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Abstract. We consider a Lévy process Xt and the solution Yt of a stochastic differential
equation driven by Xt; we suppose that Xt has infinitely many small jumps, but its Lévy
measure may be very singular (for instance it may have a countable support). We obtain
sufficient conditions ensuring the existence of a smooth density for Yt; these conditions are
similar to those of the classical Malliavin calculus for continuous diffusions. More generally,
we study the smoothness of the law of variables F defined on a Poisson probability space;
the basic tool is a duality formula from which we estimate the characteristic function of F .
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0. Introduction

Suppose that we are given a continuous diffusion process Yt; it can be represented as
a functional of a Wiener process. The aim of Malliavin’s calculus introduced in [8] is to
prove, by means of probabilistic methods, the existence of a smooth density for Yt. The
basic tool is an integration by parts formula on the Wiener space which enables to prove,
under some conditions on the diffusion, that for any smooth function g,∣∣IE[

g′(Yt)
]∣∣ ≤ C sup

y
|g(y)|

for a C which does not depend on g; this implies that the law of Yt is absolutely continuous.
Moreover, by iteration, the integration by parts formula shows that expectations of further
derivatives of g are also dominated by the supremum of g, and the following basic result
enables to conclude about the existence of a smooth density.

Proposition 0.1. Let F be a IRd valued variable; suppose that for any real-valued C∞b
function g defined on IRd and any k ∈ INd,∣∣∣∣IE

[
∂|k|g

∂yk1
1 . . . ∂ykd

d

(F )
]∣∣∣∣ ≤ Ck sup

y
|g(y)|

for a Ck which does not depend on g. Then the law of F has a C∞b density.

By choosing g(y) = exp(iw.y) for w ∈ IRd, Proposition 0.1 is a consequence of the
following result which is proved by means of the inversion formula for the Fourier transform.
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Proposition 0.2. Let F be a IRd valued variable with characteristic function φ, and let
k be a non-negative integer; if

∫
|w|k|φ(w)|dw < ∞,

then the law of F has a Ck
b density.

It should be noticed that the integration by parts formula on the Wiener space is
obtained by applying small perturbations on the Wiener process in the direction of the
Cameron-Martin space, so that these perturbations involve absolutely continuous changes
of probability.

Now consider the case where Yt is a diffusion with jumps; more precisely, let µ be a
measure on IRm which integrates the function |x|2∧1, let λ+(dt, dx), t ∈ IR+, x ∈ IRm, be a
space-time Poisson measure with intensity measure λ−(dt, dx) = dt µ(dx), let λ = λ+−λ−,
let χ ∈ IRm, and consider the Lévy process

Xt = χ t +
∫ t

0

∫

{|x|≤1}
x dλ(s, x) +

∫ t

0

∫

{|x|>1}
x dλ+(s, x) (0.1)

without Brownian part and with Lévy measure µ. We suppose that Yt is the solution of a
stochastic differential equation (SDE) driven by Xt. The analogue of Malliavin’s calculus
for this framework was introduced in [2], and many papers were devoted to this subject
afterwards. In order to prove an integration by parts formula in this case, one has to
choose the type of small perturbations which should act on the Poisson measure λ+; in the
literature, these perturbations consist in moving the points of the support of λ+, either
in the time, or in the space directions; in both cases, assumptions ensuring the existence
of a smooth density can be obtained for some functionals of λ+. However, these results
suffer some limitation. The technique of moving in the time direction (see [3]) has the
advantage of being applicable without small jumps, for instance when Xt is a standard
Poisson process; it can be used to study some diffusions Yt, but not Xt itself (this is not
surprising since the standard Poisson process is integer-valued). On the other hand, since
the move should be small and should induce an absolutely continuous change of law, the
technique of moving in the space directions considered in [2], [1], [6], [7] imposes regularity
conditions on the measure µ, which exclude for instance the case where the measure has
a countable support. The aim of this work is to derive the existence of a smooth density
for Yt in a framework which makes possible countably supported measures µ; we will first
obtain a result for a general class of functionals F of the Poisson measure λ+, then will
apply it to the case F = Yt.

For instance, let us consider the particular case where F = Xt is the Lévy process
itself; the absolute continuity of the law of Xt was studied a long time ago (see [14], [13]
and references therein), and it appears that the main problems concern the case where µ
is singular. As it has been explained above, if for instance µ has a countable support, then
the classical technique of Malliavin’s calculus cannot be applied. Nevertheless, one must
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notice that the characteristic function of Xt is given by the Lévy-Khintchine formula, so
with Proposition 0.2, one can obtain conditions on µ which are sufficient for the existence
of a density and for its smoothness; these conditions state that µ should have enough mass
near 0, so that Xt has many small jumps; then, even if µ is singular, the accumulation
of small jumps forces Xt to have a smooth density. In [2], it is explained how precise
estimations on the tail of µ near the origin are equivalent to precise estimations of the
characteristic function φ(w) as w →∞; here, we only need an upper bound for φ; this will
be done in §1.

Then we will consider more general functionals F of a Poisson measure λ+ on a space
U ; our basic tool will be a duality formula on the Poisson space taken from [11] and [12]
which will be the analogue of the integration by parts formula on the Wiener space (actu-
ally, as noticed in [10], [11], by means of the Fock space formalism, the two formulas can
be transformed into each other). However, the analogue of the Wiener gradient operator is
not any more a derivation, so the formula on the Poisson space cannot be used to estimate
the expectation of g′(F ) as on the Wiener space; the perturbation resulting from this op-
erator indeed consists in adding a Dirac mass to λ+. Nevertheless, it will appear that the
duality formula can be used to estimate the characteristic function of F , and therefore,
we will apply Proposition 0.2 rather than Proposition 0.1. Our assumptions will be of two
types; the regularity assumption will say that adding masses to λ+ has smooth enough
influence on F , and the non degeneracy assumption will say that this influence is large
enough; the particular case where F is a linear functional of λ+ will provide in §1 a second
study of infinitely divisible laws; the general non linear case will be worked out in §2.

In §3, we will consider the case where F is a functional of a finite-dimensional Lévy
process Xt with many small jumps, and in §4, the particular case where F = Yt is the
solution of a SDE driven by Xt will be dealt with. In classical Malliavin’s calculus for
continuous diffusions, the assumptions involve the vector fields of the SDE; for example, the
ellipticity of the diffusion matrix implies the non-degeneracy of the diffusion. However, in
the case of diffusions with jumps, the problem is made more difficult by strong geometrical
interaction between the Lévy measure of X and the equation. In this work, we will limit
ourselves to the case where the SDE is driven by a Lévy process which has approximately
the same number of small jumps in all the space directions. In this framework, the non-
degeneracy assumption will be linked with the invertibility of an analogue of the Malliavin
matrix, and a sufficient condition ensuring this invertibility and which can be easily read
on the equation will be given; this condition consists of two parts; the first part describes
the behaviour of the small jumps; it says that an analogue of the diffusion matrix is
elliptic (more general conditions of Hörmander’s type will not be studied in full generality,
but an example will be given); the second part, which does not appear in the case of
continuous diffusions, is concerned with big jumps and says that the semi-flow generated
by the equation is locally injective. Some examples and counterexamples will be discussed.

1. Infinitely divisible laws

We first set some notation. Let (U,U) be a Lusin space and let λ− be a σ-finite infinite
diffuse measure on U ; in particular, the measured space (U,U , λ−) is isomorphic to IR with
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its Borel σ-field and its Lebesgue measure. Let Ω be the space of integer-valued measures
ω on U such that ω({u}) ≤ 1 for any u, and ω(A) < ∞ as soon as λ−(A) < ∞; we consider
on Ω the canonical random measure

λ+(ω, A) = ω(A),

the σ-field F generated by the variables λ+(A), A ∈ U , and the probability IP under which
λ+ is a Poisson measure with intensity λ−; this means that λ+(A) is a Poisson variable
with mean λ−(A), and that the variables λ+(Aj) are independent as soon as the sets Aj

are disjoint. We will denote by λ = λ+ − λ− the compensated Poisson measure.

Remark. We suppose that λ− is diffuse because formulas are simpler in this case; however,
this is not a restriction, since one can always replace U by U × [0, 1] and λ− by its product
with the Lebesgue measure.

On the other hand, let h be a IRd valued measurable function defined on U such that
∫ (|h(u)|2 ∧ 1

)
dλ−(u) < ∞

and let χ ∈ IRd. We consider the variable

F = χ +
∫

h(u)1[0,1]

(|h(u)|)dλ(u) +
∫

h(u)1(1,∞)

(|h(u)|)dλ+(u), (1.1)

where the first integral is a stochastic integral, whereas the second one is for each ω ∈ Ω
a finite sum. Then the law of F is infinitely divisible and its Lévy measure µ is the image
of λ− by h.

Proposition 1.1. Suppose that there exists an α ∈ (0, 2) and a c > 0 such that for any
ρ ∈ (0, 1) and any unit vector v,

∫

{x;|v.x|≤ρ}
|v.x|2dµ(x) ≥ cρα. (1.2)

Then F has a C∞b density.

Remark. The condition (1.2) can also be stated by saying that
∫

{x;|w.x|≤1}
|w.x|2dµ(x) ≥ c|w|2−α (1.3)

for any vector w such that |w| ≥ 1.

