Algebraically flat or projective algebras

Gabriel Picavet

Laboratoire de Mathématiques Pures, Université de Clermont II, 63177 Aubière Cedex, France

Received 30 November 1999; received in revised form 2 December 2001
Communicated by M.-F. Roy

Abstract

We define and study algebraically flat algebras in order to have a better understanding of algebraically projective algebras of finite type (the projective algebras of literature). A close examination of the differential properties of these algebras leads to our main structure theorem. As a corollary, we get that an algebraically projective algebra of finite type over a field is either a polynomial ring or the affine algebra of a complete intersection. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 13N05; 13B02; 13B40

0. Introduction

This paper originates with the theory of projective algebras. We were motivated by an unsolved conjecture: a projective algebra of finite type over a field A is a polynomial ring. An example by Costa shows that the statement is false if A is not a field. As Costa noticed, the cancellation problem for polynomial rings over fields is solved if the conjecture is true [9].

Flatness is well known to be useful when studying projectivity. In Section 1, we are aiming to build a convenient theory of flatness for algebras. Roughly speaking, the flatness of an A-module M is characterized by properties of linear relations in M. Replacing linear relations with polynomial relations gives the solution. We have chosen to follow Lazard’s treatment of flatness [17]. An A-algebra B is called algebraically flat (a-flat) if every morphism of A-algebras $P \to B$ where P is of finite presentation can be factored $P \to L \to B$ where L is a polynomial algebra in finitely many indeterminates. When A and B are Noetherian, replacing polynomial algebras
with smooth algebras in the above definition gives the characterization of regular morphisms by Popescu–Spivakovski [31]. Our definition gives most of the usual flatness properties. In particular, an A-algebra B is a-flat if and only if B is a direct limit of polynomial algebras in finitely many indeterminates over A. Symmetric algebras of flat modules are a-flat algebras. D. Popescu defined algebraically pure morphisms (a-pure morphisms) [26]. These morphisms are closely related to a-flat morphisms, since an a-flat morphism is a-pure and faithfully flat. Under some finiteness conditions, a-pure morphisms descend factorization of morphisms. As a consequence, a-purity descends a-flatness and smoothness. Evidently, a-flatness localizes but we do not know whether it globalizes. Here are some concrete examples of a-flat morphisms. If I is a flat ideal of linear type in a ring A, its Rees ring $A[IX]$ is a-flat over A. Then a Rees ring over a Prüfer domain is a-flat.

We define the flat rank $\text{f-rk}(B)$ of an a-flat algebra B. Then $\text{f-rk}(B) \leq r$ if and only if B is a direct limit of polynomial algebras in r indeterminates. If B is of finite type, $\text{f-rk}(B) = \lambda(B)$, the least number of elements required to generate B.

In this paper, projectively trivial rings are a prominent tool because a connected ring A is projectively trivial if and only if each of its finitely generated projective modules is free [22]. We say that a ring A is PPF if finitely generated projective $A[X_1,\ldots,X_n]$-modules are free for each integer n. A principal domain is PPF by the Quillen–Suslin’s theorem. If \mathbb{P} is a property of rings, \mathbb{P}-morphisms are well known. We have been led to introduce a variant: universal \mathbb{P}-morphisms. We show that a regular PPF integral domain is a UFD and that an a-flat morphism is a universal connected PPF morphism. Hence, if $A \to B$ is a-flat and A is PPF, so is B. Moreover, an a-flat morphism between noetherian rings is a regular UFD morphism.

Section 2 contains the main results of this paper and is devoted to algebraically projective (a-projective) algebras. They are the projective objects in a category of algebras over a ring. An a-projective algebra is projective. These algebras have been studied by many authors as D. L. Costa, T. Asanuma, J. W. Brewer, A. R. Kustin, J. Yanik.

Our results show that a-projective algebras share many properties with polynomial rings. An a-projective algebra of finite type is of finite presentation and an a-projective algebra is a-flat. The converse is true if B is of finite presentation. In this case, B is the direct limit of polynomial algebras in $\text{f-rk}(B) = \lambda(B)$ indeterminates. This gives a partial answer to the conjecture evoked at the beginning.

The following is a key result. If B is an a-projective algebra of finite type, $A \to B$ is a projective, smooth, universal regular morphism, its B-module of Kähler differentials $\Omega_A(B)$ is projective and $K \otimes_A B$ is a regular UFD for every ring morphism $A \to K$ where K is a field. Moreover, if R is a connected PPF ring, so is $R \otimes_A B$ for every ring morphism $A \to R$ and $\Omega_R(R \otimes_A B)$ is free with finite rank.

An a-projective A-algebra B of finite type is a retract of a polynomial ring $L = A[X_1,\ldots,X_n]$. An idempotent endomorphism u of the A-algebra L is associated to B. The sequence $\{u(X_1) = f_1,\ldots,u(X_n) = f_n\}$ is called a representation of B and $J = (X_1 - f_1,\ldots,X_n - f_n)$ a representation ideal, for $B = A[f_1,\ldots,f_n]$ and $B \simeq L/J$. With this notation, if A is a connected PPF ring, then J/J^2 is a free B-module with finite rank,
\[n = \text{rk}_B(\Omega_A(B)) + \text{rk}_B(J/J^2) \] and if in addition \(A \) is Noetherian, \(\dim(B) \leq \dim(A) + \text{rk}_B(\Omega_A(B)) \).

Our main result is as follows. Let \(K \) be a PPF affine regular integral domain and \(K \to B \) an \(a \)-projective morphism of finite type which is not a polynomial algebra, then a representation ideal \(J \) such that \(\text{ht}(J) > \dim(K) \) is a complete intersection and \(\dim(B) = \text{rk}_B(\Omega_K(B)) \). In particular, if \(K \) is a field, a representation ideal is a complete intersection.

We give some notation. All rings considered are unital commutative and ring morphisms are unital. Hence a commutative \(A \)-algebra \(B \) can be identified with its structural ring morphism \(A \to B \). The set of all units of a ring \(A \) is denoted by \(U(A) \), the set of all idempotents by \(\text{Bool}(A) \) and the nilradical by \(\text{Nil}(A) \). If \(P \) is a prime ideal of \(A \), the associated residual field is denoted by \(k(P) \). The symmetric algebra of an \(A \)-module \(M \) is denoted by \(S_A(M) \). Any unexplained notation is standard.

1. Definition and properties of algebraically flat morphisms

In the following, a polynomial \(A \)-algebra \(L \) over a ring \(A \) is an \(A \)-algebra \(A[X_i] \in I \) in a set of indeterminates \(\{X_i\}_{i \in I} \) (if \(I \) is empty, \(L = A \)). We denote by \(\mathcal{P}_A \) the class of all polynomial algebras of the form \(A[X_1, \ldots, X_n] \) where \(n \) is an integer.

Definition 1.1. An \(A \)-algebra \(B \) (or a ring morphism \(A \to B \)) is called algebraically flat (\(a \)-flat) if the following condition (\(aF \)) holds:

\((aF) \) Every morphism of \(A \)-algebras \(P \to B \) where \(P \) is an \(A \)-algebra of finite presentation, can be factored \(P \to L \to B \) where \(L \) is a polynomial \(A \)-algebra.

In the above definition, the polynomial \(A \)-algebra \(L \) can be replaced with \(L \in \mathcal{P}_A \) or with an \(a \)-flat algebra \(L \). Clearly, a polynomial \(A \)-algebra is \(a \)-flat.

Our first result gives the structure of \(a \)-flat morphisms. Lazard gave a similar result for flat modules [17]. We mimic the proof given in [5]. The proof is detailed because some arguments are different in the category of algebras.

Lemma 1.2. Let \(A \to B \) be a ring morphism and assume that there exists a direct system \(\{B_*\}_{\lambda \in \Lambda} \) of \(A \)-algebras \(B_* \) such that \(B = \lim_{\to} B_* \). Let \(P \to B \) be a morphism of \(A \)-algebras where \(P \) is of finite presentation. There is some index \(\lambda \) such that \(P \to B \) can be factored \(P \to B_{\lambda} \to B \).

