`
ej if Xj

t >
`−2

2(`−1)
,

O if |Xt| ≤ `−2
2(`−1)

.

This is not a martingale; when it quits the point O, it visits for some time
only one ray, so that no more than one local time can increase and this is in
contradiction with (3.3.5). On the other hand, it is clear that the martingale
of class (D) converging to Xτ is Xt∧τ .

Remark 3.3.16. Remark 3.3.15 is not surprising since the situation is similar
for smooth manifolds. Let us now notice a more surprising fact. On small
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enough Riemannian manifolds, one can check that a continuous semimartin-
gale (Yt; 0 ≤ t ≤ 1) is a martingale if and only if

lim
∑

k

δ
(
Ytk ,B[Ytk+1

|Ftk ]
)

= 0

in probability as the mesh of the subdivision (tk) of [0, 1] tends to 0 (Theorem
4.5 of [26]); actually, if Yt is a martingale with bounded quadratic variation,
this expression converges to 0 in L1 (Lemma 5.5 of [26]). Here, there are
martingales in Y` which do not satisfy this condition. Consider the case of
the isotropic Walsh process Xt. For s ≤ t, if Xs ∈ R?

i , then the conditional
law of Xt given Fs gives more mass to Ri than other rays, and we can check
that E[γj(Xt)|Fs] ≥ 0 for any j 6= i. Thus, by applying (2.2.6),

E[γi(Xt)|Fs] ≥ 0 =⇒ B[Xt|Fs] = O on {Xs ∈ R?
i }.

We can check that the variable E[γi(Xt)|Fs] tends to +∞ as t ↑ ∞, so this
condition holds if t is large enough; more precisely, by using the scaling
property of the process, it holds if t − s ≥ c|Xs|2. By using the subdivision
tk = k/K of [0, 1], we deduce∑

k

δ
(
Xtk ,B[Xtk+1

|Ftk ]) ≥
∑

k

|Xtk |1{|Xtk
|≤(cK)−1/2}.

The right-hand side does not converge to 0 in L1. This difference with respect
to the case of smooth manifolds is essentially due to the difference in the size
of convex barycentres (see Remark 2.3.2); if Yt is a martingale, both variables
Ytk and B[Ytk+1

|Ftk ] are in the conditional convex barycentre of Ytk+1
given

Ftk , so they are closer to each other in the manifold-valued case than in the
tree-valued case.
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4 Martingales and coupling

Let us now return to the problem of constructing a continuous martingale
Yt of class (D) with prescribed limit Y∞. It is a property of the probability
space Ω and its filtration (Ft). For smooth Cartan-Hadamard manifolds,
it is known from [3] that these martingales exist as soon as all the Ft real
martingales are continuous; we can conjecture that the same result holds
here, but it seems difficult to adapt the proof. A general exact formula is
unlikely to exist (see Remark 3.3.15), and we will limit ourselves to filtrations
generated by some diffusion processes. Two techniques can be used (as in
the smooth case), namely coupling of the diffusion (this is the aim of this
section), or energy minimisation when the diffusion is symmetric (see next
section). This leads to the existence in two frameworks.

In this section, we work out the coupling method which is classically
used in the manifold-valued case, see for instance [18] where coupling of the
Euclidean Brownian motion is applied, see also [31] for an application in the
singular case using a more functional analytic approach. Approximation of
Y` by hyperbolic planes with highly negative curvature is also discussed in
this section (see Subsection 4.3).

Let us fix a bounded final variable Y on N = Y` which is F1 measurable,
and consider a discretization ∆ = (tk), 0 ≤ k ≤ K of the time interval [0, 1].
The idea is to define (Yk) by YK = Y and

Yk = B[Yk+1|Ftk ]. (4.0.1)

This sequence can be viewed as a discrete martingale (and this is actu-
ally compatible with the definition of martingales with jumps which will
be given in Section 8). We deduce from Jensen’s inequality (2.3.1) that the
sequence f(Yk) is a discrete submartingale for any convex Lipschitz function
f . Moreover, Proposition 2.3.7 says that if Y and Y ′ are two final values,
then δ(Yk, Y

′
k) is a submartingale, so

δ(Yk, Y
′
k) ≤ E[δ(Y, Y ′)|Ftk ]. (4.0.2)

We are looking for a condition ensuring the convergence of (Yk) as the dis-
cretization mesh max(tk+1 − tk) tends to 0.

4.1 The main result

Let M be a separable metric space with distance d, let Ω be the space of
continuous functions ω : R+ → M , and let Xt be the canonical process
Xt(ω) = ω(t) with its natural filtration (Ft). If moreover M is complete,
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then the usual topology of Ω (uniform convergence on compact subsets) can
be defined by a separable complete distance, and Ω is a Lusin space. We
consider on Ω a family of probability measures (Px;x ∈ M) under which Xt

is a homogeneous Markov process with initial value X0 = x; let Pt be its
semigroup. As usually, we also denote by Pν the law of the process with
initial law ν.

Definition 4.1.1. An admissible coupling of Xt with itself is a family (Px,x′),
(x, x′) ∈ M ×M , of probability measures on Ω × Ω with canonical process
(Xt, X

′
t), filtration (F ′′

t ), such that

Ex,x′
[
f(Xt)

∣∣ F ′′
s

]
= Pt−sf(Xs), Ex,x′

[
f(X ′

t)
∣∣ F ′′

s

]
= Pt−sf(X ′

s)

for any bounded Borel function f .

This means that the laws of (Xt) and (X ′
t) are respectively Px and Px′

under Px,x′ , and that the processes Xt and X ′
t are Markovian for the filtration

of (X,X ′).
This binary coupling is a simplification of the notion of stochastic flow,

since we do not consider simultaneously all the initial conditions, but only
two of them. We will assume the existence of a good coupling for which Xt

and X ′
t are close to each other when x and x′ are close.

Remark 4.1.2. We do not suppose that the coupling is fully Markovian, since
we do not require (X,X ′) to be Markovian. Notice that another notion of
coupling is used in [31].

A particular class of coupling is the class of coalescent couplings for which
the processes Xt and X ′

t try to meet and are equal after their first meeting
time

σ = inf
{
t ≥ 0; Xt = X ′

t

}
.

In this case, the coupling is good if

lim
d(x,x′)→0

Px,x′ [σ > t] = 0 (4.1.3)

for t > 0 fixed. The following main result gives the existence in N = Y` of a
martingale with final value g(X1); recall that the uniqueness was proved in
Corollary 3.3.12.

Theorem 4.1.4. We suppose that

Ex
[
d(x,Xt) ∧ 1

]
≤ φ1(t) (4.1.5)
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for some function φ1 satisfying lim0 φ1 = 0, and that there exists an admis-
sible coupling (Px,x′) such that

Ex,x′
[
d(Xt, X

′
t) ∧ 1

]
≤ φ2(d(x, x

′)) (4.1.6)

for some function φ2 satisfying lim0 φ2 = 0. Then for any uniformly con-
tinuous bounded map g : M → N , there exists a uniformly continuous map
h : [0, 1] × M → N such that Yt = h(t,Xt), 0 ≤ t ≤ 1, is under Px the
bounded martingale with final value Y1 = g(X1).

Proof. On Ω×Ω with its natural filtration (F ′′
t ), we first construct a coupling

P(s,x),(s′,x′) for nonnegative s and s′ as follows. Suppose for instance that
s ≤ s′.

• On the time interval [0, s], we put (Xt, X
′
t) = (x, x′).

• On the time interval [s, s′], we put X ′
t = x′ and (Xs+u; 0 ≤ u ≤ s′ − s)

evolves according to Px.

• After time s′, conditionally on F ′′
s′ , the process (Xs′+u, X

′
s′+u;u ≥ 0)

evolves according to Px′′,x′ for x′′ = Xs′ .

Then X and X ′ are Markovian for the filtration of (X,X ′), and after s,
respectively s′, they evolve according to Px, respectively Px′ . We can suppose
without loss of generality that φ2 is bounded and non decreasing; then, for
s ≤ s′ ≤ t, from (4.1.6),

E(s,x),(s′,x′)
[
d(Xt, X

′
t) ∧ 1

∣∣ F ′′
s′

]
≤ φ2

(
d(Xs′ , x

′)
)

≤ φ2

(
d(x, x′) + d(x,Xs′)

)
.

A similar inequality can of course be written for s′ ≤ s ≤ t. By taking the
expectation and applying (4.1.5), we obtain an expression which converges
to 0 as |s′ − s| and d(x, x′) tend to 0, so

E(s,x),(s′,x′)
[
d(Xt, X

′
t) ∧ 1

]
≤ φ3(|s′ − s|+ d(x, x′)) (4.1.7)

with limφ3 = 0, for t ≥ s ∨ s′. Now consider the variable Y = g(X1)
of the theorem, and a subdivision ∆ = (tk) of [0, 1]. It follows from the
Markov property of X that the discrete martingale (4.0.1) has the form
Yk = h∆(tk, Xtk) for a bounded function h∆ defined on ∆×M . Moreover, for
s and s′ in ∆, it follows from the Markov properties of Definition 4.1.1 that, on
Ω×Ω and under P(s,x),(s′,x′), the sequences h∆(tk∨s,Xtk) and h∆(tk∨s′, X ′

tk
)
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are the discrete martingales with final values g(X1) and g(X ′
1). By applying

(4.0.2), we obtain

δ
(
h∆(s, x), h∆(s′, x′)

)
≤ E(s,x),(s′,x′)

[
δ(g(X1), g(X

′
1))

]
.

We deduce from (4.1.7) that h∆(t, x) is uniformly continuous on ∆ × M ,
and this is uniform in ∆. Since M is separable, there exists a sequence
of dyadic subdivisions ∆n such that h∆n(t, x) converges for t dyadic and
x ∈M ; moreover, the limit h(t, x) is uniformly continuous and can therefore
be extended to [0, 1] × M . The process Yt = h(t,Xt) is continuous, with
value g(X1) at time 1; it is transformed into a submartingale by any convex
function f because the process f(Yt) is the limit of the uniformly bounded
discrete submartingales f(Yk), so Yt is a bounded martingale.

Corollary 4.1.8. Suppose that (4.1.5) holds true, and consider a coalescent
coupling satisfying (4.1.3). Then (4.1.6) holds true, and consequently, the
conclusion of Theorem 4.1.4 is valid.

Proof. By applying (4.1.5) and the triangle inequality on one hand, and the
coalescence on the other hand, we obtain

Ex,x′
[
d(Xt, X

′
t) ∧ 1

]
≤ min

(
d(x, x′) + 2φ1(t),Px,x′ [σ > t]

)
.

Fix some t0 > 0; in the right hand side, we use the first term if t < t0, and
the second one if t ≥ t0, so

sup
t

Ex,x′
[
d(Xt, X

′
t) ∧ 1

]
≤ d(x, x′) + 2 sup

t<t0

φ1(t) + Px,x′ [σ > t0].

Consequently, from (4.1.3),

lim sup
d(x,x′)→0

sup
t

Ex,x′
[
d(Xt, X

′
t) ∧ 1

]
≤ 2 sup

t<t0

φ1(t)

for any t0 > 0, and is therefore 0. Thus (4.1.6) is satisfied.

Remark 4.1.9. In Theorem 4.1.4 and Corollary 4.1.8, the conditions were
uniform with respect to x; however, what we need is that each point of M has
a neighbourhood satisfying (4.1.7). The functions h∆ are indeed uniformly
continuous on these neighbourhoods, and we again deduce the convergence
and the continuity of the limit.

Example 4.1.10. For the real Wiener process, there are two classical couplings
satisfying the assumptions of Theorem 4.1.4. Firstly, the two processes can
stay at a fixed distance from each other (X ′

t−Xt = x′−x). Secondly, we can
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consider the coalescent coupling for which Xt + X ′
t = x + x′ up to the first

meeting time (the process X ′ is obtained from X by reflection). Actually, for
any coupling for which the processes coincide after their first meeting time,
the process |X ′

t − Xt| is a martingale, so all these couplings are similar for
the estimation of E|X ′

t −Xt| = |x′ − x| (this is of course false in dimension
greater than 1).

Example 4.1.11. If X is the solution of a stochastic differential equation
driven by a Wiener process, we can consider the flow associated to this equa-
tion, and let X and X ′ be the images of x and x′ by this flow. We obtain
a non coalescent coupling. This can be applied to Brownian motions on
Riemannian manifolds; it is also possible but more technical to construct a
coalescent coupling, see [19] where a stronger coupling property is actually
proved.

Example 4.1.12. We will see in Section 7 that a coalescent coupling satisfying
(4.1.6) can be constructed for Walsh processes on Y`; more general trees and
graphs can also be considered. Of course, the one-dimensional structure of
these spaces makes the construction much easier.

Corollary 4.1.13. Consider a diffusion Xt satisfying the assumptions of
Theorem 4.1.4, and a probability Pν for some initial law ν. Then any N-
valued integrable variable is the limit of a unique martingale of class (D).

Proof. Corollary 3.3.13 is used at each of the following steps (except the sec-
ond one). The existence of the martingale Yt with final value g(X1) is first
extended to any bounded Borel map g by approximating them by uniformly
continuous functions (real functions can be approximated by uniformly con-
tinuous functions from a functional monotone class theorem, and the result
is easily extended to N -valued maps). In a second step, we consider final
variables of type g(Xt1 , . . . , Xtk) and construct the martingale on each time
interval [tj, tj+1]. In a third step, by approximating general variables by
such variables, we deduce that any bounded variable is the limit of a unique
bounded martingale; the result is then easily extended to integrable variables
and martingales of class (D).

Remark 4.1.14. Under the conditions of Theorem 4.1.4, it is clear that con-
tinuous martingales of class (D) with prescribed integrable limit exist in
particular on R. This means that real martingales are continuous. Thus we
are in a case where the existence result of [3] concerning smooth manifolds
can be applied.
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4.2 Feller property of the semigroup

We have solved the existence problem for the filtration of Xt; if g is bounded,
the initial value of the bounded martingale with final value g(Xt) is denoted
by Qtg(x). It is classical to check that Qt is a semigroup; this is the (non
linear) heat semigroup Qt acting on bounded N -valued maps g. Then the
martingale with final value g(Xt) is (Qt−sg(Xs); s ≤ t). The coupling method
also implies a Feller property on this semigroup.

Proposition 4.2.1. Under the assumptions of Theorem 4.1.4, the semigroup
Qt is Feller continuous in the sense that if g : M → N is a bounded con-
tinuous function, then Qtg is continuous for any t and Qtg(x) converges to
g(x) as t ↓ 0. If the coupling is coalescent and satisfies (4.1.3), then Qt is
regularising, or strongly Feller; this means that for t > 0, it maps bounded
Borel functions to bounded continuous functions.