Proof. The characteristic function of F is given by the Lévy-Khintchine formula

φ(w) = exp
(
iw.χ +

∫ (
eiw.x − 1− iw.x 1[0,1](|x|)

)
dµ(x)

)
,
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for w ∈ IRd, so

∣∣φ(w)
∣∣ = exp−

∫ (
1− cos(w.x)

)
dµ(x)

≤ exp−c′
∫

{|w.x|≤1}
|w.x|2dµ(x) ≤ exp−c′′|w|2−α

for |w| ≥ 1, from (1.3). We can conclude from Proposition 0.2.

In particular, one easily verifies that the condition (1.2) is satisfied in the following
cases.

Corollary 1.2. Define

V (ρ) =
∫

{|x|≤ρ}
xx?dµ(x).

(a) If the family of symmetric matrices ρ−αV (ρ), 0 < ρ < 1, is uniformly elliptic for some
α ∈ (0, 2), then F has a C∞b density.
(b) In particular, if the ratio between the largest and smallest eigenvalues of V (ρ) is
bounded as ρ → 0, and if

lim inf
ρ→0

ρ−α

∫

{|x|≤ρ}
|x|2dµ(x) > 0 (1.4)

for some α ∈ (0, 2), then F has a C∞b density.

These results for infinitely divisible laws can of course be expressed in terms of Lévy
processes (processes with stationary and independent increments). Suppose that U =
IR+ × IRm and that λ− is the product of the Lebesgue measure on IR+ and of a measure
µ on IRm integrating (|x|2 ∧ 1). If one considers on U the function

ht(s, x) = 1[0,t](s)x,

and if Xt denotes the variable F of (1.1) corresponding to h = ht and χ = χ t in dimension
d = m, then Xt is the Lévy process of (0.1), and the image of λ− by ht is in this case
equal to tµ. Thus, if the above assumptions are satisfied for µ, then Xt has a C∞b density
for any t > 0.

Remark 1. The condition of Corollary 1.2 is sufficient but not necessary for the condition
(1.2) of Proposition 1.1. For example, suppose that Xt is the two-dimensional process
which consists of the Cauchy process with Lévy measure dx/x2 on IR, and of its quadratic
variation. Then the Lévy measure µ of Xt is given by

∫

IR2
gdµ =

∫

IR

g(x, x2)
dx

x2
.

The eigenvalues of V (ρ) are of order ρ and ρ3, so the assumption of Corollary 1.2 is not
satisfied; however, after some calculation, one can check that the condition of Proposition
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1.1 holds, so Xt has a smooth density. Later, we will study the solutions of SDEs driven
by Lévy processes Xt, and the assumptions about the Lévy measure µ of Xt will be those
of Corollary 1.2(b), so this example will be excluded; it seems indeed hard to handle
nonlinearities under more general conditions, though, as shown in [6], some results can be
obtained from classical Malliavin’s calculus.

Remark 2. One can also find conditions under which Xt has not a C∞ density, but a Cn(t)

density, where n(t) is a non-decreasing function tending to ∞ as t →∞; then (see [2], [6],
[1]) the solutions of “well-behaved” SDEs driven by Xt satisfy the same property, so one
can say that the Lévy process is slowly regularizing. However, the method which we will
use for non-linear functionals is not well adapted to study this type of behaviour.

Remark 3. If the law of F is rotation-invariant β-stable (0 < β < 2) so that dµ(x) is
proportional to dx/|x|d+β , then V (ρ) is proportional to ρ2−βI. Thus our condition can be
viewed as a comparison with (2− α)-stable laws.

We are now going to describe another proof of Proposition 1.1 which is more compli-
cated, but which will be extended to more general functionals F . To this end, we need
some other notation taken from [12]. We consider the transformations ε−u and ε+

u of Ω
which consist in removing or adding a mass at point u; they are defined by

ε−u ω(A) = ω(A ∩ {u}c), ε+
u ω(A) = ε−u ω(A) + 1A(u). (1.5)

We will have to use compositions of transformations of this type; if u1 6= u2 ∈ U and if θ1,
θ2 ∈ {−, +}, then

εθ1
u1
◦ εθ2

u2
= εθ2

u2
◦ εθ1

u1
, εθ1

u ◦ εθ2
u = εθ1

u . (1.6)

Note also that ε±u ω = ω for all ω and λ± almost all u, so, if Zu is a positive measurable
process indexed by u ∈ U , then

∫
(Zu ◦ ε±u )dλ±(u) =

∫
Zudλ±(u). (1.7)

After these easily checked properties, let us state the lemma which appears as the basic
result for our Poisson stochastic calculus.

Lemma 1.3. If Zu is a positive measurable process such that

Zu ◦ ε+
u = Zu ◦ ε−u , (1.8)

then

IE
∫

Zudλ+(u) = IE
∫

Zudλ−(u). (1.9)

Sketch of the proof. One shows that the processes Z satisfying (1.8) are the positive
functions on U × Ω which are measurable with respect to the σ-field generated by sets
A×B with A ∈ U and

B ∈ σ
(
λ+(A′); A′ ∈ U , A′ ∩A = ∅

)
.
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Thus it is sufficient to prove the result when Z is the indicator of such a set, and this is
not difficult because B and λ+(A) are independent (details of the proof can be found in
[12]).

In particular, if Z is a λ− ⊗ IP integrable (subsequently, we will only say integrable)
process satisfying the condition (1.8), then the variables

∫
Zudλ±(u) are integrable, and

formula (1.9) still holds. On the other hand, if we remove the condition (1.8), then the
processes Zu ◦ε±u still satisfy it, so for any positive process, properties (1.7) of the integrals
can be completed with

IE
∫

(Zu ◦ ε±u )dλ∓(u) = IE
∫

Zudλ±(u). (1.10)

Now, for functionals F defined on Ω, we introduce the operator

DuF = F ◦ ε+
u − F (1.11)

(with a slight modification with respect to the definition of [12]). Since the image of IP by
ε+
u is not absolutely continuous with respect to IP, the variable DuF is not well defined

for u fixed when F is defined almost surely; however, it is defined dλ−(u) ⊗ dIP almost
everywhere. We also consider an operator δ which operates on integrable processes Zu and
which is defined by

δ(Z) =
∫

(Zu ◦ ε−u )dλ(u) =
∫

(Zu ◦ ε−u )dλ+(u)−
∫

Zudλ−(u).

The following result can be found in [11] or [12] and is an easy consequence of (1.10) and
(1.6).

Lemma 1.4. Let Z be a complex-valued integrable process and let G be a complex-valued
bounded variable. Then

IE
[
Gδ(Z)

]
= IE

∫
ZuDuG dλ−(u). (1.12)

Remark. The operators D and δ are closable in L2, and it appears that in the chaotic
representation of square-integrable functionals, D and δ correspond respectively to the
annihilation and creation operators (see [10], [11]); thus the lemma describes the duality
between these two operators. When transposed to the Wiener space, D and δ are re-
spectively the Malliavin derivative and the Skorohod integral; however, here, D is not a
derivation; it satisfies

Du(F1F2) = F1 DuF2 + F2 DuF1 + DuF1 DuF2. (1.13)

We now define non linear operators δ(n) by induction on n as follows; for n = 0, put
δ(0)(Z) = 1; for n ≥ 0, the domain of δ(n+1) consists of processes Z in the domain of δ(n)

such that Zuδ(n)(Z) is an integrable process, and for such a Z, we define

δ(n+1)(Z) = δ
(
Z δ(n)(Z)

)
.
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In particular, if Z is deterministic and integrable, then it is not difficult to verify that

δ(n)(Z) =
∫

Sn

Zu1 . . . Zun
dλ(u1) . . . dλ(un)

with
Sn =

{
(u1, . . . , un) ∈ Un; ∀(i, j) i 6= j ⇒ ui 6= uj

}
,

so that δ(n)(Z) is in the nth Poisson chaos; if U is identified with an interval of IR,

δ(n)(Z) = n!
∫

{u1<...<un}
Zu1 . . . Zun

dλ(u1) . . . dλ(un). (1.14)

Lemma 1.5. Let Z be an integrable process and let G be a bounded variable such that

G =
∫

ZuDuGdλ−(u). (1.15)

If Z is in the domain of δ(n), then

IE
[
Gδ(n)(Z)

]
= IE[G].

Proof. This is evident for n = 0 and

IE
[
Gδ(n+1)(Z)

]
= IE

[
Gδ

(
Z δ(n)(Z)

)]

= IE
[
δ(n)(Z)

∫
ZuDuGdλ−(u)

]

= IE
[
Gδ(n)(Z)

]

from the duality formula (1.12) and the assumption (1.15).

Second proof of Proposition 1.1. The assumption (1.3) can be written in the form
∫

A

|h(u).w|2dλ−(u) ≥ c|w|2−α

for |w| ≥ 1 and
A = A(w) =

{
u ∈ U ; |h(u).w| ≤ 1

}
.

Thus there exists a ρ(w) > 0 such that
∫

B

|h(u).w|2dλ−(u) ≥ c|w|2−α/2

with
B = B(w) =

{
u ∈ A(w); |h(u)| ≥ ρ(w)

}
.
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Note that B has λ−-finite measure. Then
∫

B

∣∣eiw.h(u) − 1
∣∣2dλ−(u) ≥ c′

∫

B

∣∣w.h(u)
∣∣2dλ−(u)

≥ cc′|w|2−α/2.