Proof. Consider a morphism \(f : P \to B \) of \(A \)-algebras where the algebra \(P = A[X_1, \ldots, X_n]/(p_1, \ldots, p_s) \) is defined by the polynomials \(p_1, \ldots, p_s \). Denote by \(x_i \) the class of \(X_i \) in \(P \) and set \(f(x_i) = b_i \). There are an index \(\lambda \) and some \(v_1, \ldots, v_n \) in \(B_* \) such that \(p_\lambda (v_1, \ldots, v_n) = 0 \) for \(k = 1, \ldots, s \) and \(v_i \mapsto b_i \) for \(i = 1, \ldots, n \). Then \(P \to B \) can be factored \(P \to B_{\lambda} \to B \).

Theorem 1.3. Let \(A \to B \) be a ring morphism. Then \(B \) is \(a \)-flat if and only if there exists a direct system \(\{L_*\}_{\lambda \in \Lambda} \) of \(A \)-algebras \(L_* \in \mathcal{P}_A \) such that \(B = \lim_{\to} L_* \). In this case, the canonical morphisms \(L_{\lambda} \to L_{\mu} \) are of finite presentation.
Proof. Assume that $B = \lim L_i$ where $L_i \in \mathcal{P}_A$. Then Lemma 1.2 shows that B is a-flat. Conversely, assume that B is a-flat. Then $B = \lim B_i$ where $\{B_i\}_{i \in A}$ is a direct system of A-algebras of finite presentation, indexed by a partially ordered directed set A (the partial ordering hypothesis is essential) [11, O.6.3.10]. There is no harm to change A into $A \times \mathbb{N}$ equipped with the lexicographic order provided we set $B_{i \cdot (n, 1)} = B_i$ for each $n \in \mathbb{N}$. Thus we can assume that A has no maximum element. Denote the canonical morphisms by $g_\lambda : B_\lambda \to B$ and $g_{\mu, \lambda} : B_\mu \to B_\lambda$ for $\lambda \leq \mu$. Consider an element $\sigma \in A$.

By a-flatness, there exist a polynomial ring $L_\sigma = A[X_1, \ldots, X_n]$ and some morphisms u_σ, w_σ such that $B_\sigma \xrightarrow{u_\sigma} L_\sigma \xrightarrow{w_\sigma} B = B_\sigma \xrightarrow{g_\sigma} B$. Then set $w_\sigma(X_i) = b_i$. There exist some $\tau > \sigma$ and $x_1, \ldots, x_n \in B$ such that $b_i = g_\tau(x_i)$ for $i = 1, \ldots, n$, because there is no maximum element in A. Next define an A-algebra morphism $w'_\sigma : L_\sigma \to B_\tau$ by $w'_\sigma(X_i) = x_i$ for $i = 1, \ldots, n$. We get a morphism $g_\tau \circ w'_\sigma : L_\sigma \to B_\tau \to B$ such that $w_\sigma = g_\tau \circ w'_\sigma$ since $g_\tau \circ w'_\sigma(X_i) = g_\tau(x_i) = b_i = w_\sigma(X_i)$. Then the relation $g_\tau \circ w'_\sigma \circ u_\sigma = g_\tau \circ g_\tau, \sigma$ follows. Now we can use [11, O.6.3.11]. Since $A \to B_\sigma$ is of finite type, there is some $\nu \geq \tau$ such that $g_{\nu, \tau} \circ w'_\sigma \circ u_\sigma = g_{\nu, \tau} \circ g_{\nu, \sigma} = g_{\nu, \sigma}$. Define a map $f : A \to A$ by letting $f(\sigma) = \nu$. Set $v_\sigma = g_{\nu, \tau} \circ w'_\sigma$. Hence we have $v_\sigma \circ u_\sigma = g_{f(\sigma), \sigma}$ with $f(\sigma) > \sigma$ so that $B_\sigma \xrightarrow{u_\sigma} L_\sigma \xrightarrow{v_\sigma} B_{f(\sigma)} = B_{f(\sigma)} \xrightarrow{g_{f(\sigma), \sigma}} B$. We are now in position to apply [5, 1.6, Lemma 2], that is to say we can change the partial ordering on A so that $B = \lim L_i$. To complete the proof, observe that a morphism of A-algebras $\alpha : A[Y_1, \ldots, Y_m] \to A[X_1, \ldots, X_n]$ is of finite presentation. Setting $\alpha(Y_j) = p_j(X_1, \ldots, X_n)$, it is easy to see that α can be identified to the canonical morphism $A[S_1, \ldots, S_m] \to A[S_1, \ldots, S_m; X_1, \ldots, X_n]/(S_1 - p_1, \ldots, S_m - p_m)$.

Corollary 1.4. The symmetric algebra $S_A(M)$ of an A-flat module M is a-flat.

Proof. Observe that M is a direct limit of free modules with finite rank [5]. Hence, $S_A(M)$ is a direct limit of polynomial algebras.

Now, we characterize a-flat morphisms in the same way as Lazard did for flat modules [5].

Theorem 1.5. Let $A \to B$ be a ring morphism. Then $A \to B$ is a-flat if and only if the following condition (\mathcal{AF}^\prime) holds:

(\mathcal{AF}^\prime) For every A-algebra P of finite presentation and every surjective morphism of A-algebras $s : C \to B$, the natural map $\text{Hom}_{A\text{-alg}}(P, C) \to \text{Hom}_{A\text{-alg}}(P, B)$ is surjective.

Proof. Assume that (\mathcal{AF}) holds and let $L = A[X_i]_{i \in I} \to B$ be a surjective morphism. Then a morphism of A-algebras $P \to B$ can be factored $P \to L \to B$ and (\mathcal{AF}) is verified. Conversely, assume that (\mathcal{AF}) holds. Let $s : C \to B$ and $f : P \to B$ be morphisms of A-algebras where P is of finite presentation and s is surjective. Then f can be factored $P \xrightarrow{g} A[X_1, \ldots, X_n] \xrightarrow{h} B$ so that $f = h \circ g$. If $n = 0$, using the structural morphism $k : A \to C$ and observing that h is the structural morphism of B, we get $s \circ (k \circ g) = f$. If $n \neq 0$, letting $b_i = h(X_i)$ for $i = 1, \ldots, n$, we pick $c_i \in C$
such that $s(c_i) = b_i$. Hence a morphism of A-algebras $k : A[X_1, \ldots, X_n] \to C$ is defined by $k(X_i) = c_i$ so that $h = s \circ k$. It follows that $f = s \circ (k \circ g)$. Thus the proof is complete.

\textbf{Definition 1.6.} Let $A \to B$ be a ring morphism and n an integer.

1. A size n (polynomial) relation in B is a pair $(p, \beta) \in A[X_1, \ldots, X_n] \times B^n$ such that $p(\beta) = 0$.
2. A system of (polynomial) relations in B is a set of finitely many size n relations $(p_1, \beta_1), \ldots, (p_m, \beta_m)$ and $\sum_{j=1}^m A[X_1, \ldots, X_n] p_j$ is its associated ideal.
3. Let $s : C \to B$ be a morphism of A-algebras. We say that a system of relations $(p_1, \beta), \ldots, (p_m, \beta)$ in B has a pullback in C if there exists $\gamma \in C^n$ such that $s(\gamma) = \beta$ and $(p_1, \gamma), \ldots, (p_m, \gamma)$ is a system of relations in C.

\textbf{Theorem 1.7.} Let B be an A-algebra, the following statements are equivalent:

1. B is a-flat over A.
2. For every surjective morphism of A-algebras $s : C \to B$, each relation (respectively, each system of relations) in B has a pullback in C via s.
3. There is a surjective morphism $s : L \to B$ of A-algebras, where L is a polynomial algebra such that each relation (respectively, each system of relations) in B has a pullback in L via s.
4. There is a surjective morphism $s : F \to A$ of A-algebras, where F is an a-flat A-algebra such that each relation (respectively, each system of relations) in B has a pullback in F via s.
5. The following condition (\mathcal{AF}') holds:

(\mathcal{AF}'') If $b = (b_1, \ldots, b_n) \in B^n$ is a zero of $p \in A[X_1, \ldots, X_n]$, there exist $\beta \in B^n$ and f_1, \ldots, f_n in a polynomial algebra $A[Y_1, \ldots, Y_m]$ such that $p(f_1, \ldots, f_n) = 0$ and $b_i = f_i(\beta)$ for $i = 1, \ldots, n$.