Proof. From Proposition 3.3.11, one has

δ(Qtg(x), Qtg(x
′)) ≤ Ex,x′

[
δ(g(Xt), g(X

′
t))

]
,

and from (4.1.6), (Xt, X
′
t) converges in law to (Xt, Xt) as x′ → x. We deduce

that Qtg is continuous if g is continuous. Similarly

δ(g(x), Qtg(x)) ≤ Ex
[
δ(g(x), g(Xt))

]
tends to 0 as t ↓ 0 from (4.1.5). In the coalescent case, we use

δ(Qtg(x), Qtg(x
′)) ≤ 2 sup

y
|g(y)| Px,x′ [σ > t].

In the coalescent case, if for instance the probability of non coupling
(4.1.3) is dominated by d(x, x′), then Qtg is Lipschitz.

Corollary 4.1.13 also enables to solve the Dirichlet problem; let M0 be an
open subset of M and let τ be the first exit time of M0 for Xt. If τ is finite
and if g : M → N is bounded, we can consider the bounded martingale with
limit g(Xτ ) under Px, and let h(x) be its initial value; then the martingale
is h(Xt∧τ ). We say that h is harmonic on M0.

Proposition 4.2.2. Under the assumptions of Theorem 4.1.4, if the coupling
is coalescent and satisfies (4.1.3), and if h : M → N is bounded and harmonic
on an open subset M0, then h is continuous on M0.
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Proof. If x and x′ are in M0, we consider the coupled process (Xt, X
′
t) and

the exit times τ and τ ′ of M0; from Proposition 3.3.11,

δ(h(x), h(x′)) ≤ Ex,x′
[
h(Xt∧τ ), h(X

′
t∧τ ′)

]
≤ 2 sup

y
|h(y)| Px,x′

[
σ > t ∧ τ ∧ τ ′

]
≤ 2 sup

y
|h(y)|

(
Px,x′

[
σ > t

]
+ Px,x′

[
τ ∧ τ ′ < t

])
(4.2.3)

for any t. Fix x in M0 and consider a neighbourhood V of x which is at a
positive distance from the complement of M0. The first probability in (4.2.3)
tends to 0 as x′ → x for t > 0 fixed, and the second one tends to 0 as t ↓ 0
uniformly for x′ in V (apply (4.1.5)). Thus h(x′) tends to h(x).

4.3 Stars and hyperbolic geometry

Another result can be worked out under the framework of Theorem 4.1.4; this
result says that N -valued martingales can be approximated by hyperbolic
martingales, and it comes from the fact that a hyperbolic plane with highly
negative curvature looks like a star.

Consider the plane R2; it can be endowed with a hyperbolic metric |.|κ
with curvature −κ by putting

|u|2κ = |u1|2 +
sinh(

√
κ|y|)2

κ|y|2
|u2|2, (4.3.1)

where u is a vector based at y ∈ R2, and u1 and u2 are its radial and angular
parts (|u|κ = |u| if y = 0). We denote by δκ the corresponding distance so that
H2

κ = (R2, δκ) becomes a hyperbolic plane with curvature −κ. Notice that
the Euclidean distance δ0 is dominated by the hyperbolic distance δκ. Notice
also that we can construct in H2

κ continuous martingales with prescribed final
value (see Remark 4.1.14). Now choose an embedding (2.0.1) of N = Y` in
R2; this is also an isometric embedding into H2

κ.

Proposition 4.3.2. Under the assumptions of Theorem 4.1.4, let (Y κ
t ; 0 ≤

t ≤ 1) be the bounded martingale in H2
κ = (R2, δκ) with final value g(X1).

Then
lim
κ↑∞

sup
0≤t≤1

δ0(Y
κ
t , Yt) = 0 (4.3.3)

in probability for a process Yt, and Yt is the bounded N-valued martingale
with final value g(X1).
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Proof. It is sufficient to prove that for any sequence of curvatures tending to
infinity, there exists a subsequence such that (4.3.3) holds almost surely, and
Yt is a martingale. The martingale Y κ

t has the form hκ(t,Xt). The technique
used in Theorem 4.1.4 shows the uniform continuity of hκ for the hyperbolic
metric, uniformly in κ, and therefore also for the Euclidean metric. Thus we
can consider a subsequence converging to a R2-valued function h, so that Y κ

t

converges to Yt = h(t,Xt). Moreover, the convergence is uniform on compact
subsets of [0, 1]×M , so on {(t,Xt(ω)); 0 ≤ t ≤ 1}, and (4.3.3) holds almost
surely. On the other hand, Y κ

t lives in the convex hull Nκ of N in H2
κ; we see

from (4.3.1) that
δκ(y/

√
κ, z/

√
κ) = δ1(y, z)/

√
κ,

so y 7→ y/
√
κ is an isometry from (R2, δ1/

√
κ) onto H2

κ = (R2, δκ). The star
N is invariant for this isometry, so Nκ = N1/

√
κ. This implies that

sup
{
δκ(y,N); y ∈ Nκ

}
=

1√
κ

sup
{
δ1(y,N); y ∈ N1

}
=

C1√
κ

for a finite C1 (C1 is also the distance of O to the complement of N1). In
particular,

δ0(Y
κ
t , N) ≤ δκ(Y

κ
t , N) ≤ C1/

√
κ, (4.3.4)

and at the limit, Yt is in N . We have to prove that it is a martingale. Let
Cij be the scalar product of ei and ej (the vectors describing the embedding
(2.0.1)), and let C be the maximal value of Cij for j 6= i, so that C < 1. If y
and z are in two different rays Ri and Rj of N , then we can write in R2

|z − y|2 = |y|2 + |z|2 − 2Cij|y| |z|
≥ |y|2 + |z|2 − 2C |y| |z|
≥ (1− C)

(
|y|2 + |z|2

)
≥ (1− C)

(
|y|+ |z|

)2 /
2

≥ (1− C)δκ(y, z)
2

/
2

so
δκ(y, z) ≤ C ′δ0(y, z) (4.3.5)

for some C ′ ≥ 1. This inequality also holds when y and z are in the same
ray, so it holds on N ×N . Now let Zκ

t be a point in N which minimises the
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hyperbolic distance to Y κ
t . By using (4.3.4) and (4.3.5), one has that

δκ(Y
κ
t , Yt) ≤ δκ(Y

κ
t , Z

κ
t ) + δκ(Z

κ
t , Yt)

≤ δκ(Y
κ
t , Z

κ
t ) + C ′δ0(Z

κ
t , Yt)

≤ δκ(Y
κ
t , Z

κ
t ) + C ′δ0(Z

κ
t , Y

κ
t ) + C ′δ0(Y

κ
t , Yt)

≤ (1 + C ′)δκ(Y
κ
t , N) + C ′δ0(Y

κ
t , Yt)

≤ (1 + C ′)C1/
√
κ+ C ′δ0(Y

κ
t , Yt),

which converges to 0. Finally, for each ray Ri consider the hyperbolic Buse-
mann function

γκ
i (y) = lim

r→∞

(
δκ(y, rei)− r

)
.

It is convex so γκ
i (Y κ

t ) is a (bounded) submartingale. The convergence of
δκ(Y

κ
t , Yt) to 0 implies the convergence of γκ

i (Y κ
t ) − γκ

i (Yt) to 0, and γκ
i

converges to γi on N . Thus γκ
i (Y κ

t ) converges to γi(Yt), and γi(Yt) is therefore
a submartingale. We conclude with Proposition 3.3.4.
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5 Martingales and energy minimisation

Let us now describe another framework in which one can prove the existence
of the martingale with prescribed limit; this will relate our problem (as in
[28] for the smooth case) with a variational problem, namely energy minimi-
sation; this technique is particularly useful for symmetric diffusions for which
a coupling seems difficult to construct.

5.1 The Dirichlet space

The aim of this subsection is to define and study the notion of Dirichlet space
for tree-valued maps. In the case of more general spaces with nonpositive
curvature, a definition using the heat semigroup is proposed in [17]; here, we
propose another one for the particular case of trees.

On a separable locally compact space M endowed with a Radon measure
µ, consider a symmetric diffusion (Xt, 0 ≤ t < ζ) with lifetime ζ associated
to a regular strongly local Dirichlet form E on L2(µ), under the law Pµ. The
strong locality means that Xt is continuous and is not killed inside M . The
domain of E is the Dirichlet space D, and E(f) = E(f, f) is a semi-norm on
it; its elements can be chosen quasicontinuous. We refer to [14] for definitions
and properties of these spaces and diffusions.

For some purposes, the space D is too restrictive and we have to enlarge
it; for instance, the space D is stable with respect to Lipschitz transforma-
tions φ such that φ(0) = 0, but generally not with respect to all Lipschitz
transformations (constant functions are not always in D); this causes some
trouble because for tree-valued functions, there is generally not a canoni-
cal point which could replace the role of the point 0 of R. For this reason,
we are going to consider the space Dloc of functions which are locally in D
(on each relatively compact open subset of M there exists a function of D
which coincides with f). In D, we can consider energy measures µ<f,g> and
µ<f> = µ<f,f> so that E(f) is the total mass µ<f>(M). These measures can
also be defined for functions of Dloc; one indeed deduces from the locality
that if f and g coincide on an open set, then µ<f> and µ<g> also coincide on
this set. Thus one can define the energy E(f) = µ<f>(M) (finite or infinite)
on Dloc. We will be particularly interested by the subspace Db consisting
of bounded functions of Dloc with finite energy. In the transient case, this
space coincides with the space of bounded functions of the reflected Dirichlet
space, see [6].

Constant functions are in Db (and have zero energy), so Db is stable with
respect to all Lipschitz functions. Let us give some other useful facts.
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Lemma 5.1.1. For any function f of Db, one has

µ<f>{f = 0} = 0. (5.1.2)

For any f and g in Db such that fg = 0, one has

µ<f+g> = µ<f> + µ<g>, (5.1.3)

so
E(f + g) = E(f) + E(g). (5.1.4)

For any f and g in Db, the energy measures µ<f> and µ<g> coincide on
{f = g}.

Proof. These properties can be localised so it is sufficient to prove them for
functions of D. One has

µ<Φ◦f>(dx) = (Φ′ ◦ f)(x)2µ<f>(dx)

for any function Φ of class C1
b , so if Φ(0) = 0 and Φ′(0) = 1,

µ<f>{f = 0} ≤
∫

(Φ′ ◦ f)(x)2µ<f>(dx) = E(Φ ◦ f) (5.1.5)

We apply this relation to

Φn(z) = arctan(nz)/n.

Then Φ′
n − Φ′

m tends to 0 as m and n tend to infinity, so (Φn ◦ f) is a E-
Cauchy sequence; moreover it converges to 0 in L2, so a standard argument
shows that E(Φn ◦ f) converges to 0. Thus (5.1.2) follows from (5.1.5). On
the other hand, we deduce from the non negativity of µ<f> that∣∣∣µ<f,g>(A)

∣∣∣2 ≤ µ<f>(A) µ<g>(A),

so µ<f,g> = 0 on {f = 0} ∪ {g = 0}. Thus, if fg = 0, then µ<f,g> is 0 and
consequently (5.1.3) holds. We also have that∣∣∣µ<f>(A)− µ<g>(A)

∣∣∣ =
∣∣∣µ<f−g,f+g>(A)

∣∣∣
≤ µ<f−g>(A)1/2µ<f+g>(A)1/2

= 0

if A ⊂ {f = g}, so µ<f> = µ<g> on {f = g}.
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Remark 5.1.6. One can replace {f = 0} by {f = c} in (5.1.2). Similarly,
(5.1.3) and (5.1.4) hold true if (f − c)(g − c′) = 0.

Let M0 be a relatively compact open subset of M , and let

τ = inf
{
t > 0; Xt /∈M0

}
be the first exit time of M0. We suppose that τ < ζ (ζ is the lifetime of X)
Pµ-almost surely.

Let D0, Dloc
0 and Db

0 be the spaces of functions of D, Dloc and Db having
a quasicontinuous modification f such that f = 0 quasi everywhere outside
M0. Then (D0, E) is a regular Dirichlet form on M0 (called the part of E on
M0) and it is associated to the process X killed at τ . The condition τ < ζ
implies that it is transient, so (see [14])∫

|f(x)|ν(dx) ≤ E(f)1/2 (5.1.7)

for f in D0 and ν a measure such that µ and ν are mutually absolutely
continuous. Since M0 is relatively compact in M , the space Dloc

0 is equal to
D0, so Db

0 is the space of bounded functions of D0.
If g is a quasicontinuous function of Db, we let Db

g be the set of functions of
Db having a quasicontinuous modification f such that f = g quasi everywhere
outside M0.

Lemma 5.1.8. Let g be a quasicontinuous function of Db satisfying E(f, g) ≥
0 for any nonnegative function f of Db

0. Then g(Xt∧τ ) is a Pµ-supermartin-
gale.

Proof. The function
h(x) = Ex[g(Xτ )]

is quasicontinuous and is E-orthogonal to D0, so that E(f, h) = 0 for any f
of Db

0; this was proved in Section 4.3 of [14] when g is in the Dirichlet space,
but can be extended to g in Db by modifying g outside the closure of M0.
The process h(Xt∧τ ) is the bounded real martingale with final value g(Xτ ).
The function g − h is in D0 and our assumption implies that E(g − h, f) is
nonnegative for any nonnegative f of D0; thus g−h is superharmonic for the
process killed at τ , and (g − h)(Xt∧τ ) is a Pµ-supermartingale.

Let us now extend the notion of Dirichlet space to maps with values in
N = Y`.
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Definition 5.1.9. The set Db(N) is the space of N-valued functions f such
that φ◦f is in Db for any Lipschitz function φ : N → R. For f in this space,
we put

E(f) = sup
{
E(φ ◦ f); φ non expanding

}
.

Lemma 5.1.10. A function f is in Db(N) if and only if its components fi

are in Db. In this case, one has

E(f) = E(|f |) =
∑

E(fi). (5.1.11)

Proof. It is clear that fi ∈ Db is necessary for f ∈ Db(N). Conversely, we
check that it is sufficient by using the decomposition

φ(y) = φ(O) +
∑

i

(
φi(yi)− φ(O)

)
(5.1.12)

of any Lipschitz function φ into Lipschitz functions φi(r) = φ(r ei) on each
ray Ri. The second equality in (5.1.11) follows from (5.1.4). We have to
prove that E(f) = E(|f |). The inequality E(f) ≥ E(|f |) follows easily from
Definition 5.1.9. On the other hand, if φ is non expanding, we can suppose
φ(O) = 0, we use (5.1.12) and again (5.1.4) to obtain

E(φ ◦ f) =
∑

i

E(φi ◦ fi) ≤
∑

i

E(fi),

so E(f) ≤ E(|f |).

Remark 5.1.13. One also has E(f) = E(γi ◦f) for any Busemann function γi.

One can define the energy measure of f by

µ<f> = µ<|f |> =
∑

µ<fi>,

where the second equality follows from (5.1.3). Thus E(f) is the total mass
of µ<f>.