Now consider the deterministic function

Zu = 1B(u)
(
e−iw.h(u) − 1

) / ∫

B

∣∣eiw.h(u) − 1
∣∣2dλ−(u).

and the variable G = G(w) = exp(iw.F ). Then Z is bounded, and is zero outside B which
has finite measure, so Z is integrable; moreover

DuG =
(
eiw.h(u) − 1

)
G

for λ−-almost every u, so the assumption of Lemma 1.5 is satisfied, and therefore the
characteristic function φ of F satisfies

∣∣φ(w)
∣∣ =

∣∣IE[G]
∣∣ =

∣∣IE[Gδ(n)(Z)]
∣∣ ≤ IE

[|δ(n)(Z)|2]1/2

for any n. But from (1.14),

IE
[|δ(n)(Z)|2] = n!

(∫
|Zu|2dλ−(u)

)n

= n!
(∫

B

∣∣eiw.h(u) − 1
∣∣2dλ−(u)

)−n

≤ Cn|w|n(α−2).

Thus, for any k ≥ 0,
|w|k|φ(w)| ≤ Cn|w|k−n(2−α)/2

is proved to be integrable by choosing a large enough n.

2. The main result

We now want to prove a result for non linear functionals F . The basic idea has been
developed in last proof, but it involves here more technicalities. We use the notation of §1;
in particular, ε+

u and Du are respectively defined in (1.5) and (1.11); if τ = (u1, . . . , uk) ∈
Uk, we consider the transformation

ε+
τ = ε+

u1
◦ . . . ◦ ε+

uk

and the operator
Dτ = Du1 . . . Duk

.
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If γ is a real function defined on U , we also extend γ to Uk by putting

γ(τ) = γ(u1) . . . γ(uk).

In the case k = 0, we use the convention ε+
∅ ω = ω, D∅F = F and γ(∅) = 1. The measure

λ is extended to Uk by putting

dλ(u1, . . . , uk) = dλ(u1) . . . dλ(uk)

and a similar convention is adopted for λ± and |λ| = λ++λ−. In particular, the expression
“almost everywhere” on Uk will refer to the extension of λ−. The positive constant numbers
will be denoted by c or C, and may vary from line to line; if they depend on some parameter,
this is emphasized by an index.

Theorem 2.1. Let γ be a positive function defined on U such that γ ∧ 1 is in L2(U, λ−);
for 0 < ρ ≤ 1, define

A(ρ) =
{
u ∈ U ; γ(u) ≤ ρ

}
,

and suppose that ∫

A(ρ)

γ(u)2dλ−(u) ≥ cρα (2.1)

for some α ∈ (0, 2). Let F be a real-valued variable such that
(a) for any p ∈ (1,∞), any k ≥ 1 and almost any τ ∈ A(1)k, one has

∥∥DτF
∥∥

p
≤ Cp,kγ(τ); (2.2)

(b) there exists some α/2 < β ≤ 1 such that for any p ∈ (1,∞), any ρ ∈ (0, 1), any k ≥ 1
and almost any τ ∈ A(ρ)k, one has

∥∥∥∥∥
(∫

A(ρ)

|DuF |21{|DuF |≤ρβ}dλ−(u)
)−1

◦ ε+
τ

∥∥∥∥∥
p

≤ Cp,k

(∫

A(ρ)

γ(u)2dλ−(u)
)−1

. (2.3)

Then F has a C∞b density.

Assumption (a) is a regularity assumption on F with respect to the perturbations
ε+
τ ; it means that each iteration of a Du multiplies the order of magnitude by γ(u); in
§3, we will take U = [0, T ] × IRm and γ(t, x) = |x|, so, for k = 1, (a) will mean that a
jump of size x at time t of the process Xt of (0.1) should induce on F a perturbation of
order |x|. On the other hand, (b) is a non-degeneracy assumption; it says that |DuF | is
bounded below by γ(u) in some sense; actually, an application of the Jensen inequality
proves that ‖H−1‖p ≥ ‖H‖−1

p , and one can deduce from (2.2) that the right-hand side of
(2.3) is dominated by the left-hand side; thus condition (b) means that the two sides are
equivalent when ρ tends to 0. Let us now state the extension of Theorem 2.1 to the case
of vector-valued variables F .
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Theorem 2.2. Let F be a IRd valued variable; suppose that for any unit vector v ∈ Sd−1,
there exists a function γv such that the variable F.v satisfies the assumptions of Theorem
2.1 with γ = γv. If the constant numbers α, β, c and Cp,k can be chosen independently of
v, then F has a C∞b density.

Example. For variables defined by (1.1), one has DuF = h(u), so iterates of the operators
Dui

are zero on F . Thus (2.2) and (2.3) are satisfied with γv(u) = |h(u).v| and β = 1, so
Theorem 2.2 reduces in this case to Proposition 1.1.

Remark. The theorems also hold when F is defined on the product of Ω with another
probability space; this other space may for instance be a Wiener space or another Poisson
space.

Theorem 2.1 will be proved by estimating the characteristic function φ(w) of F as
w → ∞; more precisely, we will check that for any n, the function |w|−nφ(w) is bounded
for |w| ≥ 1 by some number depending only on n, α, β, c and Cp,k; then we will deduce
that F has a smooth density as in §1. On the other hand, if F is vector-valued, we can
apply this estimation to the variables F.v for v a unit vector; this implies that w−nφ(wv)
is bounded uniformly in w ≥ 1, v ∈ Sd−1; we deduce that |w|−nφ(w) is bounded uniformly
in w ∈ IRd, |w| ≥ 1, so that Theorem 2.2 actually follows from Theorem 2.1. Thus the
remainder of this section is devoted to the proof of Theorem 2.1 for a real-valued F .

For w ∈ IR, |w| ≥ 1, and ζ ≥ 0, consider

B(w, ζ) =
{
u ∈ U ; ζ ≤ γ(u) ≤ |w|−1/β

}
. (2.4)

By taking ρ = |w|−1/β , the assumptions (2.1) and (2.3) are written in the form
∫

B

γ(u)2dλ−(u) ≥ c|w|−α/β , (2.5)

∥∥∥∥
(∫

B

|DuF |21{|DuF |≤1/|w|}dλ−(u)
)−1

◦ ε+
τ

∥∥∥∥
p

≤ Cp,k

(∫

B

γ(u)2dλ−(u)
)−1

(2.6)

for τ ∈ Bk and B = B(w, 0). This implies that there exists ζ0 = ζ0(w, p, k) > 0 such that
(2.5) and (2.6) are also satisfied for B = B(w, ζ), 0 ≤ ζ ≤ ζ0, and after a modification of
c and Cp,k; the sets B(w, ζ), ζ > 0, have the advantage of having λ− finite measure. Now
consider the process

Zu = 1B(u)
(
e−iwDuF − 1

) / ∫

B

∣∣eiwDvF − 1
∣∣2dλ−(v) (2.7)

for B = B(w, ζ). Then G = eiwF satisfies

DuG =
(
eiwDuF − 1

)
G,

so (1.15) is satisfied, and from Lemma 1.5, the estimation of IE[G] can be reduced to the
proof of Z ∈ Dom(δ(n)) for ζ > 0 small enough, and to the estimation of δ(n)(Z). Recall
that Sn is the subset of Un consisting of vectors with distinct components.
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Lemma 2.3. Let Yτ be a positive process indexed by τ = (u1, . . . , un) ∈ Un; consider
(θ1, . . . , θn) ∈ {−, +}n. Then

IE
∫

Sn

Yτdλθ1(u1) . . . dλθn(un)

= IE
∫

Un

(
Yτ ◦ εθ1

u1
◦ . . . ◦ εθn

un

)
dλ−(u1) . . . dλ−(un).

Remark. In the right-hand side, the ε−uj
corresponding to θj = − can be omitted.

Proof. From Fubini’s theorem and (1.10), the left-hand side is equal to

IE
∫

U

(∫

Sn−1

1Sn(τ)Yτdλθ2(u2) . . . dλθn(un)
)
dλθ1(u1)

= IE
∫

U

(∫

Sn−1

1Sn(τ)Yτdλθ2(u2) . . . dλθn(un)
)
◦ εθ1

u1
dλ−(u1)

=
∫

U

(
IE

∫

Sn−1

(Yτ ◦ εθ1
u1

)dλθ2(u2) . . . dλθn(un)
)
dλ−(u1).

It is then not difficult to prove the lemma by induction on n.

Lemma 2.4. Let Yτ be a process indexed by τ = (τ1, τ2) ∈ Uk × U l. If

IE
∫
|Yτ | |dλ(τ1)| dλ+(τ2) < ∞,

then

IE
∫

Sk+l

Yτdλ(τ1)dλ+(τ2) = IE
∫

Uk+l

Dτ1Yτ ◦ ε+
τ2

dλ−(τ).

Remark. When τ1 and τ2 consist of distinct components, then

(Dτ1Yτ ) ◦ ε+
τ2

= Dτ1(Yτ ◦ ε+
τ2

).

Since this holds for almost any (τ1, τ2), the right-hand side of the lemma is not ambiguous.

Proof. It is sufficient to expand dλ(τ1) and to apply previous lemma to each term.