\textbf{Proof.} To see that (1) \Rightarrow (2), observe that a system of relations in B with associated ideal I defines a morphism of A-algebras $A[X_1, \ldots, X_n]/I \to B$ and then use Theorem 1.5. Obviously, (2) \Rightarrow (3) and (3) \Rightarrow (4). We show that (4) \Rightarrow (1), assuming only that each of the relations has a pullback in F. Consider a morphism $f : P \to B$ where $P = A[X_1, \ldots, X_n]/(p_1, \ldots, p_m)$. Set $f(x_i) = b_i$ where x_i is the class of X_i in P and $\beta = (b_1, \ldots, b_n)$. We get a system of relations $(p_1, \beta), \ldots, (p_m, \beta)$. Each relation (p_i, β) has a pullback (p_i, γ_i) in F. We set $\gamma_i = (c_{i1}, \ldots, c_{in})$. Let P' be $P \otimes \cdots \otimes P$ with n factors and let $P' \to B$ be the canonical morphism. There is at least a factorization $P \to P' \to B$. Set $X_i = \{X_{i1}, \ldots, X_{in}\}$ where the X_{ij} are indeterminates. Now P' is isomorphic to $A[X_1, \ldots, X_n]/J$ where J is the ideal generated by $\{p_i(X_j)\}$ for $i = 1, \ldots, m$ and $j = 1, \ldots, n$. Define a morphism $A[X_1, \ldots, X_n] \to F$ by $X_{ij} \mapsto c_{ij}$. We get a morphism $P' \to F$ such that $P' \to F \to B$ commutes. Thus we have a factorization $P \to F \to B$. Then use the remark in (1.1). Now, (5) is a translation of (3). \qed

Algebraically flat morphisms are closely related to algebraically pure morphisms (a-pure morphisms) considered by Popescu [26].
Definition 1.8. A morphism of A-algebras $f : B \to C$ is called a-pure if for every commutative diagram of A-algebras

\[
\begin{array}{ccc}
T & \xrightarrow{g} & P \\
\downarrow u & & \downarrow v \\
B & \xrightarrow{f} & C
\end{array}
\]

where T is of finite type and P of finite presentation, there exists a morphism of A-algebras $d : P \to B$ such that $u = d \circ g$.

Obviously, if $B \to C$ is a-pure as a morphism of B-algebras, then $B \to C$ is a-pure as a morphism of A-algebras.

Algebraically pure morphisms can be characterized by polynomial relations. They are stable under arbitrary base changes. An a-pure morphism of A-algebras is universally injective.

Definition 1.9. A morphism of A-algebras $f : B \to C$ defines B as a retract of C if there is some morphism of A-algebras $s : C \to B$ such that $s \circ f = \text{Id}_B$.

In this case, $C = f(B) \oplus J$ is a direct sum of B-modules where $J = \text{Ker}(s)$. If $u = f \circ s$, then $u : C \to C$ is an idempotent endomorphism of the A-algebra C such that $\text{Im}(u) = f(B)$ and $\text{Ker}(u) = J$. Conversely, an idempotent endomorphism of A-algebras $u : C \to C$ gives an A-algebra $\text{Im}(u) = B$ which is a retract of C [9].

An A-algebra B is called retractable if A is a retract of B with respect to the structural morphism $A \to B$.

Theorem 1.10 (Popescu [26]). Let $A \to B$ be a ring morphism.

1. $A \to B$ is a-pure if and only if there exists a direct system $\{P_\lambda\}_{\lambda \in \Lambda}$ of retractable A-algebras of finite presentation P_λ such that $B = \varprojlim P_\lambda$.

2. If $A \to B$ is of finite presentation, then $A \to B$ is a-pure if and only if B is retractable.

Corollary 1.11. An a-flat morphism is a-pure and faithfully flat.

Proposition 1.12. Let $f : A \to B$ be an a-flat morphism, then

\[
\text{U}(B) = f(\text{U}(A)) + \text{Nil}(B) \quad \text{and} \quad \text{Bool}(B) = f(\text{Bool}(A)).
\]

Proof. Let $b, b' \in B$ be such that $bb' = 1$. Let $g : L \to B$ be a surjective morphism where L is a polynomial ring. The relation $(XY - 1, (b, b'))$ has a pullback in L via g. Therefore, there is some polynomial $p = u + n$ where $u \in \text{U}(A)$ and $n \in \text{Nil}(A[X])$ are
such that \(g(p) = b \). For \(e \in \text{Bool}(B) \), the relation \((X^2 - X, (e, e))\) has a pullback in \(L \) via \(g \). There is an \(e \in \text{Bool}(A) \) such that \(g(e) = e \). \(\square \)

Remark 1.13. An a-pure morphism need not be flat. It is enough to consider a non-noetherian ring \(A \) such that \(A \to A[[X]] \) is not flat. Moreover, a faithfully flat a-pure morphism need not be a-flat. To see this, let \(K \) be an algebraically closed field. Then by [26, 1.8], a ring morphism \(K \to B \) is a-pure. Choose \(B = K[X] \)). In view of Proposition 1.12, we have \(U(B) = f(U(K)) = K \setminus \{0\} \) if \(B \) is a-flat which is absurd.

Now we study the stability of the class of a-flat morphisms with respect to the usual constructions of algebra. Clearly, an isomorphism is a-flat.

Proposition 1.14. Let \((A;F)\) be the class of a-flat morphisms.
(1) If \(f : A \to B \) and \(g : B \to C \) are in \((A;F)\), then \(g \circ f \) lies in \((A;F)\). In particular, \(A \to B[X_1, \ldots, X_n] \) is a-flat when \(A \to B \) is a-flat.
(2) If \(A \to B \) lies in \((A;F)\), then \(A' \to B \otimes_A A' \) lies in \((A;F)\) for every ring morphism \(A \to A' \).
(3) If \(\{B_\lambda\}_{\lambda \in \Lambda} \) is a direct system of a-flat \(A \)-algebras with direct limit \(B \), then \(B \) is an a-flat \(A \)-algebra.
(4) Let \(f : A \to B \) be a ring morphism and \(g : B \to C \) an a-pure morphism of \(A \)-algebras such that \(g \circ f \) lies in \((A;F)\), then \(f : A \to B \) lies in \((A;F)\). The same conclusion is valid if \(B \to C \) is an a-pure morphism of \(B \)-algebras.
(5) If \(B \) is a retract of \(C \) and \(C \) is in \((A;F)\), so is \(B \).

Proof. Thanks to Theorem 1.3, (2) is obvious. We show (3). Let \(P \) be an \(A \)-algebra of finite presentation and \(P \to B \) a morphism. According to Lemma 1.2, there is some index \(\lambda \) such that \(P \to B \) can be factored \(P \to B_\lambda \to B \). Since \(A \to B_\lambda \) is a-flat, there is some polynomial \(A \)-algebra \(L \) such that \(P \to B_\lambda = P \to L \to B_\lambda \) whence a factorization \(P \to L \to B \). Therefore, \(A \to B \) is a-flat. Now, if \(A \to B \) is a-flat, so is \(A \to B \to B[X_1, \ldots, X_n] \) (write \(B \) as a direct limit of polynomial algebras \(B_\lambda \)). Then \(B[X_1, \ldots, X_n] \) is the direct limit of the polynomial \(A \)-algebras \(B_\lambda[X_1, \ldots, X_n] \) so that \(A \to B[X_1, \ldots, X_n] \) is a-flat. Next, we show (1). Assume that \(f : A \to B \) and \(g : B \to C \) are a-flat and consider a morphism of \(A \)-algebras \(h : P \to C \) where \(P \) is of finite presentation. Suppose that \(P = A[Y_1, \ldots, Y_n]/I \) where \(I = (p_1, \ldots, p_s) \) in \(A[Y_1, \ldots, Y_n] \). Set \(Q = B[Y_1, \ldots, Y_n]/J \) where \(J = IB[Y_1, \ldots, Y_n] \). Then \(Q \) is a \(B \)-algebra of finite presentation such that there is a factorization \(P \to Q \to C \) where \(Q \to C \) is a morphism of \(B \)-algebras. Therefore, \(Q \to C \) can be factored \(Q \to K \to C \) where \(K \) is a polynomial \(B \)-algebra. According to the beginning of the proof, \(A \to K \) is a-flat. Since \(P \to Q \to K \) is a morphism of \(A \)-algebras, there is a factorization \(P \to L \to K \) where \(L \) is a polynomial \(A \)-algebra. In short, we get a factorization \(P \to L \to C \) and \(A \to C \) is a-flat. Now, we prove (4). Assume that \(g \circ f \) is a-flat and that \(g \) is an a-pure morphism of \(A \)-algebras. Consider a morphism \(h : P \to B \) of \(A \)-algebras where \(P \) is an \(A \)-algebra of finite presentation. Then \(P \to B \to C \) is a morphism of \(A \)-algebras. By
a-flatness of C, there are a polynomial A-algebra L and a commutative diagram