Lemma 5.1.14. Let fn be a sequence in Db(N) which converges almost ev-
erywhere to a function f . Suppose that fn and E(fn) are uniformly bounded.
Then f is in Db(N) and

E(f) ≤ lim inf E(fn).

Proof. This is deduced from Lemma 5.1.10 and the similar property for Db,
which itself is deduced from the property for D and a localisation.
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5.2 Energy minimising maps

Let g be a quasicontinuous map of Db(N); we are going to prove the existence
of the bounded continuous martingale with final value g(Xτ ). The space
Db

g(N) is defined in an evident way as in the real case, and the martingale
will have the form h(Xt∧τ ) for h energy minimising in this space.

The existence of h can be worked out with the method used for general
smooth manifolds in [28], but we will take advantage of the nonpositive cur-
vature of our space to apply a more elementary method with slightly weaker
assumptions. The following result is an adaptation of a general analytical
theory to our framework, see Theorem 2.2 of [20]. Notice that the Poincaré
inequality which is classically used in this method is here replaced by the
transience of the killed process and (5.1.7). We begin with a preliminary
result.

Lemma 5.2.1. Let u and v be quasicontinuous functions of Db(N), and let
w(x) be the midpoint between u(x) and v(x). Then w is in Db(N), and

E(w) ≤ 1

2
E(u) +

1

2
E(v)− 1

4
E(δ(u, v)). (5.2.2)

Proof. We deduce from

wi(x) =
1

2

(
γi ◦ u(x) + γi ◦ v(x)

)−
. (5.2.3)

that w is a quasicontinuous function of Db(N). Its energy measure satisfies

µ<wi> ≤
1

4
µ<γi◦u+γi◦v>

=
1

2
µ<γi◦u> +

1

2
µ<γi◦v> −

1

4
µ<γi◦u−γi◦v>.

On the set Ai = {u ∈ Ri} ∪ {v ∈ Ri}, one has

δ(u, v) =
∣∣γi ◦ u− γi ◦ v

∣∣,
so

µ<wi> ≤
1

2
µ<u> +

1

2
µ<v> −

1

4
µ<δ(u,v)> (5.2.4)

on Ai. In particular, since the union of the subsets Ai is M , the right-hand
side is a nonnegative measure on M . Moreover, the measures µ<wi> are
supported by the disjoint sets {wi > 0}, so

µ<w> =
∑

i

µ<wi> ≤
1

2
µ<u> +

1

2
µ<v> −

1

4
µ<δ(u,v)> (5.2.5)

by applying (5.2.4) on {wi > 0} ⊂ Ai. Then (5.2.2) follows by integration.
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Proposition 5.2.6. Consider the above framework with a strongly local reg-
ular Dirichlet form (D, E) on the locally compact separable space M with
diffusion Xt, a relatively compact open subset M0 such that Xt quits M0 dur-
ing its lifetime, and a quasicontinuous function g of Db(N). Then there exists
a unique (within a modification) h which minimises the energy E(h) among
functions of Db

g(N).

Proof. Choose a minimising sequence consisting of quasicontinuous functions
hn of Db

g(N); one applies (5.2.2) to two elements hm and hn of the sequence;
the midpoint hm,n is again in Db

g(N), so

inf
Db

g(N)
E ≤ E(hm,n) ≤ 1

2
E(hm) +

1

2
E(hn)− 1

4
E(δ(hm, hn)).

By letting m and n tend to infinity, one deduces that E(δ(hn, hm)) converges
to 0. The functions δ(hm, hn) are in D0, and by applying (5.1.7), there exists
a subsequence of (hn) which converges almost everywhere to a function h.
The subsequence will again be denoted by (hn), and

E(δ(hn, h)) ≤ lim inf
m

E(δ(hn, hm))

converges to 0. By applying the quasicontinuity (see Theorem 2.1.4 of [14]),
there exists a subsequence converging quasi everywhere, and h has therefore
a modification which is equal to g quasi everywhere outside M0. Then we
deduce from Lemma 5.1.14 that h is energy minimising in Db

g(N). For the
uniqueness, we see from (5.2.2) that two energy minimising maps h1 and h2

should satisfy E(δ(h1, h2)) = 0, so h1 = h2 from (5.1.7).

Now, we want to prove that h(Xt) is a Pµ martingale. In the case of
smooth Riemannian manifolds studied in [28], one notices that since h is
solution of a minimisation problem, then

d

dε
E(hε)

∣∣∣∣
ε=0

= 0 (5.2.7)

for any smooth family hε such that h0 = h. Actually, when one is given
f , one can use the perturbation hε = T ε ◦ h, where (T ε) is the flow of
diffeomorphisms of N defined by the ordinary equation

T 0(y) = y,
d

dε
T ε(y) = f

(
T ε(y)

)
.

The relation (5.2.7) can be written (roughly speaking) as∫
M

(
f(x), LNh(x)

)
dµ(x) = 0,
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where LNh is the tension field of h. Since this can be obtained for a large
class of functions f , we can deduce that LNh = 0 (in a weak sense) and that
h(Xt) is a martingale. Here, this method cannot be immediately applied
because one cannot define flows T ε for all real ε except if the point O is
fixed (roughly speaking f(O) = 0); this is because all homeomorphisms of
N must let O fixed. Thus we will only consider a semi-flow (T ε, ε ≥ 0) of
transformations, and the fact that h is energy minimising will imply that the
derivative of (5.2.7) is nonnegative.

Theorem 5.2.8. Under the assumptions of Proposition 5.2.6, if h is the en-
ergy minimising quasicontinuous map of Db

g(N), then h(Xt∧τ ) is a Pµ mar-
tingale with limit g(Xτ ).

Proof. Fix a ray Ri, its associated Busemann function γi, let ρ be a nonneg-
ative function of Db

0 and let T ε
x : N → N be the translation of step ερ(x) in

the direction of Ri. The perturbation of h(x) is defined as

hε(x) = T ε
x (h(x)).

One has
(γi ◦ hε)(x) = (γi ◦ h)(x)− ερ(x),

so
∂(γi ◦ hε)

∂ε

∣∣∣∣
ε=0

= −ρ.

The function hε is in the Dirichlet space Db
g(N) and satisfies

E(γi ◦ hε) = E(hε) ≥ E(h) = E(γi ◦ h).

By differentiating at ε = 0, we obtain that E(γi ◦ h, ρ) ≤ 0, so, from Lemma
5.1.8, γi(h(Xt∧τ )) is a Pµ-submartingale (for any i). Thus h(Xt∧τ ) is a mar-
tingale.

Corollaries 5.2.9 and 5.2.11 are similar to [27]. If M is a Riemannian
manifold (or a Riemannian polyhedron), an analytical technique can actually
provide the Hölder continuity of h, see [20, 9, 31].

Corollary 5.2.9. Assume the absolute continuity condition

∀x ∈M ∀t > 0 Px
[
Xt ∈ dz

]
� µ(dz). (5.2.10)

Then one can choose the modification of h so that for any x, the process
h(Xt∧τ ) is under Px the bounded martingale with limit g(Xτ ).
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Proof. We obtain from Theorem 5.2.8 and the condition (5.2.10) a Px martin-
gale h(Xt∧τ ) indexed by t > 0; it has a limit as t ↓ 0 because γi(h(Xt∧τ )) are
bounded submartingales and have therefore limits. Let h0(x) be the limit.
If σ is any stopping time, the quasicontinuity of h shows that h(Xσ) is the
limit of h(Xσ+t), so we can deduce that h0 = h outside a polar set. Then h0

satisfies our requirements.

Corollary 5.2.11. Assume the absolute continuity condition (5.2.10) and
suppose moreover that bounded real functions which are harmonic on an open
subset of M are continuous on this subset. Then the function h of Corollary
5.2.9 is continuous on M0.

Proof. Fix a point x of M0 and a non decreasing family (Vr)r>0 of open
neighbourhoods of x such that

⋂
Vr = {x}. Let σr be the first exit time of

Vr for Xt. Then h(Xσr) converges Px almost surely to h(x) as r ↓ 0, so for
ε > 0, we can choose r so that

Ex
[
δ(h(x), h(Xσr))

]
≤ ε.

On the other hand, the function

x′ 7→ Ex′
[
δ(h(x), h(Xσr))

]
is harmonic on Vr; it is continuous from our assumption, so

δ(h(x), h(x′)) ≤ Ex′
[
δ(h(x), h(Xσr))

]
≤ 2ε

if x′ is close to x.

Corollary 5.2.12. Assume the conditions of Proposition 5.2.6 except that
M0 is not supposed to be relatively compact. Then again there exists a func-
tion h of Db(N) such that h(Xt∧τ ) is a Pµ martingale with limit g(Xτ ), and
one has E(h) ≤ E(g). The results of Corollaries 5.2.9 and 5.2.11 can also be
extended.

Proof. LetMn be the intersection ofM0 with a sequence of relatively compact
open subsets of M which increases to M . Then we obtain a minimising
map hn. If τn is the first exit time of Mn, then hn(Xt∧τn) is the bounded
martingale with limit g(Xτn). The sequence E(hn) is non increasing and
therefore converges; if hm,n is the midpoint between hm and hn, one has

E(hm,n) ≥ min(E(hm), E(hn))

because hm,n coincides with g outside Mm∨n, and E(hm,n) is dominated with
(5.2.2). Thus we can use the technique of Proposition 5.2.6, deduce the
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existence of a subsequence converging almost everywhere to a function h
satisfying E(h) ≤ E(g), and h(Xt∧τ ) is a martingale as a limit of martingales.
By using a probability Pν for ν a probability equivalent to µ, the probability
of {τn 6= τ} tends to 0, so g(Xτn) converges to g(Xτ ). Thus the process
h(Xt∧τ ) is the martingale with limit g(Xτ ).

5.3 Martingales for symmetric diffusions

We are now going to prove the existence of martingales for probability spaces
generated by symmetric diffusions.

Theorem 5.3.1. Consider like previously a strongly local regular Dirichlet
form on a separable locally compact space M , associated to a diffusion Xt

defined on a canonical probability space Ω with measure Pµ. Suppose that the
form is conservative so that the lifetime ζ of the process is infinite. Then, for
any integrable N-valued variable, there exists a unique N-valued martingale
of class (D) converging to this variable.

Proof. As in Corollary 4.1.13, it is sufficient to consider final variables of
the type g(X1). We will suppose that g is continuous and in Db(N) (this
is possible since the form is regular). By taking the product of Ω with a
Wiener space ΩW , we introduce an independent real Wiener process W ; on
this space, we also consider a nonnegative process satisfying

dU ε
t = −dt+

√
εdWt + dAε

t ,

where Aε
t is the reflection term at 0. The diffusion U ε

t is the symmetric process
which is associated to the Dirichlet space (Dε

U , Eε
U) on (R+, µ

ε
U), where

µε
U(du) = e−u/εdu

/
ε, Eε

U(f) =
ε

2

∫
R+

f ′(u)2µε
U(du),

and Dε
U is the completion for Eε

U + |.|2L2(µε
U ) of the space of smooth functions

on R+ with compact support. The process (Xt, U
ε
t ), which can be defined

on Ω × ΩW , is then associated to the product Dirichlet space (Dε
?, Eε

?) on
(M × R+, µ⊗ µε

U), with

Eε
?(f) =

∫
E(f(., u))µε

U(du) +

∫
Eε

U(f(x, .))µ(dx).

This is a regular form (this is because D ⊗ Dε
U is dense in Dε

?, see Section
V.2.1 of [5]). Let τ(ε) be the first exit time of M × (0,∞), so

τ(ε) = inf
{
t ≥ 0; U ε

t = 0
}
.
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Consider the function g(x, u) = g(x), so that Eε
?(g) = E(g). We deduce from

Corollary 5.2.12 the existence of a martingale Y ε
t with final value g(Xτ(ε)). By

proceeding as in Corollary 5.2.9, we can take U ε
0 = 1 as an initial condition

since (U ε
t ) satisfies the absolute continuity condition (we letX0 be distributed

according to µ). When ε ↓ 0, the exit time τ(ε) and the final variable
g(Xτ(ε)) converge respectively to 1 and g(X1); thus, from Corollary 3.3.13,
the martingales Y ε

t must converge to the martingale Yt with final value g(X1).
However, this martingale is defined on the enlarged space Ω × ΩW , and we
want a martingale on Ω. We can apply the Yamada-Watanabe method of
which is classically used for stochastic differential equations, see for instance
Theorem IX.1.7 of [29]. On the space Ω×ΩW ×ΩW with product measures,
we consider the processes

Y ′
t (ω, ω

′, ω′′) = Yt(ω, ω
′), Y ′′

t (ω, ω′, ω′′) = Yt(ω, ω
′′).

Then Y ′
t and Y ′′

t are two bounded martingales with the same final value
g(X1(ω)), so they are identical. Thus Yt can be defined on Ω.

Similarly to Corollary 5.2.9, we can deduce the following result.

Corollary 5.3.2. The result of Theorem 5.3.1 holds under the probabili-
ties Px if the symmetric diffusion satisfies the absolute continuity condition
(5.2.10).

The initial value of the Px martingale with final value g(Xt) is written
as Qtg(x). We obtain as in Section 4 the nonlinear heat semigroup Qt. It is
well known that the energy is non increasing along the heat semigroup for
smooth manifolds (in the case of maps with values in non positively curved
manifolds, this is actually the classical method for proving the existence of
a harmonic map in a prescribed homotopy class). Here, this property also
holds true.

Proposition 5.3.3. Assume the conditions of Theorem 5.3.1 and the abso-
lute continuity condition (5.2.10). Let g be in Db(N). Then Qtg is also in
Db(N), and t 7→ E(Qtg) is non increasing.

Proof. We return to the proof of Theorem 5.3.1. We have a function hε such
that hε(Xt, U

ε
t ) is a martingale up to the first hitting time of 0 by U ε

t , and∫ ∞

0

E(hε(., u))µε
U(du) ≤ Eε

?(h
ε) ≤ Eε

?(g) = E(g). (5.3.4)

Put
Qε

ug(x) = hε(u, x).
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In particular, Qε
ug converges to Qug. Consider nonnegative u and v; after

a translation, the diffusion U ε
t starting at u + v and stopped when it hits u

has the same law than the same diffusion starting at v and stopped when it
hits 0. We can deduce from this fact that Qε

u is a semigroup, and (5.3.4) is
written as ∫

E(Qε
ug)µ

ε
U(du) ≤ E(g).