Lemma 2.5. For any n, the process Z defined by (2.7) is in the domain of δ(n) for ζ > 0
small enough, and

δ(n)(Z) =
∫

Sn

n∏

j=1

(
Zuj ◦ ε−u1

◦ . . . ◦ ε−uj

)
dλ(u1) . . . dλ(un). (2.8)

12



Proof. This result is again proved by induction on n. For n = 1, we have to prove the
integrability of Z; to this end, note that Zu is zero for u outside B = B(w, ζ) which has
λ− finite measure, and that

|Zu| ≤ Cw−2
(∫

B

|DvF |21{|DvF |≤1/|w|}dλ−(v)
)−1

. (2.9)

The right-hand side is integrable from (2.6) for ζ small enough, so Z is integrable and (2.8)
for n = 1 is evident. Now suppose that the result holds at rank n; we have to prove the
integrability of Zuδ(n)(Z); from the formula (2.8) written at rank n,

∣∣δ(n)(Z)
∣∣ ≤

∫

Sn

n∏

j=1

∣∣Zuj ◦ ε−u1
◦ . . . ◦ ε−uj

∣∣ |dλ(u1)| . . . |dλ(un)|

=
∑

θ∈{−,+}n

∫

Sn

n∏

j=1

∣∣Zuj ◦ ε−u1
◦ . . . ◦ ε−uj

∣∣dλθ1(u1) . . . dλθn(un).

Thus

IE
∫
|Zu|

∣∣δ(n)(Z)
∣∣dλ−(u)

≤
∑

θ∈{−,+}n

IE
∫

Sn+1

|Zu0 |
n∏

j=1

∣∣Zuj ◦ ε−u1
◦ . . . ◦ ε−uj

∣∣dλθ1(u1) . . . dλθn(un)dλ−(u0)

=
∑

θ∈{−,+}n

IE
∫

Un+1

∣∣Zu0 ◦ ε+
U(τ,0,θ)

∣∣
n∏

j=1

∣∣Zuj ◦ ε+
U(τ,j,θ)

∣∣dλ−(u0) . . . dλ−(un)

from Lemma 2.3, where τ = (u0, . . . , un) and U(τ, j, θ) consists of the components uk such
that j < k ≤ n and θk = +. On the other hand, one deduces from (2.9) and (2.6) that for
any p, the variables Zu ◦ ε+

τ are bounded in Lp for ζ small enough; since they are equal to
0 outside B, this implies that the above expression is finite. Thus Z is in the domain of
δ(n+1) and

δ(n+1)(Z) =
∫

(Zu0 ◦ ε−u0
)δ(n)(Z) ◦ ε−u0

dλ(u0)

=
∫

(Zu0 ◦ ε−u0
)
(∫

Sn

n∏

j=1

(Zuj ◦ ε−u0
◦ . . . ◦ ε−uj

)1{uj 6=u0} dλ(u1) . . . dλ(un)
)
dλ(u0)

satisfies (2.8).

In order to compute the variance of δ(n)(Z), we need a new multi-indexed process.
For τ = (u1, . . . , u2n) ∈ U2n, define

Ẑ(τ) = 1Sn×Sn(τ)
n∏

j=1

(
Zuj ◦ ε−u1

◦ . . . ◦ ε−uj

) 2n∏

j=n+1

(
Zuj ◦ ε−un+1

◦ . . . ◦ ε−uj

)
(2.10)

where Zu is the conjugate complex number of Zu. Let Z̃(τ) be the random function of τ

obtained from Ẑ by symmetrization.
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Lemma 2.6. For any n,

IE
[|δ(n)(Z)|2] =

∑

k+l=n

(2n)!
2l(2k)! l!

IE
∫

U2k×U l

(
Dτ1Z̃(τ1, τ2, τ2) ◦ ε+

τ2

)
dλ−(τ1)dλ−(τ2), (2.11)

where for each (k, l), the process (τ1, τ2) 7→ Dτ1Z̃(τ1, τ2, τ2) ◦ ε+
τ2

is (λ−)⊗(2k+l) ⊗ IP inte-
grable for ζ small enough.

Proof. From Lemma 2.5, it is clear that

|δ(n)(Z)|2 =
∫

U2n

Ẑ(τ)dλ(τ) =
∫

U2n

Z̃(τ)dλ(τ).

In this integral, the components of τ are not supposed to be distinct, and equal components
cannot be neglected in the integration with respect to λ+; however, since Z̃(τ) is zero as
soon as three components of τ are equal, there only may be some pairs of components
which are equal; when two components are equal, we can use

dλ(u)dλ(u) = dλ+(u).

By developing on the possible numbers l = 0, . . . , n of such pairs and by using the symmetry
of Z̃, we obtain

|δ(n)(Z)|2 =
∑

k+l=n

(2n)!
2l(2k)! l!

∫

S2k+l

Z̃(τ1, τ2, τ2)dλ(τ1)dλ+(τ2)

with τ1 of length 2k, τ2 of length l, and where the coefficient is the number of sets of l
disjoint pairs in {1, . . . , 2n}. From the definition of Z̃ and since the moments of Zu ◦ ε+

τ

are bounded, we prove that

IE
∫

S2k+l

|Z̃(τ1, τ2, τ2)| |dλ(τ1)| dλ+(τ2) < ∞

for ζ small enough, so we can apply Lemma 2.4 in order to conclude.

Thus we have to estimate the right-hand side of (2.11); to this end, we still need some
technical results. If Hτ is indexed by τ ∈ ⋃

k Bk, the notation Hτ = O(γ(τ)) will mean
that for any k, for almost any τ ∈ Bk, and for any p, one has

∥∥Hτ

∥∥
p
≤ Cp,kγ(τ)

for ζ > 0 small enough. If H depends on some other parameters, the constant Cp,k must
be uniform; in particular, H will generally depend on w.
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Lemma 2.7. Let H, H1, H2 be complex variables which may depend on some parameters.
(i) If DτH = O(γ(τ)), then Dτ1H ◦ ε+

τ2
= O(γ(τ1)).

(ii) If DτHj = O(γ(τ)) for j = 1, 2 and τ of length at most k, then Dτ (H1H2) = O(γ(τ))
for τ of length at most k.
(iii) If DτH = O(γ(τ)) and H−1 ◦ ε+

τ = O(1), then Dτ (H−1) = O(γ(τ)).

Proof. The first result is proved by induction on the length of τ2; this is evident when the
length is 0; suppose that it holds for any τ2 of length k, and let us prove it for τ ′2 = (τ2, v)
of length k + 1; to this end, note that

Dτ1H ◦ ε+
(τ2,v) = Dτ1H ◦ ε+

τ2
+ D(τ1,v)H ◦ ε+

τ2

is of order γ(τ1) + γ(τ1)γ(v) from the induction assumption; moreover γ(v) ≤ 1 on B, so
(i) is proved. The second result is also evident for k = 0; suppose that it holds at rank k
and let us prove it for τ ′ = (τ, v) of length k + 1; from (1.13), we have

Dτ ′(H1H2) = DτDv(H1H2) = Dτ

(
DvH1DvH2 + H1DvH2 + H2DvH1

)

= γ(v)2Dτ (H ′
1H

′
2) + γ(v)Dτ (H1H

′
2) + γ(v)Dτ (H ′

1H2)

with H ′
j = DvHj/γ(v); from the induction assumption applied to the variables Hj and

H ′
j , we deduce that this expression is of order γ(τ)γ(v) = γ(τ ′), so (ii) is proved. The

third result is also proved by induction on the length of τ . When the length is 1, the result
follows easily from the assumptions and

Dv(1/H) = − DvH

H(H ◦ ε+
v )

. (2.12)

If the result holds for τ of length k and in order to prove it for τ ′ = (τ, v) of length k + 1,
we apply the operator Dτ to (2.12) and obtain

1
γ(v)

Dτ ′(1/H) = −Dτ

(DvH

γ(v)
H−1(H ◦ ε+

v )−1
)
.

From (ii), we only have to estimate Dτ applied to each of the three terms DvH/γ(v), H−1

and (H ◦ ε+
v )−1. For the first one, we use the assumption; for the second one, we use the

induction assumption; for the third one, we apply the induction assumption to the variable
H ◦ ε+

v which satisfies
Dτ (H ◦ ε+

v ) = O(γ(τ))

from (i). Thus all these terms are of order γ(τ), and we can conclude that Dτ ′(1/H) is of
order γ(v)γ(τ) = γ(τ ′).

Remark. Subsequently, we will consider variables or processes which are smooth in the
sense that each application of Du multiplies their order of magnitude by γ(u). Lemma 2.7
says that this class of smooth variables is stable by some operations.
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Lemma 2.8. For |w| ≥ 1, almost any u ∈ B, almost any τ ∈ Bk and ζ small enough, one
has ∥∥DτZu

∥∥
p
≤ Cp,kγ(u)γ(τ)

(
|w|

∫

B

γ(v)2dλ−(v)
)−1

.

Proof. We first prove by induction on the length k of τ1 that

Dτ1

(
exp(−iwDτ2F )− 1

)
= O(|w|γ(τ1)γ(τ2)) (2.13)

for τ2 of length l ≥ 1. For k = 0, we have
∣∣exp(−iwDτ2F )− 1

∣∣ ≤ |w| |Dτ2F | = O(|w|γ(τ2))

from assumption (2.2). Now suppose that the estimation holds at rank k, consider a vector
τ1 of length k, and τ ′1 = (τ1, v) of length k + 1. Then

Dv

(
exp(−iwDτ2F )− 1

)

= exp(−iwDτ2F − iwDτ ′2F )− exp(−iwDτ2F )

=
(
exp(−iwDτ2F )− 1

)(
exp(−iwDτ ′2F )− 1

)
+

(
exp(−iwDτ ′2F )− 1

)

with τ ′2 = (τ2, v). We apply the operator Dτ1 and use Lemma 2.7(ii) and the induction
assumption to check that the expression is dominated by

γ(τ1)
(
w2γ(τ2)γ(τ ′2) + |w|γ(τ ′2)

)
= |w|γ(τ ′1)γ(τ2)

(|w|γ(τ2) + 1
)
.