$$
\begin{array}{ccc}
P & \longrightarrow & L \\
\downarrow & & \downarrow \\
B & \longrightarrow & C
\end{array}
$$

By the definition of a-purity, we get a factorization $P \to L \to B = P \to B$. Hence, B is a-flat. The last statement of (4) follows from Definition 1.8. The proof of (5) uses Definition 1.1. \square

Lemma 1.15. Let $A \to B$, $A \to C$ and $A \to A'$ be ring morphisms where A' is a direct limit of A-algebras $\langle A_\lambda \rangle$.

1. Let $f : B \otimes_A A' \to C \otimes_A A'$ be a morphism of A'-algebras. If $A \to B$ is of finite presentation, there is some index μ and a direct system of morphisms of A_λ-algebras $\{f_\lambda : B \otimes_A A_\lambda \to C \otimes_A A_\lambda\}_{\lambda \geq \mu}$ such that $f = \lim_{\lambda \to \mu} f_\lambda$.

2. Let $\{f_\lambda : B \otimes_A A_\lambda \to C \otimes_A A_\lambda\}$ and $\{g_\lambda : B \otimes_A A_\lambda \to C \otimes_A A_\lambda\}$ be direct systems of morphisms of A_λ-algebras with limits f and g. If $f = g$ and $A \to B$ is of finite type, there is some index λ such that $f_\lambda = g_\lambda$.

Proof. Use [11, O.6.3.10]. \square

Theorem 1.16. Let $A \to A'$ be an a-pure ring morphism and P an A-algebra of finite presentation.

1. For every pair of morphisms $u : P \to C$, $v : B \to C$ of A-algebras, v factorizes u if and only if $v \otimes A'$ factorizes $u \otimes A'$.

2. For every pair of morphisms $v : B \to P$ and $u : B \to C$ of A-algebras where $A \to B$ is of finite type, v factorizes u if and only if $v \otimes A'$ factorizes $u \otimes A'$.

It follows that a-pure morphisms descend universally a-flatness and smoothness.

Proof. We show (1). Let $P \otimes_A A' \xrightarrow{f} B \otimes_A A' \xrightarrow{\otimes_A A'} C \otimes_A A'$ be a factorization in the category of A'-algebras such that $u \otimes A' = (v \otimes A') \circ f$. If $A \to A'$ has a retraction $A' \to A$, tensor with $\otimes_A A$ to get a factorization $P \to B \to C$. Now assume that $A \to A'$ is an arbitrary a-pure morphism. We reduce the proof to the previous case. We know that $A' = \varprojlim A_\lambda$ where $A \to A_\lambda$ is retractable (see (1.10)). In view of Lemma 1.15(1) $f = \lim_{\lambda \to \mu} f_\lambda$ (where $\lambda \geq \mu$). Then we have $v \otimes A' = \lim_{\lambda \to \mu} v \otimes A_\lambda$ and $u \otimes A' = \lim_{\lambda \to \mu} u \otimes A_\lambda$.

Set $k_\lambda = v \otimes A_\lambda \circ f_\lambda$. We get $\lim_{\lambda \to \mu} k_\lambda = u \otimes A'$. It follows from Lemma 1.15(2) that there is a factorization $P \otimes_A A_\lambda \to B \otimes_A A_\lambda \to C \otimes_A A_\lambda$ in the category of A_λ-algebras for some index λ. A similar proof gives (2). We examine the descent properties of an a-pure morphism $A \to A'$. Let $A \to B$ be a ring morphism such that $A' \to B \otimes_A A'$ is a-flat. Use the criterion of Theorem 1.5 and (1) to show that $A \to B$ is a-flat. Next assume that $A' \to B \otimes_A A'$ is smooth. Since a-purity implies purity, $A \to B$ is of finite presentation [25, 5.3]. Then it is enough to show that $\text{Hom}_{A_{\text{alg}}}(B, C) \to \text{Hom}_{A_{\text{alg}}}(B, C/I)$ is surjective for each A-algebra C equipped with an ideal I such that
$I^2 = 0$. This is true after tensoring with A' and the result follows from (1) since B is of finite presentation.

Proposition 1.17. Let $A \rightarrow B$ and $A \rightarrow C$ be ring morphisms. The A-algebra $B \otimes_A C$ is a-flat if and only if $A \rightarrow B$ and $A \rightarrow C$ are a-flat.

Proof. If $A \rightarrow B$ and $A \rightarrow C$ are a-flat, so is $A \rightarrow B \otimes_A C$ by Proposition 1.14 (1), (2). Now, the a-flatness of $A \rightarrow B \otimes_A C$ implies its a-purity by Corollary 1.11 so that $A \rightarrow B$ is a-pure by Popescu [26]. Then Theorem 1.16 shows that $A \rightarrow C$ is a-flat and so is $A \rightarrow B$. □

Proposition 1.18. Let s_1, \ldots, s_n in a ring A be such that $(s_1, \ldots, s_n) = A$. Then $A \rightarrow \prod_{i=1}^n A_{s_i} = A'$ is of finite presentation, faithfully flat and locally retractable. It follows that if $A \rightarrow B$ is a ring morphism such that $A' \rightarrow B \otimes_A A'$ is a-flat, then $A \rightarrow B$ is locally a-flat.

Proof. It is well known that $A \rightarrow A'$ is of finite presentation and faithfully flat. Now, let P be a prime ideal of A. There is some s_i such that $s_i \notin P$ so that $(A_{s_i})_P \simeq A_P$. It follows that A_P is a retract of A'_P. Now, if $A' \rightarrow B \otimes_A A'$ is a-flat, so is $A'_P \rightarrow B'_P$. □

Proposition 1.19. Let $A \rightarrow B$ and $A' \rightarrow B'$ be two a-flat ring morphisms. Then $R = A \times A' \rightarrow B \times B' = S$ is a-flat.

Proof. There is an isomorphism of R-algebras for each integer n

\[f : R[X_1, \ldots, X_n] \rightarrow A[X_1, \ldots, X_n] \times A'[X_1, \ldots, X_n] \]

where f is defined by $f(\sum (a_i, a'_i)x^i) = (\sum a_iX^i, \sum a'_iX^i)$. Then use the criterion (\(\mathcal{AF}_n\)) of (1.7). □

Remark 1.20. If $A \rightarrow B$ is an a-flat morphism, then so is $A_S \rightarrow B_S$ for each multiplicative subset S of A (see Proposition 1.14 (2)). In particular, $A_P \rightarrow B_P$ is a-flat for each prime ideal P of A.

1. We do not know whether a-flatness globalizes or not, although we suspect that the answer is negative. The following remarks show that a-flatness globalizes in some cases.

2. Let $A \rightarrow B$ be a ring morphism of finite presentation. If $A \rightarrow B$ is locally polynomial (for every prime ideal P of A, there is some integer n such that $B_P \simeq A_P[X_1, \ldots, X_n]$), then a result of Bass, Connell and Wright says that $B \simeq S_A(M)$ where M is a finitely generated projective module [3, 4.4]. It follows that such an algebra is a-flat. Actually, $A \rightarrow B$ is algebraically projective (see the next section).