If we consider (µε
U)(2) = µε

U ? µ
ε
U (the convolution product), then∫

E(Qε
ug)(µ

ε
U)(2)(du) =

∫∫
E(Qε

u+vg)µ
ε
U(dv)µε

U(du)

≤
∫
E(Qε

ug)µ
ε
U(du) ≤ E(g)

and more generally

E
(∫ ∞

0

Qε
ug

(
µε

U

)(n)
(du)

)
≤

∫ ∞

0

E(Qε
ug)

(
µε

U

)(n)
(du)

≤ E(g) (5.3.5)

where the left-hand side is computed in R`. By taking n ∼ t/ε, we can let
the measure (µε

U)(n) (which is a convolution of exponential distributions with
mean ε) tend to a Dirac mass at t. Moreover, the function which maps u to
the hitting time of 0 by U ε

t when it starts from u is continuous in probability,
uniformly in ε for 0 < ε < 1; we deduce that Qε

ug(x) is continuous with
respect to u, uniformly in ε. Thus the integral in left-hand side of (5.3.5)
converges to Qtg, so we deduce from the lower semicontinuity of the energy
that E(Qtg) ≤ E(g). Since Qt is a semigroup, the proof is complete.

Remark 5.3.6. One can proceed as in Corollary 5.2.11 for the continuity of
Qtg. This means that a continuity property for Ptf(x) is transferred to
Qtg(x).

Numerous examples of Dirichlet spaces are of course known. If we restrict
to trees, we can consider the diffusion on the continuum tree constructed in
[21]. Here is a simpler example.

Example 5.3.7. Consider a space M which is the union of a countable number
of segments Si = [O,Ai] with length `i > 0, such that the intersection of two
different segments is reduced to the point O. We suppose that

∑
`i is finite.

Then we put

E(f) =
1

2

∑
i

∫
Si

f ′(x)2λi(dx)
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for the Lebesgue measure λi on Si, where f is a Lipschitz function which
is smooth on each segment Si and is constant on all but a finite number
of segments. After taking the closure, we obtain a regular Dirichlet form.
Notice that in this example (and also for more general trees), elements of D
are automatically Hölder continuous with rate 1/2, so this implies a regularity
on harmonic maps in Db(N).
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6 Generalisation to trees

Up to now, we have focussed on our baby tree Y`. Our aim is now to
generalise the results of previous sections to other trees.

6.1 The geometry of trees

The simplest generalisation is the family of complete finite metric trees. They
consist of a finite number ` of edges which are isometric to closed intervals
of R, some endpoints of which are glued, and which yield a connected and
simply connected space (there is no loop). The endpoints of the edges are
the vertices of the tree; a particular class of vertices are those which belong
to only one edge; they are the leaves of the tree. Then N can be embedded
in R` by letting the ith edge being parallel to the ith axis. More generally,
we can consider R-trees, see for instance the definition in [13].

Definition 6.1.1. A R-tree is a metric space (N, δ) satisfying the two fol-
lowing properties for any y1 and y2 in N .

1. There is one and only one isometry from the interval [0, δ(y1, y2)] into
N mapping 0 to y1 and δ(y1, y2) to y2.

2. If φ : [0, 1] → N is injective, φ(0) = y1, φ(1) = y2, then φ([0, 1]) is
isometric to [0, δ(y1, y2)] (it is the arc joining y1 and y2).

Since only R-trees will be considered, we will simply call them ‘trees’. We
say that N is a measurable tree if moreover it is endowed with a σ-algebra
containing the balls. When N is separable, it will be implicitly endowed with
its Borel σ-algebra.

The unique arc between two points of N is a geodesic, and as in Defi-
nition 2.1.1, a function is said to be convex when it is convex on geodesics
parameterised by arc length. For instance, the distance functions δ(O, .) are
convex.

The trees that we will consider will often be assumed to be complete. If
y is a point of N and if the number of connected components of N \ {y} is
different from two, then y is a vertex of the tree; in particular, if this number
is one, then y is a leaf. A ray is a subset of N which is isometric to R+, and
an end of N is an equivalence class of rays, where two rays are equivalent
if their intersection is a ray. Then if one fixes an origin O and an end with
some parametrisation (ξt; t ∈ R+), one can define the associated Busemann
function by

γξ(y) = lim
t→∞

(
δ(ξt, y)− δ(ξt, O)

)
(6.1.2)
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where the limit does not depend on the parametrisation and is actually sta-
tionary (changing O only adds a constant). This is a convex function. If
ξ is an end and y a point, we can consider the ray [y, ξ) with origin y and
equivalent to ξ; its elements are called the ancestors of y (relatively to ξ); if
y and y′ are two points, their first common ancestor y∧y′ is the origin of the
ray [y, ξ) ∩ [y′, ξ); it is in the arc [y, y′], and

δ(y, y′) = δ(y, y ∧ y′) + δ(y ∧ y′, y′)
= γξ(y) + γξ(y

′)− 2γξ(y ∧ y′). (6.1.3)

Contrary to Y`, Busemann functions will not be sufficient for the char-
acterisation of continuous martingales; for instance, a bounded tree has no
end. We also have to consider leaves. If y0 is a point of N , we define

γy0(x) = δ(y0, y)− δ(y0, O). (6.1.4)

The set of ancestors of y are in this case defined to be the arc [y0, y], the
endpoints of [y0, y]∩ [y0, y

′] are y0 and the first common ancestor y ∧ y′, and
(6.1.3) is again satisfied. The functions γξ when ξ is an end, and γy0 when
y0 is a leaf, will be called the basic convex functions.

There are relations between these functions. If ξ and ξ′ are two different
ends, we can consider the line (ξ, ξ′) joining them, which can be parameterised
by (ξt; t ∈ R); we can apply

δ(y, y′) + δ(y, y′′) = δ(y′, y′′) + 2δ(y, [y′, y′′])

to y′ = ξt, y
′′ = ξ−t, let t tend to +∞, and deduce that

γξ(y) + γξ′(y) = 2δ(y, (ξ, ξ′))− 2δ(O, (ξ, ξ′)). (6.1.5)

There are similar relations with functions γy0 , involving rays [y0, ξ), or seg-
ments [y0, y

′
0].

In previous sections, we have used the embedding of Y` into R`. Separable
complete trees have a similar property.

Lemma 6.1.6. Consider the Banach space `1 of absolutely convergent real
series and its subset `1+ of convergent nonnegative series. Let ek be the canon-
ical series having 1 at the kth row and 0 elsewhere. On the other hand, let
N be a separable complete tree. Then there is an isometric embedding which
maps N onto a closed subset of `1+ containing 0 and which is the closure of a
set of the form

⋃
[zk, zk + αkek], for zk ∈ `1+ and αk ≥ 0. Then the distance

δ(y, z) in N is equal to the norm |z − y| in `1.
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Proof. Let (yk)k≥0 be a dense subset of N . Let Nn be the convex hull of
{yk; 0 ≤ k ≤ n}. Then Nn is a finite tree with at most n edges. We can
consider the embedding of Nn in Rn

+ as follows; we let N0 = {0} and we let
Nj \ Nj−1, if not empty, be a segment of type [zj, zj + αjej] for zj in Nj−1

and αj ≥ 0. These embeddings are compatible, so
⋃
Nn can be embedded in

the subset of `1+ consisting of nonnegative sequences such that only a finite
number of terms is positive. The distance onN corresponds to the `1 distance
on this space, so by taking the closure, N is embedded in the Banach space
`1.

Example 6.1.7. The star YN with countably many rays is an example of
separable tree. The star of Example 5.3.7 is a subtree of YN.

The situation is more complicated with non separable trees. In this case,
the Borel σ-algebra is generally too large, so that the number of N -valued
measurable variables is too small. Thus we have to endow N with another σ-
algebra, and this is why we have introduced in Definition 6.1.1 the notion of
measurable tree; the minimal admissible σ-algebra corresponds to the Baire
topology (which is generated by open balls). Notice that continuous functions
are not necessarily measurable for these σ-algebras, so, when dealing for
instance with convex functions, we will have to restrict to measurable ones.
Though stochastic calculus can be worked out on non separable trees (see
the results below), the problem of finding a martingale with given limit has
generally no solution. However, we mention these spaces because there are
classical examples of them, they are a simple description of what can happen
on a non separable space, and some classical diffusions are defined on the
following examples.

Example 6.1.8. Consider the space R2 as a star with origin 0; this is the metric
space N = YS1

where the rays are indexed by the circle S1. Let Y be a Borel
measurableN -valued variable; then the angular coordinate Θ(Y ) ∈ S1 should
be measurable for the σ-algebra of all subsets of S1 (because any union of
rays R?

θ is open); thus it should be supported by a countable subset, and Y
should therefore be supported by a countable number of rays. This shows
that if we want to consider more general variables, we have to choose another
σ-algebra satisfying the conditions of Definition 6.1.1. We can for instance
use the Borel σ-algebra associated to the classical topology of R2.

Example 6.1.9. Consider the space G of paths with birth and death times
described as follows; the elements of G are triples y = (ωy, Sy, Ty), with
Sy ≤ Ty and (ωy(u);u ∈ R) is a càdlàg path with values in the disconnected
union of R and a point {∂}, such that

ωy(u) ∈ R ⇐⇒ Sy ≤ u < Ty, ωy(Sy) = 0 if Sy < Ty.
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Figure 5: An example of oriented distance function ψ(yα
0 , .).

The distance on G is defined by

δ(y, y′) = Ty + Ty′ − 2
(
inf

{
u; ωy(u) 6= ωy′(u)

}
∧ Ty ∧ Ty′

)
. (6.1.10)

Then G is a non separable tree. If we consider the end associated to the ray
{Sy = Ty ≤ 0}, the Busemann function is γ(y) = Ty; if y 6= y′, their first
common ancestor y∧ y′ consists of the paths y and y′ killed when they begin
to diverge, and the arcs joining y or y′ to y ∧ y′ are obtained by erasing y or
y′ progressively up to the divergence time. If we endow G with the σ-algebra
generated by the functions y 7→ ωy(u), it is a measurable tree. We can also
consider the subtree Gc consisting of the elements y such that the path ωy is
continuous on [Sy, Ty).

The basic geometric properties of Y` can be extended to more general
trees. We first need to verify that the basic functions which were used in
Section 2 are measurable, even if the tree is not separable.

Lemma 6.1.11. Let N be a measurable tree. The distance functions δ(y0, .)
and the Busemann functions (6.1.2) are measurable. Moreover, if yα

0 is a
connected component of N \ {y0}, then the oriented distance function (2.2.3)
is measurable.

Proof. The assertion concerning distance and Busemann functions is trivial
since balls are measurable. For the oriented distance function, we have to
check that yα

0 is measurable. Choose an interval (y0, y1) in yα
0 and a sequence

y(n) in this interval converging to y0; then y is in yα
0 if and only if y(n)

belongs to the arc [y0, y] for n large, so we can write

yα
0 =

⋃
n

{
y; δ(y0, y) = δ(y0, y(n)) + δ(y(n), y)

}
,

and this set is measurable.

The following result will also be useful later.
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Lemma 6.1.12. Let N be a complete tree, let γ be a distance or Busemann
function, and let (yt; t ≥ 0) be a continuous path in N such that γ(yt) con-
verges in R as t ↑ ∞. Then yt converges in N .

Proof. Fix ε > 0. For t large enough, we have

sup
s≥t

∣∣γ(ys)− γ(yt)
∣∣ ≤ ε.

Moreover, we deduce from the continuity of the path that ys ∧ yt belongs to
{yu; t ≤ u ≤ s}, so

γ(yt)− γ(ys ∧ yt) ≤ ε

for s ≥ t. Thus, from (6.1.3),

δ(ys, yt) = γ(ys) + γ(yt)− 2γ(ys ∧ yt)

=
(
γ(ys)− γ(yt)

)
+ 2

(
γ(yt)− γ(ys ∧ yt)

)
≤ 3ε

for s ≥ t, and the convergence follows from the completeness of N .

One can consider as in Definition 2.2.1 the barycentre for square inte-
grable variables, then for integrable variables, and it is not difficult to extend
the results of Section 2.

Proposition 6.1.13. The results of Propositions 2.2.4, 2.3.5 and 2.3.7 hold
true for measurable trees (for Proposition 2.3.5 one has to restrict to mea-
surable functions f).

6.2 Stochastic calculus on a tree

As in Definition 3.1.1, an adapted càdlàg process Yt in a measurable tree is
said to be a semimartingale if f(Yt) is a semimartingale for any measurable
Lipschitz convex function f . In the general case, it does not seem easy to
find a characterisation, but in the continuous case, a single function is again
sufficient for testing the semimartingale property (as in Proposition 3.1.4).

Proposition 6.2.1. Fix a root O in the measurable tree N , and let |y| be the
distance δ(O, y). Then an adapted continuous process Yt is a semimartingale
if and only if |Yt| is a semimartingale.

Proof. Suppose that |Yt| is a semimartingale. If f is a measurable non ex-
panding convex function, we have to prove that f(Yt) is a semimartingale.
By a standard stopping argument, we can suppose that |Yt| and the variation
of its finite variation part are bounded by some constant C. Suppose also
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that f is nonnegative and f(O) = 0 (the general case immediately follows by
adding to f a constant and a multiple of the distance to O). Let us study
f(Yt) conditionally on F0 for some fixed Y0 = y0 (this is possible because
conditional probabilities exist on Ω, and we choose y0 so that |Yt| is condi-
tionally a semimartingale satisfying the above boundedness conditions). Fix
some η > 0. The function f is convex on the arc [O, y0]; its right derivative
f ′ is a right continuous non decreasing function, and we can choose a subdi-
vision ζ = (zk; 0 ≤ k ≤ K) of the arc [O, y0] such that the oscillation of f ′

on each arc [zk, zk+1) is at most η. The piecewise affine function defined on
this arc by interpolation from f can be written as

φζ(y) =
K−1∑
k=0

(
f(zk) + λkδ(zk, y)

)
1(zk,zk+1](y)

=
K−1∑
k=0

ρkδ(zk, y)1(zk,y0](y)

where ρk = λk − λk−1 ≥ 0 (put λ−1 = 0), and

f ′(zk) ≤ λk ≤ f ′(zk) + η.

For 0 ≤ k ≤ K−1, let z0
k be the connected component of N \{zk} containing

y0, and put z0
K = ∅. Then φζ coincides on [O, y0] with the function

fζ(y) =
K−1∑
k=0

(
f(zk) + λkδ(zk, y)

)
1z0

k\z
0
k+1

(y)

=
K−1∑
k=0

ρkδ(zk, y)1z0
k
(y) (6.2.2)

which is convex on N . Moreover, for y in z0
k \ z0

k+1 such that |y| ≤ C, one
has

f(y) ≥ f(zk) + f ′(zk)δ(zk, y)

≥ f(zk) + (λk − η)δ(zk, y)

= fζ(y)− η δ(zk, y)

≥ fζ(y)− 2η C. (6.2.3)

On the other hand, from Lemma 3.1.5, the process

δ(zk, Yt)1z0
k
(Yt) = δ(zk, y0) +

∫ t

0

1z0
k
(Ys)d|Ys|+

1

2
Lk

t
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is a semimartingale, so, by applying (6.2.2),

fζ(Yt) = fζ(y0) +

∫ t

0

(K−1∑
k=0

ρk1z0
k
(Ys)

)
d|Ys|+ At

for a non decreasing process At. One has

K−1∑
k=0

ρk = λK−1 =
f(zK)− f(zK−1)

δ(zK−1, zK)
≤ 1

(recall that f is non expanding), so

fζ(y0)− E
[
fζ(Yt)

∣∣ F0

]
≤ E

[∫ t

0

|dVs|
∣∣ F0

]
,

where Vt is the finite variation part of |Yt|, and where the conditional prob-
ability is taken for our fixed Y0 = y0. From (6.2.3) and since fζ(y0) = f(y0),
we have

f(y0)− f(Yt) ≤ fζ(y0)− fζ(Yt) + 2η C, (6.2.4)

so

f(y0)− E
[
f(Yt)

∣∣ F0

]
≤ E

[∫ t

0

|dVs|
∣∣ F0

]
+ 2η C.