Since γ is bounded by 1/|w| on B, γ(τ2) is bounded by 1/|w|l, and we can conclude about
(2.13). In particular, we have

Dτ

(
e−iwDuF − 1

)
= O(|w|γ(u)γ(τ)). (2.14)

Now define
H =

∫

B

∣∣eiwDuF − 1
∣∣2dλ−(u).

By applying the operator Dτ to

∣∣eiwDuF − 1
∣∣2 =

(
eiwDuF − 1

)(
e−iwDuF − 1

)

and by using our estimation (2.14) and Lemma 2.7(ii), we obtain

Dτ

(∣∣eiwDuF − 1
∣∣2) = O

(
w2γ(τ)γ(u)2

)
,

so
DτH = O

(
w2γ(τ)

∫

B

γ(u)2dλ−(u)
)
.
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On the other hand, our assumption (2.6) implies that

H−1 ◦ ε+
τ = O

((
w2

∫

B

γ(u)2dλ−(u)
)−1

)
,

so, from Lemma 2.7(iii),

Dτ (1/H) = O
(
γ(τ)

(
w2

∫

B

γ(u)2dλ−(u)
)−1

)
. (2.15)

Now Zu is the product of the two processes which have been studied in (2.14) and (2.15),
so we can conclude from Lemma 2.7(ii).

Proof of Theorem 2.1. The process Z̃(τ1, τ2, τ2) is defined by symmetrization of (2.10), so
it is a linear combination of products of processes; in particular,

∣∣Z̃(τ1, τ2, τ2)
∣∣ ≤

∏
u∈τ1

|Zu|
∏

u∈τ2

|Zu|2

almost everywhere, so

Z̃(τ1, τ2, τ2) = O

(
γ(τ1)γ(τ2)2

(
w

∫

B

γ(u)2dλ−(u)
)−2n

)
.

We apply the operator Dτ1 and the transformation ε+
τ2

to this expression, and we expand
Dτ1 by iteration of (1.13); we obtain expressions of type Dτ ′1(Zu ◦ ε−τ3

) ◦ ε+
τ2

where τ ′1
is extracted from τ1, u and τ3 are extracted from (τ1, τ2); if τ ′1 and τ3 have a common
component, this expression is 0; otherwise, it is almost everywhere equal to Dτ ′1Zu ◦ ε+

τ ′2
where τ ′2 consists of the components of τ2 which are not in τ3; from Lemmas 2.8 and 2.7(i),
it is of order

γ(u)γ(τ ′1)
(
|w|

∫

B

γ(v)2dλ−(v)
)−1

.

This means that applying Dτ ′1 and ε+
τ ′2

multiplies the order of Zu by γ(τ ′1). By taking into

account all the terms, one can check that applying Dτ1 and ε+
τ2

to Z̃(τ1, τ2, τ2) multiplies
its order by γ(τ1), so that

Dτ1Z̃(τ1, τ2, τ2) ◦ ε+
τ2

= O

(
γ(τ1)2γ(τ2)2

(
w

∫

B

γ(u)2dλ−(u)
)−2n

)
.

After the integration with respect to τ1 and τ2, we obtain∫
Dτ1Z̃(τ1, τ2, τ2) ◦ ε+

τ2
dλ−(τ1)dλ−(τ2) = O

(
w−2n

(∫

B

γ(u)2du
)2k+l−2n

)

= O

(
w−2n

(∫

B

γ(u)2du
)−n

)

= O
(|w|−(2−α/β)n

)

from (2.5). From Lemma 2.6, the left hand side is involved in the variance of δ(n)(Z), so,
by choosing ζ small enough, the characteristic function φ of F satisfies

|φ(w)| ≤ IE
[|δ(n)(Z)|2]1/2 ≤ Cn|w|−(2−α/β)n/2,

and we can conclude as in §1.
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3. Functionals of Lévy processes

Suppose that U = IR+ × IRm, that λ− is the product of the Lebesgue measure on
IR+ and a measure µ on IRm which integrates the function |x|2 ∧ 1. Then variables on Ω
are functionals of the Lévy process (Xt; t ≥ 0) with Lévy measure µ defined by (0.1). We
would like to find conditions which are sufficient for the existence of a smooth density and
which are more tractable than those of Theorem 2.2; these conditions will then be applied
to the case of stochastic differential equations. The particular form of U makes possible
the use of the differential calculus on IRm, and we are going to replace the non-degeneracy
condition (2.3) by a condition involving an analogue of the classical Malliavin matrix. A
random variable F defined on Ω can be viewed as a functional of the path s 7→ Xs, and for
(t, x) ∈ U , the variable F ◦ ε+

tx is equal to the functional F computed for the transformed
path

s 7→ Xs + x 1{s≥t}.

Theorem 3.1. Suppose that the Lévy measure µ satisfies the conditions of Corollary
1.2(b). Let T > 0 and let F be a IRd valued functional of (Xt; 0 ≤ t ≤ T ) satisfying
(a) for any p and k,

∥∥∥∥∥∥
ess sup

{
|DτF | / ( k∏

j=1

|xj |
)
; τ = ((t1, x1), . . . , (tk, xk)), |xj | ≤ 1

}
∥∥∥∥∥∥

p

< ∞; (3.1)

(b) there exists a matrix-valued process ψt such that for |x| ≤ 1, p ≥ 1,

∥∥DtxF − ψtx
∥∥

p
≤ Cp|x|r (3.2)

for some r > 1, and ∥∥∥∥∥
(
det

∫ T

0

ψtψ
?
t dt

)−1
∥∥∥∥∥

p

< ∞. (3.3)

Then F has a C∞b density.

Remark. In (a), the essential supremum is relative to the product of measures dtjdµ(xj);
in particular, we can replace the process τ 7→ DτF by one of its modifications; this is
useful because F ◦ ε+

τ is generally not well defined when X has a jump at one of the times
tj .

In order to prove Theorem 3.1, we have to verify the conditions of Theorem 2.2; to
this end, we put

γ(t, x) = |x|1[0,T ](t)

and fix β in (α/2, 1). We will need the following result which is proved like Lemma 2.7.
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Lemma 3.2. Let H, H1, H2 be variables which may depend on some parameters.
(i) If ∥∥∥∥ess sup

τ∈A(1)k

|DτH|
γ(τ)

∥∥∥∥
p

≤ Cp,k

for any k and p, then
∥∥∥∥ ess sup

(τ1,τ2)∈A(1)k+l

|Dτ1H| ◦ ε+
τ2

γ(τ1)

∥∥∥∥
p

≤ Cp,k,l.

(ii) If ∥∥∥∥ess sup
τ∈A(1)k

|DτHj |
γ(τ)

∥∥∥∥
p

≤ Cp,k

for j = 1, 2, then ∥∥∥∥ess sup
τ∈A(1)k

|Dτ (H1H2)|
γ(τ)

∥∥∥∥
p

≤ C ′p,k.

Now, for k and v fixed, define the events

E1(ρ) =
{

ess sup
τ∈A(ρ)k

∣∣∣
∫

A(ρ)

|DuF.v|2 ◦ ε+
τ dλ−(u)−

∫

A(ρ)

|ψtx.v|2dt dµ(x)
∣∣∣

≥ 1
2

∫

A(ρ)

|ψtx.v|2dt dµ(x)
}

and

E2(ρ) =

{
ess sup

(τ,u)∈A(ρ)k+1
|DuF | ◦ ε+

τ > ρβ

}
,

and let
E(ρ) = E1(ρ) ∪ E2(ρ).

Note that on the complement of E(ρ),
(∫

A(ρ)

∣∣DuF.v
∣∣21{|DuF.v|≤ρβ}dλ−(u)

)
◦ ε+

τ ≥ 1
2

∫

A(ρ)

∣∣ψtx.v
∣∣2dtdµ(x). (3.4)

Lemma 3.3. For any q,
IP[E(ρ)] ≤ Ck,qρ

q.

Proof. We have to estimate the probabilities of E1(ρ) and E2(ρ) as ρ → 0. Note that from
the assumptions on V (ρ) in Corollary 1.2(b),

∫

A(ρ)

∣∣ψtx.v
∣∣2dtdµ(x) = v?

∫ T

0

ψt

(∫

{|x|≤ρ}
xx?dµ(x)

)
ψ?

t dt v

≥ c

∫

{|x|≤ρ}
|x|2dµ(x) Λ

(∫ T

0

ψtψ
?
t dt

)
,

(3.5)
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where Λ(S) denotes the smallest eigenvalue of S, so from our assumption (3.3),

(∫

A(ρ)

|ψtx.v|2dt dµ(x)
)−1

= O

((∫

{|x|≤ρ}
|x|2dµ(x)

)−1
)

(3.6)

in the spaces Lp; on the other hand,

∣∣∣
∫

A(ρ)

|DuF.v|2 ◦ ε+
τ dλ−(u)−

∫

A(ρ)

|ψtx.v|2dt dµ(x)
∣∣∣

≤
∫

A(ρ)

∣∣∣Dτ

(|DuF.v|2)
∣∣∣dλ−(u) +

∫

A(ρ)

(
2|ψtx|+ |DtxF − ψtx|

)|DtxF − ψtx|dt dµ(x)

(3.7)
with the notation

DτH = H ◦ ε+
τ −H =

k∑

j=1

Duj H ◦ ε+
u1
◦ . . . ◦ ε+

uj−1
.