3. Let P be the set of all prime integers. Let S be a subset of P and set $B(S) = \mathbb{Z}[p^{-1}X; p \in S]$. Then $B(P)$ is the direct limit of the \mathbb{Z}-algebras $B(S)$ where S varies in the set of all finite subsets of P. It is straightforward to check that $\mathbb{Z} \rightarrow B(P)$ and $\mathbb{Z} \rightarrow B(S)$ are locally polynomial (for instance, see [10]). In view of (2), $B(S)$ is a-flat so that $B(P)$ is a-flat by Proposition 1.14 (3).
(4) Let \(A \) be a ring, \(I \) an ideal of \(A \) and \(R_A(I) = A[IX] \) its Rees algebra. The ideal \(I \) is of linear type if the canonical surjective map \(S_A(I) \to R_A(I) \) is an isomorphism \cite{13}. If \(I \) is of linear type and flat, then \(R_A(I) \) is an a-flat algebra. Notice that \(R_A(I) \) is a-flat only if \(I \) is flat. Indeed, \(I \) is a direct summand of \(R_A(I) \) and an a-flat algebra is flat.

(5) In particular, assume that \(A \) is an integral domain and \(I \) is an invertible ideal whence projective, then \(I \) is of linear type \cite[IV, 2, Theorem 2']{23}. Moreover, \(A \to R_A(I) \) is a-flat and locally polynomial since \(I \) is locally principal. Now, if \(I \) is a directed union of invertible ideals \(I_\lambda \), then \(R_A(I) = \lim\limits_{\longrightarrow} R_A(I_\lambda) \) shows that \(R_A(I) \) is a-flat. If \(A \) is a Prüfer domain, each of its nonzero finitely generated ideals is invertible. Thus a Rees algebra over \(A \) is a-flat.

(6) Let \(A \) be a noetherian ring and \(I \) an ideal of \(A \). Set \(\text{gr}_I(A) = \bigoplus_a I^a/I^{a+1} \). Then \(I \) is of linear type if and only if \(S_A(I/I^2) \cong \text{gr}_I(A) \) \cite{13, 3.1}. Therefore, if \(I \) is of linear type and \(I/I^2 \) is \((A/I)\)-flat, \(\text{gr}_I(A) \) is an a-flat \((A/I)\)-algebra. Hence, if the ideal \(I \) is completely secant (see \cite[5.2, Theorem 1]{8}), \(\text{gr}_I(A) \) is an a-flat \((A/I)\)-algebra (actually, an a-projective algebra since \(I/I^2 \) is \((A/I)\)-projective).

Proposition 1.21. Let \(A \to B \) be a flat ring morphism. If \(B \) is a direct limit of a system of \(A \)-algebras \(\{B_i\} \) such that each \(B_i \cong A[X_1, \ldots, X_n]/(f_1, \ldots, f_p) \) and each \(f_i \) is a linear homogeneous polynomial, then \(A \to B \) is a-flat.

Proof. Denote by \(\rho_i : B_i \to B \) the canonical morphisms. We can consider that each \(B_i = S_A(M_i) \) where \(M_i \) is an \(A \)-module of finite presentation. By flatness of \(A \to B \) and Lazard’s theorem, we get a factorization \(M_i \to F_i \to B \) where \(F_i \) is free with finite rank. Taking symmetric algebras, we get a factorization \(B_i \to L_i \to B \) where \(L_i \) is a-free. An appeal to Lemma 1.2 shows that \(A \to B \) is a-flat. \(\square \)

An a-flat \(A \)-algebra \(B \) is a direct limit of polynomial algebras \(L_\lambda \) with finite transcendence degree over \(A \). We examine the situation when the set of integers \(\text{tr.deg}_A(L_\lambda) \) has an upper bound.

Definition 1.22. Let \(A \to B \) be an a-flat morphism. We say that the flat rank \(f\text{-rk}(B) \) of \(B \) over \(A \) is \(r \in \mathbb{N} \) if \(r \) is the least integer such that \(B = \lim_{\longrightarrow} L_\lambda, \ L_\lambda \in \mathcal{P}_A \) and \(\text{tr.deg}_A(L_\lambda) \leq r \) for each \(\lambda \).

Proposition 1.23. Let \(A \to B \) be an a-flat morphism. The following statements are equivalent:

1. \(f\text{-rk}(B) \leq r \).
2. \(B \) is a direct limit of polynomial \(A \)-algebras with transcendence degree \(r \).
3. Each morphism of \(A \)-algebras \(P \to B \) where \(P \) is of finite presentation can be factored \(P \to L \to B \) where \(\text{tr.deg}_A(L) = r \) and \(L \in \mathcal{P}_A \).
4. Each finitely generated \(A \)-subalgebra of \(B \) is contained in an \(A \)-subalgebra of \(B \) generated by \(r \) elements.
Proof. Assume that (1) holds and consider $C = \langle b_1, \ldots, b_n \rangle \subset B$. Denote the canonical morphisms by $\rho_\mu : L_\mu \to B$. There is an index μ such that $C \subset \rho_\mu(L_\mu)$ and $\rho_\mu(L_\mu)$ can be generated by r elements. Hence, (1) implies (4). Assuming that (4) is verified, we show (3). Consider a morphism of A-algebras $P \to B$ where P is of finite presentation. It can be factored $P \to L \to B$ where $L \in \mathcal{P}_A$. Let C be the image of L in B, there is an A-subalgebra $C' = \langle b_1, \ldots, b_r \rangle$ of B which contains C. Set $L' = A[X_1, \ldots, X_r]$, there is a surjective morphism $L \to L' \to C'$. Since L is a free object, $L \to C \to C'$ can be factored $L \to L' \to C'$. Therefore, we get a factorization $P \to L' \to B$ of $P \to B$. Now (3) implies (2); it is enough to mimic the proof of Theorem 1.3. Obviously, (2) implies (1). □

Remark 1.24. Assume that $A \to B$ is a flat of finite type. The flat rank of B is the least number $\lambda(B)$ of elements required to generate B over A.

If A is a field, B is an integral domain since a direct limit of integral domains. Then $\text{tr.deg}_A(B)$ is defined and is $\leq \lambda(B)$. Therefore, the flat rank and the transcendence degree of B are equal if and only if $B \in \mathcal{P}_A$.

We intend to give some homological properties of a-flat morphisms. The following definition may be found in McDonald’s book [22, p. 328]. For the definition and properties of stably free modules, see for instance Lam’s book [16, I.4].

Definition 1.25. A ring A is called projectively trivial if each idempotent matrix over A is diagonalizable under a similarity transform.

According to [22, IV.49], if A is a connected projectively trivial ring, each of its finitely generated projective modules is free. The converse can be easily shown.

Definition 1.26. A ring A is called PPF if for each integer n, every finitely generated projective $A[X_1, \ldots, X_n]$-module is free.

Hence, if A is connected and PPF, $A[X_1, \ldots, X_n]$ is projectively trivial. If A is a principal ideal domain (or a Bézout domain such that prime ideals have finite heights), the Quillen–Suslin’s theorem states that A is a PPF ring ([16,19]).

Definition 1.27. Let $A \to B$ be a ring morphism and P a property of rings. We say that $A \to B$ is a universal P-morphism if $B \otimes_A A'$ has P for any base change $A \to A'$ where A' has P.

An a-flat morphism $A \to B$ is a universal P-morphism for many properties P like reduced, (integral) domain since B is a direct limit of polynomial algebras over A. However, this definition is not identical to the following usual definition.

Definition 1.28. Let P be a property of rings. Then $A \to B$ is called a P-morphism if $A \to B$ is flat and for each prime ideal P of A, the ring $B \otimes_A K$ has P for every finite field extension $k(P) \to K$.

Therefore, if $A \to B$ is a flat universal P-morphism, $A \to B$ is a P-morphism. Actually, the flatness condition is verified in many cases by universal P-morphisms. Recall that a universal reduced morphism $A \to B$ is flat if A is reduced [18, II, Proposition 2].