We can let η tend to 0, and allow y0 to vary, so

f(Y0)− E
[
f(Yt)

∣∣ F0

]
≤ E

[∫ t

0

|dVs|
∣∣ F0

]
.

If we write a similar inequality for any time interval, and by summing these
inequalities for the intervals [tj, tj+1] of a subdivision of [0, t], we obtain

E
∑

j

(
f(Ytj)− E

[
f(Ytj+1

)
∣∣ Ftj

])+

≤ E
∫ t

0

|dVs| ≤ C.

This implies as in the proof of Proposition 3.2.3 that f(Yt) is a quasimartin-
gale, and therefore a semimartingale.

In particular, we see that the semimartingale property of |Yt| = δ(O, Yt)
does not depend on the choice of O.

Corollary 6.2.5. In Proposition 6.2.1, we can replace |Yt| by γ(Yt), where
γ is any Busemann function (6.1.2).
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Proof. Suppose that γ(Yt) is a semimartingale, where γ is the Busemann
function associated to a ray R. We can again assume that Yt lives in a
bounded subset N0 of N . Let O be a point in the unbounded connected
component of R \ N0. Then |Yt| = δ(O, Yt) is equal to γ(Yt) modulo an
additive constant, and is therefore a semimartingale. Thus we can apply
Proposition 6.2.1.

Example 6.2.6. Consider the measurable star YS1
of Example 6.1.8. Walsh

processes Xt can be constructed similarly to Example 3.0.1 on this space by
choosing a probability µ on the circle, see [34]. As it was the case for Y`,
they behave like a Brownian motion on each ray, and when they arrive at O,
they choose a ray according to µ. Then |Xt| is a reflected Brownian motion,
so Xt is a semimartingale.

Example 6.2.7. Consider the measurable tree G of Example 6.1.9, and the
subtree G0 = {y;Sy = 0}. The Brownian snake ([22, 23]) and the Poisson
snake (see for instance [1]) are two diffusions Xt on G0 such that the lifetime
TXt (the height of the snake) is a reflected Brownian motion. If we recall
that γ(y) = Ty is a Busemann function, we deduce from Corollary 6.2.5 that
these snakes are semimartingales.

Example 6.2.8. By a slight modification of the construction, we can also
consider Brownian and Poisson snakes in G with real Brownian height (the
snake becomes a worm). More precisely, if X ′

t is a Brownian or Poisson snake
in G0 with initial value X ′

0 = O defined by SO = TO = 0, a snake Xt in G
with initial value X0 = x can be constructed as follows. The height TX′

t
is a

reflected Brownian motion that we write as

TX′
t
= Bt − inf

s≤t
Bs

for a standard real Brownian motion Bt, and Xt is defined by

TXt = Tx +Bt, SXt = Sx ∧ inf
{
TXs ; 0 ≤ s ≤ t

}
,

and
ωXt(SXt + u) = ωX′

t
(u).

These diffusions are again semimartingales and will be further studied later.
Notice that the Brownian snake lives in the subtree Gc of x such that ωx is
continuous on [Sx, Tx).

Example 6.2.9. Consider a complete separable tree without leaves, choose an
end ξ, and let γξ be the corresponding Busemann function (6.1.2). Evans
has constructed in [13] a family of diffusions Xt on this space, so that γξ(Xt)
is a real Brownian motion. They are semimartingales.
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In the above examples, the trees had no leaf. On the other hand, when
the tree has many leaves, the semimartingale property is seldom satisfied by
diffusions. Let us give an example.

Example 6.2.10. Consider the star and the diffusion Xt of Example 5.3.7.
Fix a point A 6= O and let Xt start at O and stop at the first hitting time τA
of A (the process is recurrent and τA is almost surely finite). We are going to
prove that Xt is not a semimartingale by checking that the local time of |Xt|
at point O and time τA should be infinite. The local time at O on the segment
containing A is some positive variable LA. If N0 is a subtree consisting of n
segments and containing A, the trace of X on N0 is the Walsh process with
isotropic choice at O and reflection at the endpoints. In particular, the local
times at O on the different segments are equal, so the total local time is equal
to nLA. By letting n ↑ ∞, we see that the total local time should be infinite.

6.3 Quasimartingales

Quasimartingales can be defined as in Definition 3.2.1, and one can wonder
whether the first two conditions of Proposition 3.2.3 are again equivalent.
One can indeed prove similarly that quasimartingales are transformed into
real quasimartingales by measurable Lipschitz convex functions (in particular
they are semimartingales). However, the converse is true for finite trees, but
is not evident on infinite trees; we can actually describe a counterexample for
a non separable tree. This shows that quasimartingales are probably difficult
to handle on general non positively curved spaces.

Example 6.3.1. Consider the Brownian snake Xt in G of Example 6.2.8. Let
X0 = x0 and let us look for the barycentre B[Xt]. Consider the end ξ associ-
ated to the ray {Sy = Ty ≤ 0} and its Busemann function γ(y) = Ty; the first
common ancestor y∧y′ for this end has been described in Example 6.1.9. Let
x be some point of G; the path ωXt has a part which is common with ωx0 ,
and the other part is governed by the Wiener measure, so has almost surely
no interval common with ωx. This implies that the only intervals where ωx

and ωXt can coincide are those where ωx and ωx0 coincide, so x∧ x0 is in the
arc joining x and Xt, and

δ(x,Xt) = δ(x, x ∧ x0) + δ(x ∧ x0, Xt).

We want to minimise the quadratic mean of the left hand side, and it is clear
that we must have x = x ∧ x0, so x = B[Xt] should be an ancestor of x0.
We have to compute Tx, and we know that Tx ≤ Tx0 . The fact that x is an
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ancestor of x0 implies that x0 ∧Xt is in the arc [x,Xt], so we have

δ(x,Xt) = δ(x, x0 ∧Xt) + δ(x0 ∧Xt, Xt)

=
∣∣∣Tx − inf

s≤t
TXs

∣∣∣ + TXt − inf
s≤t

TXs .

Moreover, we have TXs = Tx0 +Bs for a Brownian motion Bs, so

δ(x,Xt) =
∣∣∣Tx − Tx0 − inf

s≤t
Bs

∣∣∣ +Bt − inf
s≤t

Bs.

The difference δ(x0, x) = Tx0 − Tx is obtained by minimising the quadratic
mean of this variable, and the scaling property of the Brownian motion shows
that δ(x0, x) = c

√
t. More generally,

δ
(
Xs,B[Xt|Fs]

)
= c

√
t− s,

so Xt is not a quasimartingale. However, γ(Xt) = TXt is a real Brownian
motion, and

γ(x) + δ(A, x) = 2δ([A, ξ), x) + γ(A)

for any point A. The process δ([A, ξ), Xt) is from Lemma 3.1.5 a submartin-
gale, so δ(A,Xt) is also a submartingale. The method used in Proposition
6.2.1 enables to deduce that f(Xt) is a quasimartingale for any Lipschitz
convex function, so Proposition 3.2.3 does not hold true for this space.

6.4 Continuous martingales

Continuous martingales are defined as in Definition 3.3.3 (one has to restrict
to measurable functions f). Proposition 3.3.10 again holds true (a limit in
probability of martingales is a martingale). The analogue of Proposition
3.3.4 is given as follows.

Proposition 6.4.1. In a measurable complete tree N , a continuous adapted
process Yt is a martingale if and only if γ(Yt) is a local submartingale for any
basic convex function γ of type (6.1.2) for an end or (6.1.4) for a leaf.

Proof. We have to prove that the condition is sufficient. Fix some point O,
a connected component N0 of N \{O}, and let us first prove that |Yt|1N0(Yt)
is a local submartingale. We suppose that O is not a leaf (otherwise this is
included in the assumption), we choose an end or a leaf of N which is also an
end or leaf of N \ N0, and we let γ be the basic convex function associated
to this end or leaf. By applying Lemma 3.1.5, we have

|Yt|1N0(Yt) = |Y0|1N0(Y0) +

∫ t

0

1N0(Ys)dγ(Ys) +
Lt

2
,
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so the left hand side is a local submartingale. By adding expressions of this
type, we can consider functions fζ of type (6.2.2) and deduce that fζ(Yt) is a
local submartingale. Now consider a measurable Lipschitz convex function f
and let us study f(Yt). We can restrict ourselves to the case where Yt lives in
a bounded part of N , and by modifying f outside this part, we can suppose
that f is minimal at some point O. We apply the method of Proposition
6.2.1 and in particular (6.2.4) with η ↓ 0 to deduce that

f(Y0) ≤ E
[
f(Yt)

∣∣ F0

]
.

A similar inequality for more general time intervals shows that f(Yt) is a
submartingale.

Example 6.4.2. As in Proposition 3.3.4, on a finite tree, a continuous mar-
tingale is a process which is a local martingale on edges and which, when
hitting a vertex, chooses no edge with probability greater than 1/2 (in the
sense of (3.3.5)).

Corollary 6.4.3. Let Yt be a continuous adapted process. If γ(Yt) is a local
martingale for some basic convex function γ, then Yt is a martingale.

Proof. Suppose for instance that γ = γξ for some end ξ, and let us check
that γξ′(Yt) is a local submartingale for other ends ξ′ (the case of leaves is
dealt with similarly). Consider the line (ξ, ξ′). By applying Lemma 3.1.5, we
check that δ((ξ, ξ′), Yt) is a local submartingale, and we conclude by means
of (6.1.5).

Example 6.4.4. The Evans processes (Example 6.2.9) are clearly martingales
from Corollary 6.4.3.

Example 6.4.5. In G, if we use the Busemann function γ(y) = Ty (see Exam-
ple 6.1.9), Corollary 6.4.3 shows that Brownian and Poisson snakes (Example
6.2.8) are martingales. On the other hand, if we consider the snakes Xt in G0

(Example 6.2.7), the process TXt is a reflected Brownian motion, so we have
to study more carefully the behaviour of Xt when it is at the point O defined
by TO = 0. It appears that the Brownian snake is again a martingale, but
not the Poisson snake.

Proposition 6.4.6. If (Yt; t > 0) is a continuous martingale of class (D)
on a complete tree N , then Yt has almost sure limits as t ↓ 0 and t ↑ ∞, and
(Yt; 0 ≤ t ≤ ∞) is a martingale of class (D).

Proof. If γ is a distance or Busemann function, then γ(Yt) is a submartingale
of class (D), so converges. Thus Yt converges from Lemma 6.1.12. The
extension of the martingale property to the compact interval [0,∞] is not
difficult.
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6.5 Martingales with prescribed limit

The uniqueness of a martingale of class (D) with prescribed limit is stated
in the following result which is proved like the results it refers to.

Proposition 6.5.1. If δ is measurable on N×N , the statements of Proposi-
tion 3.3.11 and Corollaries 3.3.12 and 3.3.13 hold true for measurable trees
(for Corollary 3.3.13 we suppose that the tree is complete and separable).

For the existence, we have to extend the results of Sections 4 and 5.
However, this can be done only for separable trees.

Theorem 6.5.2. The results of Sections 4.1 and 4.2 (Theorem 4.1.4, Corol-
laries 4.1.8 and 4.1.13, Propositions 4.2.1 and 4.2.2) hold true when N is a
separable complete tree.

Proof. We only consider Theorem 4.1.4. If N is compact, the proof is similar.
Otherwise, one considers a dense sequence (yk) and the compact subtrees
NK generated by (yk; k ≤ K). There exist martingales converging to the
projections Y K

∞ of Y∞ on NK , and at the limit, we solve the problem on N
by applying the analogue of Corollary 3.3.13.

However, this result cannot be extended to non separable measurable
trees.

Example 6.5.3. Consider the star N = YS1
of Example 6.1.8, and let us

look for a martingale converging to a variable Y . If N is endowed with
its Borel σ-algebra, we have seen that Y must be supported by a separable
subtree, so we are reduced to the above result. On the other hand, if we use
Borel measurability for the Euclidean topology, the existence of a continuous
martingale does not always hold; suppose for instance that Y is the value at
time 1 of a 2-dimensional Brownian motion; then

P[Θ(Yt) = Θ(Y )] = 0

for any adapted process Yt and any t < 1; thus Yt cannot converge to Y as
t ↑ 1 (for the tree metric) because this probability should converge to 1; this
means that there does not exist any adapted continuous process with value
Y at time 1.

One can also adapt the Dirichlet form technique to separable complete
trees. The space Db(N) is defined as in Definition 5.1.9. and we have the
following analogue of Lemma 5.1.10.
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Lemma 6.5.4. Let N be a separable complete tree which is embedded into `1

as in Lemma 6.1.6. Then a function f : M → N is in Db(N) if and only if
its components fi are in Db and the series

∑
E(fi) converges. In this case,

(5.1.11) holds true.

Proof. Use the notations of Lemma 6.1.6. Lemma 5.1.10 is easily extended
to finite trees, so in particular to the finite subtrees Nn of N . Define

gn(x) =
n∑

i=1

fi(x)

which is the projection of f(x) on Nn. If f is in Db(N), it is clear from the
definition of this space that fi should be in Db, gn should be in Db(N), and
E(gn) ≤ E(f). Since gn is Nn-valued, we have

E(gn) =
n∑

i=1

E(fi),

so
∑
E(fi) converges and is dominated by E(f). Conversely, suppose that∑

E(fi) converges, and let φ : N → R be a non expanding function. Then
φ ◦ gn is in Db and

E(φ ◦ gn) ≤ E(gn) ≤
∑

E(fi).

The sequence (φ◦gn) converges to φ◦f , so this function is in Db and E(φ◦f)
is dominated by

∑
E(fi). Thus the definition of Db(N) shows that f is in

this space and E(f) is dominated by
∑
E(fi). To complete the proof, we

have to study |f |. We have

E
(
|f | − |gn|

)
= E

(∑
i>n

fi

)
≤ lim inf

m
E
( m∑

i=n+1

fi

)
=

∑
i>n

E(fi)

which converges to 0, and E(|gn|) is
∑n

1 E(fi); we easily deduce that E(|f |)
is

∑
E(fi).