One deduces from (3.1) and Lemma 3.2 that
∥∥∥∥ ess sup

(u1,...,uk)∈A(1)k

∣∣Duj (|DuF.v|2) ◦ ε+
u1
◦ . . . ◦ ε+

uj−1

∣∣ / (
γ(uj)γ(u)2

)∥∥∥∥
p

≤ Cp,k,

so
ess sup
τ∈A(ρ)k

∣∣Dτ (|DuF.v|2)∣∣ = O(ργ(u)2). (3.8)

From (3.2), (3.7) and (3.8), one obtains

ess sup
τ∈A(ρ)k

∣∣∣
∫

A(ρ)

|DuF.v|2 ◦ ε+
τ dλ−(u)−

∫

A(ρ)

|ψtx.v|2dt dµ(x)
∣∣∣

= O
(
ρ

∫

A(ρ)

γ(u)2dλ−(u) +
∫

A(ρ)

γ(u)r+1dλ−(u)
)

= O
(
ρ(r−1)∧1

∫

{|x|≤ρ}
|x|2dµ(x)

)
(3.9)

Thus the product of the left-hand sides of (3.6) and (3.9) is of order ρ(r−1)∧1 in any Lp, so,
since E1(ρ) is the set of ω ∈ Ω such that this product is greater than 1/2, its probability is
of order ρq for any q > 0. In order to estimate E2(ρ), one deduces from (3.1) and Lemma
3.2(i) that ∥∥∥∥ ess sup

(τ,u)∈A(1)k+1

|DuF | ◦ ε+
τ

γ(u)

∥∥∥∥
p

≤ Cp,k,

so

ess sup
(τ,u)∈A(ρ)k+1

|DuF | ◦ ε+
τ

ρβ
= O(ρ1−β),
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and therefore, the probability of E2(ρ) is also of order ρq for any q > 0.

Proof of Theorem 3.1. Recall that γ(t, x) is |x| for t ∈ [0, T ], so condition (2.1) is evident
from the assumption (1.4); thus we have to verify that each variable F.v, v ∈ Sd−1, satisfies
(2.2) and (2.3). But (2.2) follows immediately from (3.1), so let us prove (2.3) for p and k
fixed. Define

R = R(ρ, ω) = sup
{
ρ′ ≤ ρ; ω /∈ E(ρ′)

}
.

From Lemma 3.3,
∀ρ′ ≤ ρ IP[R < ρ′] ≤ IP[E(ρ′)] ≤ Cqρ

′q. (3.10)

From the definition of R, there exists a variable R′ = R′(ρ, ω) taking the value ρ on the
complement of E(ρ), and such that

R(ρ, ω)/2 ≤ R′(ρ, ω) ≤ R(ρ, ω) and ω /∈ E(R′(ρ, ω)).

One can check that R′ also satisfies an estimate of type (3.10), so the moments of 1/R′

are finite, and moreover
IE

[
R′−n1{R′<ρ}

] ≤ Cn,qρ
q (3.11)

for any n and q. Now if we recall that Λ(S) denotes the smallest eigenvalue of S,

( ∫

A(ρ)

|DuF.v|21{|DuF.v|≤ρβ}dλ−(u)
)−1

◦ ε+
τ

≤
(∫

A(R′)
|DuF.v|21{|DuF.v|≤ρβ}dλ−(u)

)−1

◦ ε+
τ

≤ 2
(∫

A(R′)
|ψtx.v|2dt dµ(x)

)−1

≤ C Λ
(∫ T

0

ψtψ
?
t dt

)−1(∫

{|x|≤R′}
|x|2dµ(x)

)−1

≤ C Λ
(∫ T

0

ψtψ
?
t dt

)−1
[(∫

{|x|≤ρ}
|x|2dµ(x)

)−1

+ C R′−α1{R′<ρ}

]
.

In the first inequality, we have used the property R′ ≤ ρ; in the second one, we have used
(3.4); in the third one, we have used (3.5); in the last one, we have considered separately
the cases R′ = ρ and R′ < ρ, and in the latter case, we have applied

∫

{|x|≤R′}
|x|2dµ(x) ≥ cR′α.

Thus the estimation (2.3) which has to be proved for F.v can be reduced to the estimation
of (∫

{|x|≤ρ}
|x|2dµ(x)

)−1

+ C
∥∥R′−α1{R′<ρ}

∥∥
p

as ρ → 0. The first term (which tends to infinity) is exactly what we want, and the second
one is negligible from (3.11).
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Remark. Suppose that Xt has not approximately the same number of jumps in all the
directions, so that eigenvalues of V (ρ) are not in a bounded ratio. Then one can still obtain
a similar result, provided that the nondegeneracy condition (3.3) holds in the directions
where there are many jumps. More precisely, if

∫

{|x|≤ρ}
xx?dµ(x) ≥ S

∫

{|x|≤ρ}
|x|2dµ(x)

for some symmetric positive semidefinite matrix S, then conclusion holds if

∥∥∥
(
det

∫ T

0

ψtSψ?
t dt

)−1∥∥∥
p

< ∞.

One can also apply a partial calculus; if µ = µ1 +µ2, then λ+ can be decomposed into the
sum of two independent Poisson measures; if one applies our calculus only with respect to
the first one, then only µ1 has to satisfy our assumption.

4. The case of stochastic differential equations

Consider again the Lévy process Xt of (0.1), and let us study the special case F = YT

of a variable defined by a X-driven stochastic differential equation; we want to see how
conditions of Theorem 3.1 can be verified in this framework. Let a(y, x) and b(y) be IRd

valued functions defined respectively on IRd × IRm and IRd; suppose that

a(y, x) = a(y)x + ã(y, x)

where ã(y, x) = o(|x|) as x → 0. We will say that the process Yt is a solution of

dYt = b(Yt)dt + a(Yt−, dXt), Y0 = y0, (4.1)

if

Yt = y0 +
∫ t

0

b(Ys)ds +
∫ t

0

a(Ys−)dXs +
∑

s≤t

ã(Ys−, ∆Xs)

where ∑

s≤t

∣∣ã(Ys−, ∆Xs)
∣∣ < ∞.

If g(y, x) is smooth with respect to y and if k ∈ INd, the function g differentiated kj

times with respect to each yj is denoted by g(k); the Jacobian matrix with respect to y is
denoted by g′. Henceforth, the regularity and boundedness assumptions for a and b are
the following ones.

Assumption (A). The functions a and b are C∞ with bounded derivatives, the function
ã(y, x) is infinitely differentiable with respect to y, and

|ã(y, x)| ≤ C(1 + |y|)|x|r, |ã(k)(y, x)| ≤ Ck|x|r (4.2)
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for k ∈ INd \ {0}, |x| ≤ 1, and some r > 1 such that

∫ (|x|r ∧ 1
)
dµ(x) < ∞. (4.3)

Moreover
∫
|a(y, x)|pdµ(x) ≤ C(1 + |y|)p, sup

y

∫ ∣∣a(k)(y, x)
∣∣pdµ(x) < ∞ (4.4)

for k ∈ INd \ {0}, p ≥ 2.

Under Assumption (A), the equation (4.1) has a unique solution Yt. When ã = 0, this
is a standard result since the coefficients a and b are globally Lipschitz. The general case
can be dealt with by writing (4.1) as dYt = dX̃t(Yt−) in the sense of [4], where

X̃t(y) = b(y)t +
∫ t

0

a(y, dXs) = b(y)t + a(y)Xt +
∑

s≤t

ã(y, ∆Xs)

is a Lévy process with values in the space of smooth maps from IRd into itself (the conver-
gence and smoothness of the sum follow from (4.2) and (4.3)).

Moreover, it is proved in [4] that for (t, y) fixed, the solution at time s ≥ t with initial
value y at time t is given by a smooth stochastic semiflow φts(y), and the derivatives of φts

are obtained by deriving formally the equation (in [1], a weaker differentiability is studied;
when ã = 0, one can also see [9]). In particular, the derivative Zt

s = φ′ts(Yt) is the unique
matrix-valued solution of

dZt
s = b′(Ys)Zt

sds + a′(Ys−, dXs)Zt
s−, Zt

t = I (4.5)

for s ≥ t. In contrast with the continuous case, one must notice that the semiflow φts is
invertible only when µ-almost all the maps

y 7→ y + a(y, x)

are invertible (see for instance [5] in the case ã = 0).

We now verify that in the case F = YT , the Malliavin matrix involved in Theorem 3.1
can be expressed as in the classical continuous case; the analogue of the diffusion coefficient
is a a?.

Theorem 4.1. Assume that a and b satisfy (A), that the Lévy measure µ of X satisfies
the conditions of Corollary 1.2(b), and that the nondegeneracy condition (3.3) holds with

ψt = Zt
T a(Yt) (4.6)
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for some T > 0. Then YT has a C∞b density.

We need some preliminary results. We will use the Sobolev inequality

sup |H(y)| ≤ C
∑

|k|=d+1

∫
|H(k)(y)|dy

which is valid for smooth functions H with compact support in IRd, and which is easily
proved by estimating the Fourier transform of H; by localizing, one deduces that

sup
|y|≤ρ

|H(y)| ≤ C
∑

|k|≤d+1

∫

{|y|≤ρ+1}
|H(k)(y)|dy (4.7)

for a C which does not depend on ρ.