Theorem 1.29. Let $A \to B$ be an a-flat morphism.

(1) $A \to B$ is a universal connected PPF morphism.

(2) If A is a connected PPF ring, so is B. Hence, every stably free projective B-module is free so that B is a Hermite ring.

Proof. We can assume that A is a connected PPF ring. First observe that B is connected by Proposition 1.12. According to Proposition 1.14 (1), $A \to B[X_1, \ldots, X_n]$ is a-flat. Thus it is enough to show that a finitely generated projective B-module is free. By virtue of [22, IV.G.1], B is projectively trivial because B is a direct limit of projectively trivial rings. Use Definition 1.25 to complete. The statement (2) follows since a non finitely generated stably free module is free. \(\square\)

Lemma 1.30. Let A be a PPF regular integral domain. Then A is a unique factorization domain.

Proof. Consider a nonzero divisorial ideal I of A. Since I is finitely generated over A and A is regular, its projective dimension is finite. Thus, according to [5, X.8.1, Proposition 2], I has a finite free resolution of finite length by Definition 1.26. It follows from [4, 4.7, Corollary 3] that A is a unique factorization domain. \(\square\)

For simplicity’s sake, we give [32, 1.1] as a reference for the following Popescu–Spivakovsky’s theorem or Spivakovsky’s paper for a more recent treatment [31].

Theorem 1.31. Let $A \to B$ be a ring morphism between Noetherian rings. The following statements are equivalent:

(1) $A \to B$ is a regular morphism.

(2) B is a direct limit of smooth A-algebras (of finite type).

(3) Every morphism of A-algebras $P \to B$ where P is an A-algebra of finite presentation can be factored $P \to S \to B$ where S is a smooth A-algebra.

Corollary 1.32. An a-flat morphism $A \to B$ between Noetherian rings is a regular morphism.

Artamonov showed the following result for algebraically projective algebras of finite type over a field [1, Proposition 7]

Theorem 1.33. Let $A \to B$ be an a-flat morphism between Noetherian rings. Then $A \to B$ is a (regular) factorial morphism. If in addition, $A \to B$ is essentially of finite type, then $K \otimes_A B$ is a regular UFD for every ring morphism $A \to K$ where K is a field.
Proof. Let \(P \) be a prime ideal of \(A \) and \(k(P) \to K \) a finite extension of fields, then \(K \otimes_A B = F \) is a regular integral domain since \(K \to F \) is a universal integral domain morphism (see Definition 1.27). Then use Lemma 1.30. Now, if \(A \to B \) is essentially of finite type, \(A \to B \) is a universal Noetherian morphism and the proof is complete.

We have just seen that differential properties of a-flat morphisms are involved. If \(A \to B \) is a ring morphism, we denote by \(\Omega_A(B) \) the \(B \)-module of Kähler differentials of \(B \) over \(A \).

Proposition 1.34. Let \(A \to B \) be an a-flat morphism. Then \(\Omega_A(B) \) is a flat \(B \)-module.

Proof. Since \(B \) is the direct limit of polynomial \(A \)-algebras \(L_i \) in finitely many indeterminates, the conclusion follows from \(\Omega_A(B) = \lim_{\longrightarrow} (\Omega_A(L_i) \otimes_{L_i} B) \) and \(\Omega_A(L_i) \) is a free \(L_i \)-module with finite rank.

2. Algebraically projective morphisms

Definition 2.1. An \(A \)-algebra \(B \) is called algebraically projective (a-projective), if the natural map \(\text{Hom}_{A \text{-alg}}(B, C) \to \text{Hom}_{A \text{-alg}}(B, D) \) is surjective for every surjective morphism of \(A \)-algebras \(C \to D \).

The symmetric \(A \)-algebra \(S_A(P) \) of a projective \(A \)-module \(P \) is a-projective [9].

In the literature, a-projective algebras are called projective algebras or weakly projective algebras. The word projective has many meanings. So we have preferred to introduce another name. In this paper, a projective algebra is an \(A \)-algebra \(B \) such that the \(A \)-module \(B \) is projective. Retracts of algebras are defined in Definition 1.9.

Proposition 2.2. Let \(B \) be an \(A \)-algebra. The following statements are equivalent:

1. \(B \) is a-projective.
2. \(B \) is a retract of a polynomial algebra.
3. For every \(A \)-algebra \(R \) and every surjective morphism \(C \to B \), the natural map \(\text{Hom}_{A \text{-alg}}(R, C) \to \text{Hom}_{A \text{-alg}}(R, B) \) is surjective.

Therefore, an a-projective morphism is universally a-projective, projective and faithfully flat.

Proof. (1) \(\iff \) (2) is well known (for instance, see [9]). Assume that (1) holds and consider morphisms \(R \to B \) and \(C \to B \) where \(C \to B \) is surjective. Then \(\text{Id}_B \) can be factored \(B \to C \to B \) and (3) is proved. Clearly, (3) implies that \(B \) is a retract of a polynomial ring and (2) is shown. Assume that \(f : B \to L \) defines \(B \) as a retract of a polynomial ring \(L \). Then by (1.9), there is a direct sum \(L = f(B) \oplus J \) of \(B \)-modules whence a direct sum of \(A \)-modules. Since \(L \) is free over \(A \), \(B \) is projective over \(A \).

Lemma 2.3. Let \(C \) be an \(A \)-algebra of finite presentation and \(B \) a retract of \(C \). Then \(B \) is of finite presentation. Hence, an a-projective algebra of finite type is of finite presentation.
Proof. Let \(f : B \rightarrow C \) and \(s : C \rightarrow B \) be the morphisms defining \(B \) as a retract. We need only to show that \(J = \ker(s) \) is of finite type since finite presentation is stable under composition. Let \(\{c_1, \ldots, c_n\} \) be a system of generators of the algebra \(C \). From \(C = f(B) \oplus J \) we deduce \(c_i = b_i + x_i \) where \(b_i \in B \) and \(x_i \in J \) so that \(\sum C x_i \subset J \). Now let \(x = p(x_1, \ldots, x_n) \in J \) where \(p(X_1, \ldots, X_n) \in B[X_1, \ldots, X_n] \). Observe that \(p(0, \ldots, 0) = 0 \) because \(J \cap B = \{0\} \). It follows that \(J \subset \sum C x_i \). Now, an a-projective \(A \)-algebra \(B \) of finite type is a retract of a polynomial ring \(L \in \mathcal{P}_A \) over \(A \).

The following result gives a partial answer to the question: is a projective algebra of finite type a polynomial algebra?

Theorem 2.4. Let \(A \rightarrow B \) be a ring morphism.

1. If \(B \) is a-projective, then \(B \) is a-flat.
2. If \(A \rightarrow B \) is of finite presentation and a-flat, \(B \) is a-projective. In particular, if \(A \) is Noetherian or an integral domain and \(A \rightarrow B \) is of finite type and a-flat, then \(B \) is a-projective.

Hence, if \(A \rightarrow B \) is of finite presentation, \(B \) is a-projective if and only if \(B \) is a-flat. In this case, \(B \) is a direct limit of polynomial algebras over \(A \) with transcendence degree \(\text{f-rk}(B) = \lambda(B) \).

Proof. To show (1), use Proposition 2.2 (3) and the a-flatness definition. If \(A \rightarrow B \) is of finite presentation and a-flat, \(\text{Id}_B \) can be factored \(B \rightarrow L \rightarrow B \) where \(L \) is a polynomial algebra. Hence \(B \) is a-projective. Now, if \(A \rightarrow B \) is of finite type and flat and \(A \) is Noetherian or an integral domain, \(A \rightarrow B \) is of finite presentation [12, 1.3.4.7]. For the last statement, see Proposition 1.23 and Remark 1.24.

Ohm and Rush defined content modules [24]. A projective module is a content module. Moreover, Rush introduced weak content algebras [28]. We will use the following characterization. If \(B \) is an \(A \)-algebra such that \(B \) is a content module, \(B \) is weak content if and only if \(PB = B \) or \(PB \) is a prime ideal for each prime ideal \(P \) of \(A \) [28, 1.2]. For instance, a polynomial algebra is weak content.