In particular, projection on the finite subtrees Nn defines an approxima-
tion procedure for elements of Db(N) (they can be approximated for the E
seminorm).

Lemma 6.5.5. Lemma 5.2.1 holds true for separable trees.
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Proof. Write again the tree as in Lemma 6.1.6, and let us check formula
(5.2.2) for the finite trees Nn. Consider an edge [zi, zi + αiei] with αi > 0,
and the oriented function ψi of (2.2.3) associated to the connected component
of Nn \ {zi} containing zi + αiei. Then, if w is the midpoint of u and v, we
have

wi = min
((
ψi ◦ u+ ψi ◦ v

)+ /
2, αi

)
.

This is the analogue of (5.2.3). Then one proceeds as in Lemma 5.2.1 with
ψi instead of γi, and

Ai =
{
x ∈M ; [u(x), v(x)] ∩ [zi, zi + αiei] 6= ∅

}
.

The measure µ<wi> is supported by the disjoint sets {0 < wi < αi}, and
each of these sets is included in Ai. We deduce (5.2.5) and (5.2.2) for Nn,
and extend the result to N by approximating u and v in E-norm with their
projections on Nn.

Theorem 6.5.6. All the results stated in subsections 5.2 and 5.3 hold true
for separable complete trees.

Proof. Proposition 5.2.6 is proved similarly. For the martingale property of
Theorem 5.2.8, we have to prove that (γ◦h)(Xt∧τ ) is a submartingale for any
basic convex function γ. If γ is a Busemann function, we use a perturbation
hε as in Theorem 5.2.8; by using the embedding of N into `1 (Lemma 6.1.6),
we have

γ(y) =
∑

λiyi

for some λi = ±1, so E(f) = E(γ ◦ f) for any f of Db(N), and we conclude
as in Theorem 5.2.8. If γ = γy0 for some leaf y0, it is difficult to use the
same perturbation hε (it will not be well defined if h is too close to the
leaf). However, we can append a ray to N at the point y0; the function
γy0 becomes a Busemann function for the new tree; the function h is also
energy minimising with respect to the new tree, so we again deduce the
submartingale property, and the extension of Theorem 5.2.8 is checked. For
Corollary 5.2.9, the limit as t ↓ 0 is obtained from Lemma 6.1.12. The other
results are proved as in Section 5.

Remark 6.5.7. If now we consider connected spaces N which look locally like
trees (namely graphs), the definition of continuous martingales can be lo-
calised similarly to manifolds. The uniqueness result (Corollary 3.3.12) does
not hold any more since there can exist loops, and therefore closed geodesics;
if (g(t); 0 ≤ t ≤ 1) is a loop and if Bt is a real Brownian motion stopped
when it hits 1, then Yt = g(Bt) and Y ′

t = g(0) are two different bounded

57



martingales with limit g(0). For the existence, we can use a method similar
to Riemannian manifolds with nonpositive sectional curvature, namely use
the universal cover. Here we associate a tree to the graph N ; more precisely,
we fix a point O and the tree NO is the set of geodesics (g(t); 0 ≤ t ≤ L) with
unit speed and origin g(0) = O, endowed with a distance similar to (6.1.10);
the map π : NO → N defined by π(g) = g(L) is a projection. If Y∞ is an
integrable N -valued variable, we can find an integrable NO-valued variable
Y ′
∞ such that π(Y ′

∞) = Y∞, and construct the NO-valued martingale Y ′
t of

class (D) with limit Y ′
∞; then Yt = π(Y ′

t ) is a N -valued martingale with limit
Y∞.

58



7 Coupling of diffusions on trees

In Section 4, we have seen that when the probability space is generated by
a diffusion on a separable metric space (M,d), then the construction of N -
valued continuous martingales and the properties of the semigroup Qt can be
deduced from coupling properties of the diffusion. We now explain how one
can couple some diffusions when M is a tree (or more generally a graph) so
that (4.1.6) is satisfied ((4.1.5) is generally easy to get); notice however that
d will not always be the tree distance (we have to use another one when M
is a non separable tree).

7.1 Coupling of spiders

As a first example, suppose that M is our baby tree Y`, and let us construct a
coupling Px,x′ for Walsh processes (Example 3.0.1); let σ be the first meeting
time, and suppose that the two processes Xt and X ′

t coincide after σ. If Lt

and L′t are the total local times at O, then, in the isotropic case pi = 1/`, by
applying the method used in Proposition 3.3.11, it is possible to prove (see
Lemma 3.3 of [33]) the equality modulo martingales

d(Xt, X
′
t) ∼

`− 2

2`
(Lt∧σ + L′t∧σ).

In particular, if we want the expectation of this expression to be small, then
the processes should meet before or shortly after the first one hits O; one
cannot use a non coalescent coupling. Thus we have to construct a coupling
so that the probability of {σ > t} is small. There are several possibilities; we
can use independent processes, or try to adapt Kendall’s technique. We will
describe a simple coupling for which the probabilities are easily estimated.
To simplify the notation, we will subsequently omit the superscript in Px,x′ .

Proposition 7.1.1. If Xt is a Walsh process on M = Y`, then there exists
an admissible coalescent coupling so that the meeting time σ satisfies

Px,x′ [σ > t] ≤ 3
d(x, x′)√

πt
. (7.1.2)

In particular, we can apply Theorem 4.1.4 and other results of Section 4 when
Xt is a Walsh process. The nonlinear semigroup Qt is regularising (Qtg is
Lipschitz for any t > 0 and any bounded map g).

Proof. We consider separately three cases according to the position of the
initial points x and x′,
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Figure 6: An example of coupling on Y3.

1. one of the initial points is O,

2. the initial points are not in the same ray,

3. the initial points are in the same ray.

In all the proof, we will denote by Ta the law of the first hitting time of a by
a standard Brownian motion. Notice that

P[Ta > t] =
1√
2πt

∫ a

−a

e−x2/(2t)dx ≤ a

√
2

πt
. (7.1.3)

First case. Suppose for instance that x = O and x′ = ae1 for a > 0 (Figure
6). In a first step, we construct the processes up to the first hitting time σ1

of ae1/2 by X ′
t; notice that this time is distributed like Ta/2. Up to σ1, we

want d(x,Xt) and d(x′, X ′
t) to be identical reflected Brownian motions, so,

for each excursion of this process, we have to choose the side of X ′
t on R1

with respect to x′, and the ray in which Xt evolves. This can be done from
a Walsh process ξt on a star Y2` with rays R±

i by putting, up to σ1,

Xt = |ξt|ei, X ′
t =

(
a± |ξt|

)
e1 on {ξt ∈ R±

i }.

The Walsh process ξt is determined by the probabilities p±i of R±
i which

should satisfy

p+
i + p−i = pi,

∑
i

p+
i =

∑
i

p−i = 1/2.

This means that we are reduced to find a coupling between a variable in
{1, . . . , `} with law (pi), and a variable in {+,−} with law (1/2, 1/2). Then

σ1 = inf
{
t ≥ 0; ξt ∈

{
ae−i /2; 1 ≤ i ≤ `

}}
,
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and the processes Xt and X ′
t meet at this time if ξσ1 = ae−1 /2; this happens

with probability

P[Xσ1 = X ′
σ1

] = p−1

/ ∑
i

p−i = 2p−1 .

If the processes X and X ′ do not meet at σ1, then at this time both of
them are at a distance a/2 from the origin, but on two different rays R1 and,
say, R2. In this case, we extend the coupling after σ1 by using a standard
coalescent Brownian coupling on the geodesic R1 ∪ R2 (Example 4.1.10),
namely

Xt =
(a

2
+Bt −Bσ1

)
e1, X ′

t =
(a

2
+Bt −Bσ1

)
e2

for a Brownian motion Bt; the processes meet at the first hitting time σ2 of
O by X ′

t, which is distributed like Ta. Thus σ is σ1 or σ2 with σ1 < σ2 ∼ Ta,
so

P[σ > t] ≤ P[Ta > t] ≤ a

√
2

πt
(7.1.4)

with a = d(x, x′), and (7.1.2) is proved.

Second case. Let x and x′ be in two different rays, say R and R′, and suppose
for instance that |x| ≤ |x′|. Then we consider the usual coalescent Brownian
coupling on R∪R′ up to the first time σ0 at which Xt hits O, and the coupling
of the first case after this time. The meeting time is again dominated by the
first hitting time ofO byX ′

t, so (7.1.4) holds with a replaced by |x′| ≤ d(x, x′),
and (7.1.2) is again proved.

Third case. Let x and x′ be in the same ray, say R1, and suppose for instance
that |x| < |x′|. We consider the coalescent Brownian coupling on R1 up to
the first time σ0 at which either the processes meet, or Xt hits O; in the
latter case, which happens with probability

P
[
Xσ0 = O

]
=
|x′| − |x|
|x′|+ |x|

=
d(x, x′)

|x′|+ |x|
,

we use after σ0 the coupling of the first case with a = |x|+ |x′|. The time σ0

is dominated in law by Td(x,x′)/2, so

P[σ > t] ≤ P[σ0 > t/2] + P[σ − σ0 > t/2]

≤ P
[
Td(x,x′)/2 > t/2

]
+

d(x, x′)

|x′|+ |x|
P
[
T|x|+|x′| > t/2

]
≤ d(x, x′)√

πt
+ 2

d(x, x′)

|x′|+ |x|
|x|+ |x′|√

πt
= 3

d(x, x′)√
πt

.
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Remark 7.1.5. In order to minimise σ in the first case, it seems reasonable
to maximise p−1 . For instance, in the isotropic case pi = 1/3 (for ` = 3), the
probabilities p±i can be specified by

1 2 3
+ 0 1/4 1/4
− 1/3 1/12 1/12

The same procedure can be applied to the star YN with countably many
rays. If now we consider Walsh processes on M = YS1

(Example 6.2.6), we
cannot use the tree distance d1 (the space is not separable), so we identify
M with R2 and use the Euclidean distance d2.

Proposition 7.1.6. Consider M = YS1
and a Walsh process on it. If M

is endowed with the Euclidean distance of R2, one can construct a coupling
satisfying the requirements of Theorem 4.1.4; in particular, the semigroup Qt

exists. Moreover, if g is bounded and t > 0, then Qtg is Lipschitz for the tree
distance.

Proof. We use the coupling of Proposition 7.1.1. Then (7.1.2) holds for the
tree distance d1, but not for d2, because x and x′ can be close to each other
for d2 but not for d1; this happens when they are not in the same ray (second
case of the above proof). So suppose that the initial points are x = ξe and
x′ = ξ′e′ with |e| = |e′| = 1, e 6= e′ and 0 < ξ ≤ ξ′; then, up to the first
hitting time σ0 of O by Xt, one has

d2(Xt, X
′
t) = |(ξ′ +Bt)e

′ − (ξ +Bt)e|
≤ ξ′ − ξ + (ξ +Bt)|e′ − e|.

The last term is a martingale so

E
[
d2(Xt∧σ0 , Xt∧σ0)

]
≤ ξ′ − ξ + ξ|e′ − e| ≤ C d2(x, x

′).

so (4.1.6) holds for d2 if we restrict the expectation to {σ0 ≥ t}. On the
other hand, on {σ0 < t}, we can estimate the meeting time σ as in (7.1.4) to
get

P
[
σ > t

∣∣ F ′′
σ0

]
≤ (ξ′ − ξ)

√
2

π(t− σ0)
,

and by proceeding as in Corollary 4.1.8, we obtain

E
[
d2(Xt, X

′
t) ∧ 1

∣∣ F ′′
σ0

]
≤ φ(ξ′ − ξ) ≤ φ(d2(x, x

′))

with lim0 φ = 0. We deduce (4.1.6) and the conclusion of Theorem 4.1.4. The
regularising property of Qt for the tree distance d1 is obtained from (7.1.2)
which holds for d1.
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Then we can consider finite graphs M where each point has a neigh-
bourhood which is isometric to a neighbourhood of the origin in a star. The
coupling method of Proposition 7.1.1 can be localised in order to study Walsh
processes on M . It is sufficient to consider the case where x and x′ are close
to each other; in this case, there is at most one vertex between them, and
there is a vertex O which minimises the distance to x. We consider the subset
of M consisting of the edges starting at O, and apply the coupling of Propo-
sition 7.1.1 on this subset; this can be done up to the first time at which
one of the processes hits a vertex different from O; the probability that this
occurs before the meeting time σ is small, so the requirements of Theorem
4.1.4 are again fulfilled.

7.2 Coupling of snakes

Let us describe a coupling technique which can be used for some diffusions
on trees, including the Brownian snake (Examples 6.2.7 and 6.2.8) and the
Evans process (Example 6.2.9).

Fix a measurable tree M (recall Definition 6.1.1) and a height function γ
which is either a Busemann function (6.1.2) or a distance function (6.1.4). If
Z is a process, we will denote by Zst the restricted process (Zu; s ≤ u ≤ t).

Definition 7.2.1. A continuous diffusion Xt on M will be called a snake
process with height Γt = γ(Xt) if, under Px, the relations between conditional
laws

L(Γt∞|Γ0t) = L(Γt∞|Γt) (7.2.2)

and
L(Xst|X0s,Γ0∞) = L(Xst|Xs,Γst) (7.2.3)

hold for s ≤ t.

Condition (7.2.2) means that the process Γt is a Markov process for its
natural filtration; condition (7.2.3) means that the conditional law of X given
Γ is Markovian, and that estimating (Xs; s ≤ t) from Γ only uses the values
of Γ up to time t (write (7.2.3) for s = 0).

Lemma 7.2.4. If Xt is a snake with height Γt, then Γt and Xt are Markov
processes for the filtration of X.
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Proof. We have, for s ≤ t and bounded measurable f and φ,

E
[
f(Γt∞)φ(X0t)

]
= E

[
f(Γt∞)E

[
φ(X0t)

∣∣ Γ0∞
]]

= E
[
f(Γt∞)E

[
φ(X0t)

∣∣ Γ0t

]]
= E

[
E

[
f(Γt∞)

∣∣ Γt

]
φ(X0t)

]
where we have used (7.2.3) for s = 0 in the second line, and (7.2.2) in the
third line. We deduce that Γt is Markovian for the filtration of X. On the
other hand,

E
[
f(Xst)

∣∣ X0s

]
= E

[
E

[
f(Xst)

∣∣ X0s,Γ0∞
] ∣∣∣ X0s

]
= E

[
E

[
f(Xst)

∣∣ Xs,Γst

] ∣∣∣ X0s

]
= E

[
f(Xst)

∣∣ Xs

]
where we have used (7.2.3) in the second line and the Markov property of Γ
in the third line.