Lemma 4.2. Let H1(ω, y1, z) and H2(ω, y1, y, z), y1 ∈ IRd, y ∈ IRd, z ∈ E (a parameter
space), be random functions such that∥∥∥sup

z
|H1(y1, z)|

∥∥∥
p
≤ Qp(y1),

∥∥∥sup
z
|H(k)

2 (y1, y, z)|
∥∥∥

p
≤ Qkp(y),

for p ≥ 1, k ∈ INd, some functions Qp, Qkp with at most polynomial growth, and where

H
(k)
2 are the derivatives with respect to y. Then the function

H : (y1, z) 7→ H2(y1,H1(y1, z), z)

satisfies an estimate similar to the one for H1: for any p, there exists a function Qp with
at most polynomial growth such that∥∥sup

z
|H(y1, z)|∥∥

p
≤ Qp(y1).

Proof. By applying the Sobolev inequality (4.7) to y 7→ H2(y1, y, z),

|H(y1, z)| ≤ sup
{
|H2(y1, y, z)|; |y| ≤ sup

z
|H1(y1, z)|

}

≤ C
∑

|k|≤d+1

∫

{|y|≤supz |H1(y1,z)|+1}
|H(k)

2 (y1, y, z)|dy.

Thus ∥∥∥sup
z
|H(y1, z)|

∥∥∥
p

≤ C
∑

|k|≤d+1

∫ ∥∥∥sup
z
|H(k)

2 (y1, y, z)|
∥∥∥

2p
IP

[
sup

z
|H1(y1, z)|+ 2 ≥ |y|+ 1

]1/(2p)

dy

≤ C
(
Qq(|y1|) + 2

)q/2p ∑

|k|≤d+1

∫
(|y|+ 1)−q/2pQk,2p(y)dy

where the probability was estimated from the Bienaymé-Chebyshev inequality. By choosing
q large enough, the integrals are finite, so we can conclude.
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Lemma 4.3. One has ∥∥∥ sup
0≤s≤t≤T

∣∣φ(k)
st (y)

∣∣
∥∥∥

p
≤ Qkp(y)

for some functions Qkp with at most polynomial growth, and where the supremum is
relative to the couples (s, t).

Proof. If we only take the supremum with respect to t with s fixed, this is a standard
estimate on the solution of (4.1), and Qkp is affine if k = 0 and is constant otherwise (see
[4]; estimates of the derivatives require the graded equations of [1]). More generally, for
any stopping time σ, the process φσt(y) is the solution of (4.1) with initial value y at time
σ, and ∥∥∥ sup

σ≤t≤T
|φσt(y)|

∥∥∥
p
≤ Cp(1 + |y|),

∥∥∥ sup
σ≤t≤T

|φ(k)
σt (y)|

∥∥∥
p
≤ Cp (4.8)

for k 6= 0 and where Cp does not depend on σ. The delicate point in the lemma is that
we have to take also the supremum with respect to s; moreover, the flow is not necessarily
invertible, so we cannot write φst = φtφ

−1
s . To make it invertible, we have to remove the

big jumps. Let ρ0 > 0 be such that

|x| ≤ ρ0 =⇒ sup
y
|a′(y, x)| ≤ 1/2. (4.9)

When |x| ≤ ρ0, the map y 7→ y +a(y, x) is a diffeomorphism, so φst is a diffeomorphism as
soon as Xt has not a jump bigger than ρ0 on [s, t] (see [5], [4]). Now consider the sequence
of stopping times σj where σ0 = 0 and σj+1 is the infimum of times s > σj such that

|∆Xs| ≥ ρ0 or sup
|y−y1|≤ρ1

∣∣φσjs(y)− y
∣∣ ≥ ρ1/2 or s ≥ σj + T

for fixed ρ1 > 0 and y1. On the event {σj ≤ s < σj+1}, the map φσjs is invertible and we
can write

φst = φσjt ◦ φ−1
σjs. (4.10)

We want to estimate φ
(k)
st (y1) uniformly in s ∈ [σj , σj+1) and t ∈ [s, T ]. We expand this

derivative as a sum of products of type

φ
(k)
σjt ◦ φ−1

σjs(y1), φ(k)
σjs ◦ φ−1

σjs(y1), (φ′σjs)
−1 ◦ φ−1

σjs(y1).

From Lemma 4.2, we are reduced to estimate the Lp norms of

sup
σj≤t≤T

|φ(k)
σjt(y)|, sup

σj≤s<σj+1

|(φ′σjs)
−1(y)|, sup

σj≤s<σj+1

|φ−1
σjs(y1)|

by some functions of y or y1 with at most polynomial growth, and the estimates for the
first and second terms should not depend on y1 (note that σj depends on y1). Firstly
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φ
(k)
σjt(y) is estimated in (4.8). Secondly, φ′σjs(y) is solution of (4.5) with Ys replaced by

φσjs(y), so (φ′σjs(y))−1 is solution of

dZs = −Zs(b′ ◦ φσjs)(y)ds + Zs

((
I + a′(φσjs−(y), dXs)

)−1 − I
)
. (4.11)

Since the coefficients of this equation are bounded, one can deduce that
∥∥∥ sup

σj≤s<σj+1

∣∣(φ′σjs(y))−1
∣∣
∥∥∥

p
≤ Cp. (4.12)

Thirdly, we have to study φ−1
σjs(y1) on {σj ≤ s < σj+1}; but from the definition of σj+1,

we have that
|y − y1| ≤ ρ1 =⇒ |φσjs(y)− y| < ρ1/2,

so the image by φσjs of the sphere of center y1 and radius ρ1 is included in the complement
of the closed ball of center y1 and radius ρ1/2 and this ball contains φσjs(y1); since φσjs

is a diffeomorphism, the image of the ball of center y1 and radius ρ1 contains the ball of
center y1 and radius ρ1/2, so

|φ−1
σjs(y1)− y1| ≤ ρ1

and therefore ∥∥∥ sup
σj≤s<σj+1

∣∣φ−1
σjs(y1)

∣∣
∥∥∥

p
≤ y1 + ρ1. (4.13)

As it was explained above, from (4.8), (4.12) and (4.13), we can apply Lemma 4.2 and
deduce that ∥∥∥ sup

0≤s≤t≤T
|φ(k)

st (y1)|1{σj≤s<σj+1}
∥∥∥

p
≤ Qk,p(y1)

for Qk,p with at most polynomial growth. Now

∥∥∥ sup
0≤s≤t≤T

|φ(k)
st (y1)|

∥∥∥
p
≤

∑

j

∥∥∥ sup
0≤s≤t≤T

|φ(k)
st (y1)|1{σj≤s<σj+1}1{σj≤T}

∥∥∥
p

≤ Qk,2p(y1)
∑

j

IP[σj ≤ T ]1/(2p)
(4.14)

so we still have to estimate the series. From the definition of (σj), it can be seen that the
variables (σj+1 − σj) are independent, identically distributed, and that

IP
[
σ1 ≤ t

] ≤ IP
[
sup
s≤t

|∆Xs| ≥ ρ0

]
+

2
ρ1

IE sup
s≤t

sup
|y−y1|≤ρ1

∣∣φs(y)− y
∣∣

for t < T and with φs = φ0s. Since Xt is a Lévy process,

IP
[
sup
s≤t

|∆Xs| ≥ ρ0

]
≤ C t.
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The supremum with respect to y is estimated from the Sobolev inequality (4.7), so that

sup
|y−y1|≤ρ1

∣∣φs(y)− y
∣∣ ≤C

∫

{|y−y1|≤ρ1+1}

∣∣φs(y)− y
∣∣dy

+ C
∑

1≤|k|≤d+1

∫

{|y−y1|≤ρ1+1}

∣∣φ(k)
s (y)

∣∣dy.

We deduce from the L2 estimates of [4] that

IE sup
s≤t

∣∣φs(y)− y
∣∣ ≤ C(1 + |y|)

√
t, IE sup

s≤t

∣∣φ(k)
s (y)

∣∣ ≤ Ck

√
t

for k 6= 0, so
IP

[
σ1 ≤ t

] ≤
√

tQ(y1) ≤ 1/2

if t < T ∧ 1/(4Q(y1)2), with Q having at most polynomial growth. Let J = J(y1) be
the first integer greater than 4T Q(y1)2; since σj is the sum of j independent variables
distributed like σ1, we have

IP[σj ≤ T ] ≤ J IP
[
σ[j/J] ≤ T/J

] ≤ J IP
[
σ1 ≤ T/J

][j/J] ≤ (2J)/(2j/J )

where [j/J ] is the integer value of j/J . We deduce that
∑

j

IP
[
σj ≤ T

]1/2p ≤ Cp

(
4T Q(y1)2 + 1

)1+1/2p
. (4.15)

The result now follows from (4.14) and (4.15).

Proof of Theorem 4.1. Consider the function

ξ(ρ, x, y) = y + ρ|x|−1a(y, x), ρ ≥ 0, |x| ≤ 1,

and for 0 ≤ t1 < . . . < tk ≤ T , the random map

Ξ(y0, ρ1, t1, x1, . . . , ρk, tk, xk) = φtkT ◦ ξ(ρk, xk, .) ◦ φtk−1tk
◦ . . . ◦ ξ(ρ1, x1, .) ◦ φ0t1(y0).

Then for τ = (t1, x1, . . . , tk, xk), one has

YT ◦ ε+
τ = Ξ(y0, |x1|, t1, x1, . . . , |xk|, tk, xk)

and

DτF =
∫ |x1|

0

dρ1 . . .