Proposition 2.5. Let \(A \rightarrow B \) be a ring morphism.

1. If \(A \rightarrow B \) is a weak content injective morphism, every finitely generated flat module over \(A \) is projective if and only if every finitely generated flat module over \(B \) is projective.
2. If \(A \rightarrow B \) is a-projective, then \(A \rightarrow B \) is weak content and injective.

Proof. The first result is quoted in [28, Note, p. 333] while the lacking proof is a consequence of [27]. Assume that \(B \) is a-projective. Then \(B \) is a content module over \(A \) because \(B \) is projective over \(A \) (see Proposition 2.2). Since \(B \) is a-flat, \(A \rightarrow B \) is a universal domain morphism. It follows that \(PB \) is a prime ideal for each prime ideal \(P \) of \(A \). Therefore, \(A \rightarrow B \) is weak content.

A ring \(A \) is called FGFP if each of its finitely generated flat modules is projective. Jöndrup showed that the FGFP property is stable under flat and finite morphisms [14].
An integral domain or a semilocal ring is FGFP. Moreover, A is FGFP if and only if $A[\mathfrak{X}]$ is FGFP [14].

Theorem 2.6. Let $A \rightarrow B$ be an a-projective morphism. If A is a PPF connected FGFP ring (for instance a PID), then every finitely generated flat module over $B[\mathfrak{X}_1, \ldots, \mathfrak{X}_n]$ is free.

Proof. Use Proposition 2.5 and Theorem 1.29 since a-projective implies a-flat. □

We look at the differential properties of a-projective morphisms. In order to avoid many references, we use the definitions and results of [8] although they may be found elsewhere.

Proposition 2.7. Let $A \rightarrow B$ be an a-projective morphism which is a retract of a polynomial algebra L. Denote by J the kernel of $L \rightarrow B$.

1. $A \rightarrow B$ is formally smooth.
2. There is a left-invertible morphism of B-modules $\Omega_A(B) \rightarrow \Omega_A(L) \otimes_L B$. Hence, $\Omega_A(B)$ is a projective B-module.
3. There is an isomorphism of B-modules $J/ J^2 \simeq \Omega_B(L) \otimes_L B$.

Proof. Let C be an A-algebra and I an ideal of C such that $I^2 = 0$. The natural map $\text{Hom}_{A\text{-alg}}(B, C) \rightarrow \text{Hom}_{A\text{-alg}}(B, C/I)$ is surjective. Hence, $A \rightarrow B$ is formally smooth [8, X.7.2, Definition 1]. Then (2) can be shown in the same way as in [2, 6.5]. Consider the factorization $B \rightarrow L \rightarrow B$ of Id_B. Since Id_B is formally smooth, there is an exact sequence of B-modules $0 \rightarrow J/J^2 \rightarrow \Omega_B(L) \otimes_L B \rightarrow \Omega_B(B) \rightarrow 0$ [8, X.7.2, Remarques]. Since $\Omega_B(B)$ is zero, (3) follows. □

In the following, we consider only a-projective morphisms of finite type, hence of finite presentation by Lemma 2.3.

Theorem 2.8. Let $A \rightarrow B$ be an a-projective morphism of finite type.

1. $A \rightarrow B$ is a projective smooth morphism.
2. $A \rightarrow B$ is a universal regular morphism.
3. $K \otimes_A B$ is a regular unique factorization domain for every ring morphism $A \rightarrow K$ where K is a field.
4. $R \otimes_A B$ is a connected PPF ring for every ring morphism $A \rightarrow R$ where R is a connected PPF ring. In this case, $\Omega_R(R \otimes_A B)$ is a free $R \otimes_A B$-module with finite rank.

Proof. In view of Proposition 2.7, $A \rightarrow B$ is formally smooth and is of finite presentation. Thus, $A \rightarrow B$ is smooth. Now, if A is Noetherian, $A \rightarrow B$ is a universal regular morphism by [8, X.7.10, Theorem 4]. We can reduce to the Noetherian case by virtue of Proposition 2.9 (4). Hence (1) and (2) are proved. Now (3) follows from Theorem 1.33 since an a-projective morphism is a-flat. The first part of (4) is a consequence of Theorem 1.29. Set $S = R \otimes_A B$, then $R \rightarrow S$ is of finite type so that $\Omega_R(S)$ is a finitely
generated S-module. By Proposition 2.7, \(\Omega_R(S) \) is a projective S-module and hence is free with finite rank according to the first part of (4). □

The following result is well known (except (4)) and defines representations of a-projective algebras of finite type [9].

Proposition 2.9. Let \(A \to B \) be an a-projective morphism of finite type and \(L = A[X_1, \ldots, X_n] \to B \) defining \(B \) as a retract of \(L \). Let \(J \) be the kernel of \(L \to B \) and \(u : A[X_1, \ldots, X_n] \to A[X_1, \ldots, X_n] \) the associated idempotent endomorphism of \(A \)-algebras. Then \(\{ f_i = u(X_i) \mid i = 1, \ldots, n \} \) verifies:

1. \(f_i(f_1, \ldots, f_n) = f_i \) for \(i = 1, \ldots, n \).
2. \(J = \ker(u) = (X_1 - f_1, \ldots, X_n - f_n) \).
3. \(B \simeq \operatorname{Im}(u) = A[f_1, \ldots, f_n] \simeq A[X_1, \ldots, X_n]/J. \)

Conversely, a sequence of polynomials \(f_1, \ldots, f_n \in A[X_1, \ldots, X_n] \) verifying (1) defines an a-projective algebra \(A \to A[X_1, \ldots, X_n]/(X_1 - f_1, \ldots, X_n - f_n) \).

4. There exist a Noetherian ring \(R \), an a-projective ring morphism of finite type \(R \to S \) and a ring morphism \(R \to A \) such that \(B = A \otimes_R S \).

Proof. To show (4), consider the set \(G \) of all the coefficients of \(f_i \). It is enough to take \(\mathbb{Z}[G] \) that \(R \simeq A \) and \(S = R[X_1, \ldots, X_n]/(X_1 - f_1, \ldots, X_n - f_n) \). □

A sequence \(\{ f_1, \ldots, f_n \} \) is called a representation of \(B \) and the ideal of the representation is \(J = (X_1 - f_1, \ldots, X_n - f_n) \). A representation \(\{ f_1, \ldots, f_n \} \) is called standard if \(f_i(0, \ldots, 0) = 0 \) for each \(i \).

Thanks to the following results, we can get more interesting representations.

Lemma 2.10. Let \(A \to B \) be an a-projective morphism of finite type, \(u \) an associated idempotent endomorphism defining a representation \(\{ f_1, \ldots, f_n \} \) of \(B \). Let \(\phi \) be an \(A \)-automorphism of the algebra \(A[X_1, \ldots, X_n] \) and set \(v = \phi \circ u \circ \phi^{-1} \).

1. \(v \) is an idempotent endomorphism of the \(A \)-algebra \(A[X_1, \ldots, X_n] \) defining a representation \(\{ g_1, \ldots, g_n \} \) of \(B \).
2. \((\phi(X_1 - f_1), \ldots, \phi(X_n - f_n)) = (X_1 - g_1, \ldots, X_n - g_n) \).

Proof. Obviously, \(\phi \) induces an isomorphism of \(A \)-algebras \(\operatorname{Im}(u) \to \operatorname{Im}(v) \) and we have \(\phi(\ker(u)) = \ker(v) \). □

Proposition 2.11. Let \(A \to B \) be an a-projective morphism of finite type which is not a polynomial algebra.