Notice that when Γt decreases, then Xt is forced to follow the branch of
its ancestors; on the other hand, when Γt increases, then Xt has a choice of
branches at each vertex, and this is where the conditional law of X given Γ
is involved.

Example 7.2.5. On the star Y`, Walsh processes Xt are snakes for the height
function δ(O, .), and Γt is a reflected Brownian motion. One can also choose
for the height function any of the Busemann functions γi, and in this case Γt

is a skew Brownian motion. Coupling for these diffusions have already been
studied in Proposition 7.1.1.

Example 7.2.6. On a separable complete tree without leaves, Evans processes
(Example 6.2.9) are snakes for the Busemann function γξ, and Γt is a real
Brownian motion.

Example 7.2.7. The Brownian and Poisson snakes on G (Example 6.2.8) are
snakes for the Busemann function associated to the end {Sy = Ty ≤ 0}, and
Γt = TXt is a real Brownian motion.

Example 7.2.8. The Brownian and Poisson snakes on G0 (Example 6.2.7) are
snakes for the height function γ = δ(O, .) where O is the point SO = TO = 0,
and Γt = TXt is a reflected Brownian motion.
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Proposition 7.2.9. Consider an Evans process on a separable complete tree
without leaves. Then there exists a coalescent coupling such that the meeting
time σ satisfies

P[σ > t] ≤ C√
t
d(x, x′)

(
1 + log+(

√
t/d(x, x′))

)
. (7.2.10)

In particular, we obtain a regularising semigroup Qt such that Qtg is Hölder
continuous for t > 0.

Proof. The idea is to use a standard Brownian coalescent coupling of the
height processes Γt and Γ′t (notice that Γt and Γ′t have the same filtration),
and then to use a conditionally independent coupling for X and X ′ defined
by

Ex,x′ [f(X)g(X ′)|Γ] = Ex[f(X)|Γ]Ex′ [g(X ′)|Γ′].

Let us prove that this is an admissible coupling such that (X,X ′) is Marko-
vian, and that the first meeting time σ satisfies (7.2.10); then we will modify
(X,X ′) after σ so that they coincide. It is clear that X and X ′ have the
correct law. From the conditional independence and (7.2.3),

E
[
f(Xst)g(X

′
st)

∣∣ X0s, X
′
0s,Γ0∞

]
= E

[
f(Xst)

∣∣ X0s,Γ0∞
]
E

[
g(X ′

st)
∣∣ X ′

0s,Γ0∞
]

= E
[
f(Xst)

∣∣ Xs,Γst

]
E

[
g(X ′

st)
∣∣ X ′

s,Γ
′
st

]
(7.2.11)

= E
[
f(Xst)g(X

′
st)

∣∣ Xs, X
′
s,Γst,Γ

′
st

]
,

so (X,X ′) satisfies a relation similar to (7.2.3). By proceeding as in Lemma
7.2.4, we check that Γ, Γ′ and (X,X ′) are Markovian for the filtration of
(X,X ′). Moreover

E
[
f(Xst)

∣∣ X0s, X
′
0s

]
= E

[
E

[
f(Xst)

∣∣ X0s, X
′
0s,Γ0∞

] ∣∣∣ X0s, X
′
0s

]
= E

[
E

[
f(Xst)

∣∣ Xs,Γst

] ∣∣∣ X0s, X
′
0s

]
= E

[
f(Xst)

∣∣ Xs

]
where we have used (7.2.11) in the second line and

L(Γst|X0s, X
′
0s) = L(Γst|Γs) = L(Γst|Xs)

in the third line, so X is Markovian for the filtration of (X,X ′). The same
property of course holds for X ′, so the coupling is admissible. If γ(x) ≥ u,
denote by Πu(x) the ancestor of x at height u. Notice that Xt = ΠΓt(x) at
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each time at which Γt = infs≤t Γs. Moreover, the first meeting time σ of X
and X ′ is the first time at which

Γt = Γ′t = inf
s≤t

(
Γs ∧ Γ′s

)
∧ γ(x ∧ x′).

Let us estimate this time. By adding a constant to γ, we can suppose for
instance that

γ(x) = a, γ(x′) = −a, γ(x ∧ x′) = −b,
for 0 < a ≤ b = d(x, x′)/2. The process Γt is a Brownian motion starting at
a; the first hitting time σ0 of 0 is also the meeting time of Γ and Γ′ and is
distributed like Ta (the hitting time of a by a standard Brownian motion).
Then let

Γ? = sup
{
Γs; s ≤ σ0

}
= − inf

{
Γ′s; s ≤ σ0

}
which is Fσ0-measurable. The meeting time σ is

σ = inf
{
t ≥ σ0; −Γt ≥ Γ? ∨ b

}
. (7.2.12)

One has
P[σ > t] ≤ P[σ0 > t/2] + P[σ − σ0 > t/2].

The first probability is estimated from (7.1.3) since σ0 ∼ Ta, and for the
second one, notice that conditionally on Fσ0 , the variable σ−σ0 is distributed
like the first hitting time of Γ? ∨ b by an independent Brownian motion, so

P
[
σ − σ0 > t/2

∣∣ Fσ

]
=

2√
πt

∫ Γ?∨b

0

e−z2/tdz.

On the other hand, for z ≥ a, saying that Γ? ≥ z means that the Brownian
process Γt − Γ0 quits the interval [−a, z − a] at the point z − a, so

P[Γ? ≥ z] =
a

z
.

Thus

P[σ − σ0 > t/2] =
2√
πt

∫ +∞

0

P[Γ? ∨ b ≥ z]e−z2/tdz

=
2a√
πt

∫ +∞

b

e−z2/t

z
dz +

2√
πt

∫ b

0

e−z2/tdz

=
2a√
πt

∫ +∞

b/
√

t

e−z2

z
dz +

2√
πt

∫ b

0

e−z2/tdz

≤ C√
t
a
(
1 + log+(

√
t/b)

)
+

C√
t
b

≤ C ′
√
t
d(x, x′)

(
1 + log+(

√
t/d(x, x′))

)
.
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We can deduce (7.2.10).

Proposition 7.2.13. Consider the Brownian snake Xt in Gc of Example
6.2.8, and denote the tree distance by d1. There exists another distance d2

which makes Gc separable, and for which Xt is continuous, measurable and
satisfies the assumptions of Theorem 4.1.4. If Qt is the resulting semigroup,
Qtg is Hölder continuous for the distance d1 for g bounded and t > 0.

Proof. The distance d2 is defined by

d2(x, x
′) = |Tx′ − Tx|+ |Sx′ − Sx|+ sup

Sx∨Sx′≤u≤Tx∧Tx′

|ωx′(u)−ωx(u)|. (7.2.14)

Then Gc is separable, and it is not difficult to check that Xt is continuous
and measurable. We have to construct a coupling satisfying (4.1.6) for d2.
Consider

Gc
− =

{
y ∈ Gc; Sy ≤ 0

}
.

This set acts on Gc as follows; if x ∈ Gc and y ∈ Gc
−, we define z = y ? x in

Gc by
Tz = Tx + Ty, Sz = Sx ∧ (Tx + Sy),

ωz(u) =

{
ωx(u) for Sx ≤ u < Tx + Sy,

ωx(Tx + Sy) + ωy(u− Tx) for Tx + Sy ≤ u < Tx + Ty

if Sx < Tx + Sy, and

ωz(u) = ωy(u− Tx) for Tx + Sy ≤ u < Tx + Ty

otherwise. Intuitively, the action of y consists in erasing the path ωx between
Tx+Sy and Tx, and then in completing this path between Tx+Sy and Tx+Ty

by using ωy as increments. In particular, if O is the point SO = TO = 0, then
O ? x = x. Notice also that

Tx = Tx′ =⇒ d2(y ? x, y ? x
′) ≤ d2(x, x

′). (7.2.15)

If Zt is a Brownian snake with initial value Z0 = O, then Zt lives in G−
and we can check that Zt ? x is a Brownian snake with initial value x (the
Brownian snake can be viewed as a Lévy process). The coupling Px,x′ is then
defined as follows; by viewing Xt as a snake, we first use the coupling of
Proposition 7.2.9 up to the time σ of (7.2.12); after that time, we consider
an independent Brownian snake Zt with Z0 = O, and put

Xt = Zt−σ ? Xσ, X ′
t = Zt−σ ? X

′
σ.
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This is an admissible coupling, and (7.2.15) enables to show that

d2(Xt, X
′
t) ≤ d2(Xσ, X

′
σ) ≤ d2(x, x

′)

on {t ≥ σ}. The probability of {σ > t} is estimated by (7.2.10), and an
adaptation of Corollary 4.1.8 enables to obtain (4.1.6). The regularising
property of Qt is obtained with the method of Proposition 7.2.9.

Remark 7.2.16. A modification of the method enables to study the Brownian
snake in G0.

Remark 7.2.17. The Poisson snake is more delicate to study. It lives in the
subset of G with piecewise constant integer-valued paths, but (7.2.14) does
not make this space separable. We can use the distance

d2(x, x
′) = |Tx′ − Tx|+ |Sx′ − Sx|+

∫ Tx∧Tx′

Sx∨Sx′

1{x(u) 6=x′(u)}du.

However, the above proof cannot be directly extended because (7.2.15) is
false for this distance.
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8 Stochastic calculus with jumps

Let us now study càdlàg processes in trees. We have already considered
càdlàg semimartingales, so let us focus on martingales. The case of smooth
manifolds has been considered in [26]. For trees, we look for a definition
generalising the notion of discrete martingale used in (4.0.1) or [32].

8.1 Martingales with jumps

We have seen in Section 2.3 that the barycentre of a variable is not charac-
terised by the Jensen inequality, but by its semi-localised version. The idea
is to define càdlàg martingales by means of this inequality and by using par-
tially convex functions, similarly to the definition of continuous martingales
using globally convex functions. We again consider a measurable tree N .

Definition 8.1.1. A càdlàg adapted process Yt is said to be a martingale
if the following condition is satisfied; for any connected open subset G of
N , for any ε > 0, for any Lipschitz measurable function f , and for any
stopping times τ0 ≤ τ1, if f is convex on all the geodesics intersecting G and
if δ(Yt, G

c) > ε for τ0 ≤ t < τ1, then f(Yt) is a local submartingale on the
interval [τ0, τ1].

Example 8.1.2. Continuous martingales of Definition 3.3.3 are also martin-
gales in this sense because one can modify f outside G in order to obtain a
function which is convex on N .

Example 8.1.3. If (Yn; n ∈ N) is a discrete martingale in the sense that
it is integrable and Yn is B[Yn+1|Fn], then it follows from Proposition 2.3.5
that the piecewise constant process which is equal to Yn on [n, n + 1) is a
martingale for the piecewise constant filtration.

Remark 8.1.4. In Definition 8.1.1, we can use

τ ε
1 = inf

{
t ≥ τ0; δ(Yt, G

c) ≤ ε
}

and we obtain the stopped process V ε
t = f(Yt∧τε

1
) which is a local submartin-

gale for t ≥ τ0. If we let ε ↓ 0, we obtain a limiting local submartingale Vt,
but Vt is not always f(Yt∧τ0

1
). It is equal to f(Yt) on {τ0 ≤ t < τ 0

1 }, and on

{t ≥ τ 0
1 }, it is f(Yτ0

1
) if Yτ0

1− is in G, and it is f(Yτ0
1−) otherwise.

Martingales are of course semimartingales, and by using f(y) = |y|, we see
that they are locally of class (D). If f is a Lipschitz measurable function which
is a difference of convex functions, then f(Yt) is a semimartingale which is the
sum of a local martingale and a predictable process V f

t with finite variation,
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and if f is convex on the geodesics intersecting G, then Definition 8.1.1 says
that V f should not decrease on {Y− ∈ G}.

Similarly to Proposition 6.4.1, we are going to check that it is sufficient
to consider some functions f .

Proposition 8.1.5. In a complete measurable tree, let Yt be a càdlàg adapted
process which is locally of class (D), and suppose that the condition of Defi-
nition 8.1.1 holds true for oriented functions f = ψ(yα

0 , .) and G = yα
0 (recall

(2.2.3)). Then Yt is a martingale.

Proof. By a stopping argument, we can suppose that Yt is of class (D). We
first check as in Proposition 6.4.1 that if O is a point and if N0 is a connected
component of N \ {O}, then

Vt = |Yt|1N0(Yt) (8.1.6)

is a submartingale. Notice that this process is the positive part of Ut =
ψ(N0, Yt). We follow the method of Lemma 3.1.5 and introduce τ ′0 = 0,

τk = inf
{
t ≥ τ ′k−1;Vt ≤ ε/2

}
, τ ′k = inf

{
t ≥ τk;Vt ≥ ε

}
.

Our assumption implies that Ut is a submartingale on [τ ′k−1, τk]; we deduce
that Vt∨ε = Ut∨ε is also a submartingale on these intervals. On the intervals
[τk, τ

′
k], the process Vt ∨ ε is non decreasing (it is ε up to τ ′k and can have a

positive jump at this time), so this process is a submartingale on the whole
time interval. By letting ε ↓ 0, we deduce that Vt is a submartingale. Now
consider a function f , a subset G as in Definition 8.1.1, and stop Yt when it
is at a distance less than ε from the complement of G. We suppose that G
is bounded, that y0 is in G, and we want to prove that

E[f(Yt)|F0] ≥ f(y0) (8.1.7)

for Y0 = y0 (other time intervals are dealt with similarly). There are two
cases.
First case. If the restriction of f to G is minimal at some point O of G, we
can consider the arc [O, y0] and introduce the function fζ of (6.2.2) associated
to a subdivision of the arc. The fact that f is convex on geodesics containing
O implies that (6.2.3) and (6.2.4) again hold. The processes δ(zk, Yt)1z0

k
(Yt)

are of type (8.1.6), so are submartingales. Thus fζ(Yt) is a submartingale,
and by letting η ↓ 0 in (6.2.4), we obtain (8.1.7).
Second case. Otherwise, the infimum of f on G is obtained at some point
O on the boundary. We again consider the arc [O, y0] and a function fζ
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similar to (6.2.2), but the first term ρ0δ(z0, y)1z0
0
(y) (where z0 = O and z0

0 is
the connected component of N \ {O} containing y0) has to be replaced by
ρ0ψ(z0

0 , y). Then (6.2.3) holds with this change. The process ψ(z0
0 , Yt) is a

submartingale from our assumption, so fζ(Yt) is again a submartingale, and
we conclude as in the first case.

Remark 8.1.8. Not all the points y0 have to be considered in Proposition
8.1.5 because some functions ψ(yα

0 , .) are obtained by translation from each
other; in the case of a finite tree with ` edges, we only need 2` functions; for
the star Y`, we need the functions ±γi.

Proposition 3.3.10 (the limit in probability of a sequence of martingales
is a martingale) cannot be extended to càdlàg processes without additional
integrability conditions, but this is not surprising since it is already false for
real martingales (consider Y n

t = Zn
t − t where Zn

t is a Poisson process with
intensity 1/n and jumps of size n, which converges to Yt = −t).