∫ |xk|

0

dρk
∂kΞ

∂ρ1 . . . ∂ρk
(y0, ρ1, t1, x1, . . . , ρk, tk, xk),

so in order to estimate the left-hand side of (3.1), we can use

ess sup
τ

|DτF |∏ |xj | ≤ sup
{∣∣∣ ∂kΞ

∂ρ1 . . . ∂ρk
(y0, ρ1, t1, x1, . . . , ρk, tk, xk)

∣∣∣;

0 ≤ ρj ≤ 1, 0 ≤ t1 < . . . < tk ≤ T, |xj | ≤ 1
}

.
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Now, by expanding the derivative, since the derivatives of ξ with respect to ρ and y are
bounded, we are reduced to estimate the moments of variables of type

φ
(k′)
tjtj+1

◦ ξ(ρj , xj , .) ◦ φtj−1tj
◦ . . . ◦ ξ(ρ1, x1, .) ◦ φ0t1(y0).

We apply Lemma 4.2 to this composed function, and φ
(k′)
tjtj+1

(y), φtltl+1(y) are estimated
from Lemma 4.3, so we obtain the condition (a) of Theorem 3.1. For (b), it is clear that

YT ◦ ε+
tx = φtT

(
Yt + a(Yt, x)

)

is differentiable with respect to x at x = 0, and if ψt is the Jacobian matrix, it is given by
(4.6). Moreover

DtxYT = Ξ(y0, |x|, t, x)− Ξ(y0, 0, t, x)

and

ψtx =
d∑

j=1

∂φtT

∂yj
(Yt)aj(Yt)x = |x|∂Ξ

∂ρ
(y0, 0, t, x)−

d∑

j=1

∂φtT

∂yj
(Yt)ãj(Yt, x),

so

DtxYT − ψtx =
∑

j,k

∫ |x|

0

dρ

∫ ρ

0

dρ
∂2φtT

∂yj∂yk

(
Yt + ρ

a(Yt, x)
|x|

)aj(Yt, x)ak(Yt, x)
|x|2

+
∑

j

∂φtT

∂yj
(Yt)ãj(Yt, x).

The moments of the first and second derivatives are proved to be bounded from (4.8), the
variables aj(Yt, x) and ãj(Yt, x) are respectively of order |x| and |x|r, so this expression is
of order |x|r∧2.

In Theorem 4.1, the only condition which does not rely explicitely on the coefficients
of the equation is the condition (3.3) concerning the Malliavin matrix; we now want to
find sufficient conditions for it; this condition can actually be decomposed into conditions
on Zt

T and on a; the condition on Zt
T is linked with the local invertibility of the flow (note

that such a condition does not appear for continuous diffusions); for a, we verify that the
uniform ellipticity of a a? is sufficient, but we also give another example, namely the Lévy
stochastic area; this example can probably be generalized to a more general condition of
Hörmander’s type as in [7], but we will not deal with this problem in this work.

Corollary 4.4. Suppose that µ satisfies the conditions of Corollary 1.2(b), that a and b
satisfy (A), that a a? is uniformly elliptic, and that

det
(
I + a′(y, x)

) ≥ c/(1 + |y|q) (4.16)

for some q ≥ 0, any y and µ almost any x. Then YT has a C∞b density for any T > 0.

Proof. One can check from the assumption (4.16) that the derivative Zt
s of the flow φts is

invertible; moreover, if σ0 = T and

σj = sup
{
t < σj−1; |∆Xt| ≥ ρ0

}
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for ρ0 defined in (4.9) and with the convention sup ∅ = 0, then

Zt
T = Zσ1

T

(
I + a′(Yσ1−, ∆Xσ1)

)
Zσ2

σ1− . . . Z
σj−1
σj−2−

(
I + a′(Yσj−1−,∆Zσj−1)

)
Zt

σj−1− (4.17)

on {σj ≤ t < σj−1}. Conditionally on (σk, k ∈ IN), one can write the equation satisfied by
(Zσj

t ) on {σj ≤ t < σj−1} as an equation similar to (4.5), but with the jumps of X greater
than ρ0 removed; the solution of this equation is invertible and its inverse satisfies (4.11)
with the big jumps of X removed. The times σk are not stopping times, but the sequence
(σk) and the process X with its big jumps removed are independent, so one can deduce as
in (4.12) that

IE
[

sup
σj≤t<σj−1

∣∣(Zσj

t )−1
∣∣p

∣∣∣ (σk; k ∈ IN)
]
≤ Cp.

From this estimate and (4.16), by writing the inverse Ut of Zt
T from (4.17), we obtain

∥∥∥ sup
t>σk

|Ut|
∥∥∥

p
≤ Ck,p

∥∥∥sup
s

(1 + |Ys|q)k−1
∥∥∥

p′
< ∞.

On the other hand

(ψtψ
?
t )−1 = U?

t

(
a(Yt)a?(Yt)

)−1
Ut ≤ CU?

t Ut

so
ψtψ

?
t ≥ VtI

for a positive variable Vt satisfying

∥∥∥ sup
t>σk

V −1
t

∥∥∥
p

< ∞.

Thus, for any k, (∫ T

0

ψtψ
?
t dt

)−1

≤ I
(∫ T

σk

Vtdt
)−1

≤ I(T − σk)−1 sup
t>σk

V −1
t .

The variable T − σk is the sum (limited to T ) of k independent exponential variables, so
its inverse is in Lp if k is chosen large enough, and we can conclude.

Remark 1. If one assumes that the left hand side of (4.16) is bounded below by a positive
constant, the proof of the corollary can be shortened by noticing that (Zt

T )−1 has bounded
moments, so that (ψtψ

?
t )−1 also has bounded moments.

Remark 2. Our assumption (4.16) deals with the behaviour at big jumps; it implies that
the semi-flow φst is locally injective, but not necessarily globally, as it can be seen in the
two-dimensional example

a(y, x) = x if x 6= x0,
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a(y, x0) = (2 + arctan y1)
(

cos y2

sin y2

)
− y

when µ({x0}) > 0.

Remark 3. If the Lévy measure µ does not charge similarly all the directions, one can try
to proceed as explained in the end of §3. However, some results which were previously
obtained with the classical Malliavin calculus do not follow directly from our results, and
really need a precise study of noises with different levels such as [6].

Remark 4. In contrast with the continuous case, the ellipticity condition for a a? must
hold everywhere and not only at the origin y0; a big jump can indeed make the solution to
exit the ellipticity domain too quickly, so that the density cannot be bounded. Note also
that the ellipticity condition without the local invertibility of the flow is not sufficient.

We now consider an example which satisfies a Hörmander condition rather than the el-
lipticity condition of Corollary 4.4; this will be the classical Lévy stochastic area considered
in the case of Lévy processes.

Corollary 4.5. Let Xt = (X1
t , X2

t ) be a two-dimensional Lévy process satisfying the
assumptions of Corollary 1.2(b), and such that

∫
|x|pdµ(x) < ∞

for any p ≥ 2. Define

LT =
1
2

(∫ T

0

X1
t−dX2

t −
∫ T

0

X2
t−dX1

t

)
.

Then YT = (XT , LT ) has a C∞b density for any T > 0.

Proof. This case corresponds to the equation (4.1) with coefficients

b = ã = 0, a(y) =




1 0
0 1

−y2/2 y1/2


 .

After some computation, one obtains

det
∫ T

0

ψtψ
?
t dt = T 2

∫ T

0

∣∣∣Xt − 1
T

∫ T

0

Xsds
∣∣∣
2

dt

≥ T 2
k−1∑

j=0

∫ tj+1

tj

∣∣∣Xt − k

T

∫ tj+1

tj

Xsds
∣∣∣
2

dt

=
k T

2

k−1∑

j=0

∫ tj+1

tj

∫ tj+1

tj

|Xt −Xs|2ds dt
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for the regular subdivision tj = j T/k of [0, T ]. For any δ > 0, the variables Xt − Xs,
|t− s| ≥ δ, have uniformly bounded densities, so

sup
{
IE[|Xt −Xs|−1]; |t− s| ≥ δ

}
< ∞,

and therefore

IE
(∫ tj+1

tj

∫ tj+1

tj

|Xt −Xs|2ds dt
)−1/2

< ∞.

The variables corresponding to different values of j are independent, so

IP
[
det

∫ 1

0

ψtψ
?
t ≤ η

]
≤

k−1∏

j=0

IP
[∫ tj+1

tj

∫ tj+1

tj

(X1
t −X1

s )2ds dt ≤ 2η/(k T )
]
≤ Ckηk/2

so the inverse of the determinant is proved to have a finite pth moment by choosing k large
enough.

References
[1] K. Bichteler, J.B. Gravereaux and J. Jacod, Malliavin calculus for processes with

jumps, Stochastics Monographs 2, Gordon and Breach, 1987.
[2] J.M. Bismut, Calcul des variations stochastique et processus de sauts, Z. Wahrschein-

lichkeitstheorie verw. Gebiete 63 (1983), 147–235.
[3] E. Carlen and E. Pardoux, Differential calculus and integration by parts on Poisson

space, in: Stochastics, Algebra and Analysis in Classical and Quantum Dynamics
(Marseille, 1988), 63–73, Math. Appl. 59, Kluwer, 1990.

[4] T. Fujiwara and H. Kunita, Stochastic differential equations of jump type and Lévy
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Prob. et Stat. 21 (1985), 2, 125–146.
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31
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