The analogue of Proposition 6.4.6 is the following one.

Proposition 8.1.9. If (Yt; 0 < t < ∞) is a càdlàg martingale of class (D)
in a separable complete tree N , then Yt has almost sure limits as t ↓ 0 and
as t ↑ ∞.

Proof. Contrary to the continuous case (where it was sufficient to apply
Lemma 6.1.12 for the two convergences), we need separate proofs.
Convergence as t ↓ 0. We use the embedding of N into `1 of Lemma 6.1.6,
and the subtrees Nn. The projection onto Nn is defined by Πn(y) =

∑n
1 yi.

For ε > 0, we have

Eδ(Y1, Nn) = Eδ(Y1,Πn(Y1)) = E
∞∑

i=n+1

|Y i
1 | ≤ ε.

if n large enough. On the other hand, the process δ(Yt, Nn) is a submartingale
of class (D), so

P
[

sup
0<t≤1

δ(Yt,Πn(Yt)) ≥
√
ε
]
≤
√
ε.

We deduce that there exists a subsequence such that Πn(Yt) converges al-
most surely uniformly to Yt. But for n fixed, the components of Πn(Yt) are
submartingales of class (D), so they converge as t ↓ 0 and we can conclude.
Convergence as t ↑ ∞. Let γ be a Busemann function (we can append a ray
to N if it has no end). Fix ε > 0, let Zt be the ancestor of Yt at height

γ(Zt) = γ(Yt)− ε,
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let Z0
t be the connected component of N \ {Zt} containing Yt, and put

τ = τ(t) = inf
{
s ≥ t; Ys /∈ Z0

t

}
.

Consider some η < ε which will be chosen later (it will be a function of ε).
We know that γ(Yt) is a submartingale of class (D), so it converges almost
surely, and

P[At] ≤ η with At =
{

sup
s≥t

∣∣γ(Ys)− γ(Yt)
∣∣ ≥ η

}
(8.1.10)

if t is large enough. We consider the oriented distance function ψ(Z0
t , .) which

is convex on geodesics intersecting Z0
t . By applying Remark 8.1.4, we obtain

a process (Vs; s ≥ t) which is a submartingale of class (D); we have

Vs =


ψ(Z0

t , Ys) for t ≤ s < τ ,

ψ(Z0
t , Yτ ) for s ≥ τ and Yτ− 6= Zt,

0 for s ≥ τ and Yτ− = Zt.

(8.1.11)

We know that Vs converges to a V∞, and

ε = Vt = EVt ≤ EVτ . (8.1.12)

Since Y is of class (D), the family of all possible variables Vτ is uniformly
integrable; by applying (8.1.10), we deduce that

E
[
|Vτ |1At

]
≤ φ(η) (8.1.13)

with lim0 φ = 0. On the other hand, on the event Ac
t , the third case of

(8.1.11) cannot happen, so

Vτ = ψ(Z0
t , Yτ ) = −δ(Zt, Yτ ) = γ(Zt)− γ(Yτ ) = γ(Yt)− γ(Yτ )− ε

≤ η − ε (8.1.14)

on Ac
t ∩ {τ <∞}. On Ac

t ∩ {τ = ∞}, we have

Vs = δ(Zt, Ys) = γ(Ys)− γ(Zt) = γ(Ys)− γ(Yt) + ε ≤ η + ε

for s ≥ t, so
Vτ ≤ η + ε. (8.1.15)

By using (8.1.12) and (8.1.13) on At, (8.1.14) on Ac
t ∩ {τ <∞}, (8.1.15) on

Ac
t ∩ {τ = ∞}, we obtain

ε ≤ E
[
Vτ1At

]
+ E

[
Vτ1Ac

t∩{τ<∞}
]
+ E

[
Vτ1Ac

t∩{τ=∞}
]

≤ φ(η)− (ε− η)P
[
Ac

t ∩ {τ <∞}
]
+ ε+ η

72



so

P
[
At ∪ {τ <∞}

]
= P

[
Ac

t ∩ {τ <∞}
]
+ P[At] ≤ η +

φ(η) + η

ε− η

for t large enough. We can choose η so that the right hand side is bounded
by ε. Thus the event Ac

t ∩ {τ = ∞} has probability at least 1 − ε, and on
this event, one has

δ(Yt, Ys) ≤ δ(Zt, Yt) + δ(Zt, Ys) ≤ 2ε+ η ≤ 3ε,

so
P
[
sup
s≥t

δ(Yt, Ys) > 3ε
]
≤ ε

for t large enough. The completeness of N enables to conclude.

Remark 8.1.16. For the convergence as t ↓ 0, the process Yt has not to fully
satisfy the conditions in the definition of martingales; it is sufficient to assume
that it is transformed into submartingales by convex Lipschitz functions.

8.2 Martingales with prescribed limit

We first extend the uniqueness result.

Proposition 8.2.1. Proposition 3.3.11 and Corollaries 3.3.12 and 3.3.13
hold true for càdlàg martingales in measurable trees (the tree has to be com-
plete for Corollary 3.3.13).

Proof. Let us first prove the extension of Proposition 3.3.11, namely that
Dt = δ(Yt, Zt) is a local submartingale for martingales Yt and Zt; we can
suppose that they are of class (D). With the notations of Proposition 3.3.11,
ifDτk

≤ ε/2, thenDt∨ε is non decreasing on Ik. Otherwise, we again take the
midpoint A and we notice that Y and Z do not cross A on Ik except perhaps
at time τk+1. Let Aα and Aβ be respectively the connected components of
N \ {A} containing Yτk

and Zτk
, and consider the oriented distance function

ψβ = ψ(Aβ, .). Then we have

Dt ≥ ψβ(Zt)− ψβ(Yt) (8.2.2)

with equality for τk ≤ t < τk+1. The function ψβ is convex on geodesics
intersecting Aβ, and concave on geodesics intersecting Aα, so our definition
of martingales implies that the right-hand side of (8.2.2) is a submartingale
on Ik; thus Dt and Dt∨ε are submartingales on Ik. We can deduce by letting
ε ↓ 0 that Dt is a submartingale on the whole time interval. The proof of
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Corollary 3.3.12 is straightforward. For Corollary 3.3.13, we prove like previ-
ously that Y n has a limit Y , and that Yt is of class (D) and transformed into
a submartingale by any measurable Lipschitz convex function f . However
we have to localise this property and prove the condition of Definition 8.1.1.
So we let f and G be as in this definition, and consider

τ = inf
{
t ≥ 0; δ(Yt, G

c) ≤ ε
}
, τn = inf

{
t ≥ 0; δ(Y n

t , G
c) ≤ ε/2

}
. (8.2.3)

Then f(Y0) is the limit of f(Y n
0 ),

f(Y n
0 ) ≤ E

[
f(Y n

t∧τ∧τn)
∣∣ F0

]
(8.2.4)

and

E
∣∣∣f(Y n

t∧τ∧τn)− f(Yt∧τ )
∣∣∣ ≤ CEδ(Y n

t∧τ∧τn , Yt∧τ∧τn) + CEδ(Yt∧τ∧τn , Yt∧τ ).

The variables involved in the right hand side are uniformly integrable, the
first term tends to 0 from the convergence of Y n to Y , and the second term
tends to 0 because P[τn < τ ] tends to 0. Thus this expression tends to 0,
and by taking the limit in (8.2.4), we obtain

f(Y0) ≤ E
[
f(Yt∧τ )

∣∣ F0

]
.

We can replace 0 by another stopping time and deduce that Yt satisfies the
condition of Definition 8.1.1.

For the existence, like previously, we consider successively the coupling
and energy methods.

Theorem 8.2.5. The results of Section 4 (Theorem 4.1.4, Corollaries 4.1.8
and 4.1.13, Propositions 4.2.1 and 4.2.2) hold true for càdlàg Markov pro-
cesses and provide càdlàg martingales in separable complete trees.

Proof. Let us look at Theorem 4.1.4 (the proof of other results is straight-
forward). We use as in Section 4 the discrete martingales Yk = h∆(tk, Xtk)
and obtain at the limit a continuous function h and a process Yt = h(t,Xt)
which is transformed into submartingales by Lipschitz convex functions. We
have to check the condition of Definition 8.1.1. This is done as in the last
part of Proposition 8.2.1 but we have to take into account the fact that the
approximations Y n

t = h∆n(t,Xt) are not defined for all time but only on the
subdivisions ∆n. We define τ and τn as in (8.2.3), let σn be the first time
after τ in ∆n, take a dyadic time t, and replace (8.2.4) by

f(Y n
0 ) ≤ E

[
f(Y n

t∧σn∧τn)
∣∣ F0

]
.
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Moreover,

E
∣∣∣f(Y n

t∧σn∧τn)− f(Yt∧τ )
∣∣∣ ≤CEδ(Y n

t∧σn∧τn , Yt∧σn∧τn) + CEδ(Yt∧σn∧τn , Yt∧σn)

+ CEδ(Yt∧σn , Yt∧τ ).

The first term tends to 0 from the convergence of h∆n to h uniformly in t,
the second term tends to 0 because P[σn > τn] tends to 0 (this also follows
from the convergence of h∆n), and the third one tends to 0 from the right
continuity of Y .

Example 8.2.6. The process Xt can be the solution of a stochastic differential
equations with jumps; we obtain the existence of martingales with prescribed
limit on Wiener-Poisson spaces. However, we do not know coalescent cou-
plings in this setting.

We now apply the energy method and extend the results of Section 5.
We consider a Dirichlet form which is defined through its Beurling-Deny
decomposition (see Section 3.2 of [14]). We have

E(f) = Ec(f) +
1

2

∫
|f(x1)− f(x2)|2J(dx1, dx2) (8.2.7)

where Ec is a strongly local Dirichlet form and J is a symmetric jump measure
(we suppose that there is no killing inside M). We can consider the energy
measure µc

<f> associated to the local part Ec so that Ec(f) = µc
<f>(M). It

can be extended to functions f of Dloc, and the space Db is the set of bounded
functions f of Dloc such that the energy E(f) defined by (8.2.7) is finite. If
M0 is a relatively compact open subset of M , we define like previously the
space Db

0. We suppose that for each compact subset K1, there exists another
compact subset K2 ⊃ K1 such that J(K1 × Kc

2) = 0. With this condition,
one can extend the proof of Lemma 5.1.8.

The form E is associated to a Hunt process Xt. Its jumps are described
by the measure J . In particular, the above condition says that if Xt− is in
K1, then Xt must be in K2.

If we now consider our tree N , we can consider the space Dloc(N) of
functions f such that φ ◦ f is in Dloc for any Lipschitz function f . The
energy Ec(f) can be defined on this space as in the local case, and Db(N) is
defined as the space of bounded functions f of Dloc(N) such that

E(f) = Ec(f) +
1

2

∫
δ2(f(x1), f(x2))J(dx1, dx2) <∞. (8.2.8)
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Theorem 8.2.9. Consider a non local Dirichlet form of type (8.2.7) sat-
isfying the above conditions and a separable complete tree N . Assume the
absolute continuity condition (5.2.10) and suppose that suppose that bounded
real functions which are harmonic on an open subset of M are continuous on
this subset. Then, if M0 is a relatively compact open subset of M and if g
is in Db(N), there exists a unique energy minimising map h in Db

g(N); this
map has a continuous modification, and h(Xt∧τ ) is a martingale. Moreover,
càdlàg martingales with prescribed limit exist if the form is conservative (The-
orem 5.3.1), and the semigroup Qt does not increase the energy (Proposition
5.3.3).

Proof. The proofs of the statements of Theorem 5.3.1 and Proposition 5.3.3
are similar to the continuous case, so let us prove the first part of the theorem.
By considering separately the local and jump parts, the inequality (5.2.2)
holds for energies of two functions and their middle function; it indeed holds
for the local part Ec, and for the jump part, we use

δ2(w(x1), w(x2)) ≤
1

2
δ2(u(x1), u(x2)) +

1

2
δ2(v(x1), v(x2))

− 1

4

(
δ(u(x1), v(x1))− δ(u(x2), v(x2))

)2

which is a consequence of the non positivity of the curvature (see for instance
Corollary 2.1.3 of [20]). We deduce as in Proposition 5.2.6 the existence of
a minimising function h and of the corresponding process Yt = h(Xt). We
can also prove with the method of Theorem 5.2.8 or 6.5.6 that f(Yt) is a
submartingale for any Lipschitz convex function f . This is not sufficient to
prove that Yt is a martingale, but this is sufficient to apply the method of
Corollary 5.2.11 and prove the existence of a continuous modification of h
(apply Remark 8.1.16 to obtain h(x) as the limit of h(Xt) under Px). Now
(see Proposition 8.1.5), we have to consider an oriented distance function
ψ = ψ(yα

0 , .) which is convex on geodesics intersecting the open subset G =
yα

0 . For ε > 0, consider the open sets

Gε = {y; δ(y,Gc) > ε}, Mε = {x ∈M0; h(x) ∈ Gε}.

Let ρ be a nonnegative function of Db which is 0 outside Mε. Then we can
define T η

x as the translation of step ηρ(x) in the direction of y0 (it is well
defined if η is small enough), and the corresponding perturbation hη(x) =
T η

x (h(x)). We apply (8.2.8) to express E(f), (8.2.7) to express E(ψ ◦ h), and
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notice that Ec(h) = Ec(ψ ◦ h). Thus

E(h) =E(ψ ◦ h) +
1

2

∫
δ2(ψ ◦ h(x1), ψ ◦ h(x2))J(dx1, dx2)

− 1

2

∫ (
ψ ◦ h(x2)− ψ ◦ h(x1)

)2
J(dx1, dx2)

=E(ψ ◦ h) +
1

2

∫
Ψ(h(x1), h(x2))Ψ(h(x2), h(x1))J(dx1, dx2) (8.2.10)

with
Ψ(y1, y2) = δ(y1, y2) + ψ(y2)− ψ(y1).

Notice that Ψ is nonnegative, and the product Ψ(y1, y2)Ψ(y2, y1) is non zero
only when y0, y1 and y2 are not aligned. If y0, h(x1) and h(x2) are aligned,
then the perturbation keeps them aligned so does not modify the term in the
integral of (8.2.10). If they are not aligned, then after the perturbation, either
they become aligned, or the perturbation on Ψ(h(x1), h(x2)) is −2ηρ(x2) for
η small. Thus it appears that the perturbation cannot increase the integral
of (8.2.10). Since it cannot decrease E(h), it cannot decrease E(ψ ◦ h). We
deduce as in Theorem 5.2.8 that E(ψ ◦ h, ρ) is non positive, so (ψ ◦ h)(Xt) is
from the analogue of Lemma 5.1.8 a submartingale up to the first exit time
of Mε. Thus h(Xt) is a martingale.
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