1. \(B \) has a standard representation \(\{ g_1, \ldots, g_n \} \subset A[X_1, \ldots, X_n] \) such that its ideal contains a polynomial of the form \(aX_n^s + p_{s-1}X_n^{s-1} + \cdots + p_1X_n \) where \(a \in A \) is nonzero, \(s \neq 0 \) is an integer and \(p_i \in A[X_1, \ldots, X_{n-1}] \).
2. Moreover, if \(A \) is Noetherian and \(B \) has a representation ideal \(J \) such that \(\operatorname{ht}(J) > \dim(A) \), we can assume that \(a = 1 \).
Proof. Let \(\{f_1, \ldots, f_n\} \) be a representation of \(B \). We can assume that \(f_n \notin A \). Let \(a_i \) be the constant term of \(f_i \) and define \(\varphi \) by \(\varphi(x_i) = x_i + a_i \). We get \(g_i = v(x_i) = \varphi(u(x_1 - a_1)) = f_i(x_1 + a_1, \ldots, x_n + a_n) - a_i \). Arguing as in [9, 3.2], we find that the constant term of \(g_i \) is zero. Thus we can assume that the representation is standard. Now, define \(\psi \) by \(\psi(x_1) = x_1 \) and \(\psi(x_i) = x_i + X_n^i \). The constant term of each polynomial \(v(x_i) \) is still zero. Following Nagata’s proof of the Noether normalization Lemma, we can choose integers \(n_i \) such that \(\psi(x_i - f_n) \) has the required form. Thus, (1) is shown. Now, (2) is an immediate consequence of a Suslin’s result involving the same automorphism [20, 6.1.5].

Proposition 2.12. Let \(A \) be a UFD and \(Q \) a prime ideal of \(A[T] \) such that \(Q \cap A = P \) and \(P[T] \neq Q \). There is some irreducible polynomial \(f(T) \in A[T] \) such that \(Q = P[T] + A[T]f(T) \).

Proof. Set \(B = A/P \) and consider the prime ideal \(Q' \) of \(B[T] \) lying over \(Q \) so that \(Q' \neq 0 \) and \(Q' \cap B = 0 \). Let \(g(T) \) be a polynomial of least positive degree in \(Q' \) (hence, \(g(T) \in Q' \setminus P[T] \)). Pick an irreducible polynomial \(f(T) \) in \(Q' \setminus P[T] \) dividing \(g(T) \). The content ideal of \(f(T) \) is \(A \) and thus the content ideal of \(f(T) \) is \(B \). Then \(f(T) \) cannot lie in \(B \) and we can write \(g(T) = f(T)h(T) \). In this case, the degree of \(h(T) \) is zero (if not, we get \(0 < d'(f(T)) < d'(g(T)) \), contradicting the definition of \(g(T) \) since \(f(T) \notin Q' \)). It follows that \(h(T) = \bar{a} \in B \). Therefore, \(f(T) \) is a polynomial of least positive degree in \(Q' \) with content ideal \(B \). A result of Sharma shows that \(Q' = (\bar{f}(T)) \) [30, Corollary 3] and the proof is complete.

When \(M \) is a finitely generated \(A \)-module, we denote by \(\mu(M) \) the minimal number of generators of \(M \).

Proposition 2.13. Let \(A \) be a Noetherian UFD and \(Q \) a prime ideal of \(R = A[T] \) lying over \(P \) in \(A \). Assume that \(Q \) contains a monic polynomial, \(Q/Q^2 \) is \(R/Q \)-free and that stably free \(R/Q \)-modules are free, then \(\mu(Q) = \mu(Q/Q^2) \).

Proof. By Proposition 2.12, we have \(Q = (P, f(T)) \) since \(Q \) contains a monic polynomial. A result by Mandal and Roy gives the conclusion [21, 3.6].

Theorem 2.14. Let \(A \to B \) be an \(a \)-projective morphism of finite type with representation ideal \(J \) in \(L = A[X_1, \ldots, X_n] \).

1. If \(A \) is a connected PPF ring, then \(J/J^2 \) and \(\Omega_A(B) \) are free \(B \)-modules such that \(n = \text{rk}_B(\Omega_A(B)) + \text{rk}_B(J/J^2) \).

2. If \(A \) is a field, \(J \) is a completely secant prime ideal so that \(S_A(J/J^2) \simeq \text{gr}_J(L) \). Moreover, \(J/J^2 \) and \(\Omega_A(B) \) are free \(B \)-modules such that \(\text{rk}_B(\Omega_A(B)) = \dim(B) \) and \(\text{ht}(J) = \text{rk}_B(J/J^2) = n - \dim(B) \).

3. If \(A \) is a connected Noetherian PPF ring, \(\dim(B) \leq \dim(A) + \text{rk}_B(\Omega_A(B)) \).

4. If \(A \) is an affine PPF integral domain over a field \(K \), so is the ring \(B \) and \(\text{rk}_B(J/J^2) \leq \text{ht}(J) \leq \mu(J) \) holds for the prime ideal \(J \).
An example of affine PPF integral domain A over a field is given by an a-projective algebra of finite type over a field.

Proof. Let A be a connected PPF ring. Since $A \to B$ is smooth by Theorem 2.8, there is an isomorphism of B-modules $\Omega_A(L) \otimes_L B \simeq J/J^2 \oplus \Omega_A(B)$ induced by the split exact sequence $0 \to J/J^2 \to \Omega_A(L) \otimes_L B \to \Omega_A(B) \to 0$ [8, X.7.2, Remark 1]. Observe that $\Omega_A(L) \otimes_L B$ is a free B-module with rank n. Therefore, J/J^2 and $\Omega_A(B)$ are finitely generated projective B-modules. These B-modules are free with finite rank by Theorem 2.15. Moreover, $\text{rk}(\Omega_A(B)) = \text{rk}_B(\Omega_A(B)) + \text{rk}_B(J/J^2)$. If A is a field, B is an integral domain so that J is a prime ideal. From Theorem 2.8 (2), we deduce that B is a regular ring. Now L is a regular ring as well as B. It follows that J is completely secant by [8, X.5.3, Proposition 2] and $S_d(J/J^2) \simeq \text{gr}_J(L)$ is a consequence of [8, X.5.2, Theorem 1]. To complete the proof of (2), it is enough to show that $\text{rk}_B(\Omega_A(B)) = \dim(B)$. If M is a maximal ideal of the affine integral domain B with quotient field K, then $\dim(B_M) = \dim(B) = \text{tr.deg}_K(M)$ (the quotient field of B_M is K) [7, VIII.2.4, Theorem 3]. From $\Omega_A(B_M) \cong \Omega_A(B)_M$ and [8, X.6.5, Theorem 1], we deduce that $\text{rk}_B(\Omega_A(B)) = \text{rk}_{B_M}(\Omega_A(B)_M) = \text{tr.deg}_K(M)$ because $A \to B_M$ is a regular morphism [8, X.6.4, Proposition 6]. Now assume that A is a connected PPF Noetherian ring. In view of (1), the B-module $\Omega_A(B)$ is free with finite rank. Let P be a prime ideal of A and set $F(P) = B \otimes_A k(P)$. Then $\text{rk}_{F(P)}(\Omega_{k(P)}(F(P))) = \text{rk}_B(\Omega_A(B))$ follows from $\Omega_A(B) \otimes_B F(P) \cong \Omega_{k(P)}(F(P))$. According to (2), we get $\text{rk}_{F(P)}(\Omega_{k(P)}(F(P))) = \dim(F(P))$ since $k(P) \to F(P)$ is a-projective so that $\dim(F(P)) = \text{rk}_B(\Omega_A(B))$. It follows that $\dim(B) \leq \dim(A) + \text{rk}_B(\Omega_A(B))$ by [7, VIII.3.4, Corollary 2]. Thus (3) is shown. If A is an affine PPF integral domain, so are L and B because $K \to L$ is of finite type as well as $K \to B$. Since L is an affine integral domain, we get from (3) that $\dim(B) - \dim(A) = n - \text{ht}(J) \leq \text{rk}_B(\Omega_A(B)) = n - \text{rk}_B(J/J^2)$. Therefore, (4) is proved since $\text{ht}(J) \leq \mu(J)$ holds for an arbitrary Noetherian ring. \[\square\]

Theorem 2.15. Let K be a PPF affine regular integral domain (for instance, an a-projective algebra of finite type over a field) and $K \to B$ an a-projective morphism of finite type which is not a polynomial algebra. Then each representation ideal J of B such that $\text{ht}(J) > \dim(K)$ is a complete intersection and $\dim(B) = \text{rk}_B(\Omega_K(B))$.

In particular, if K is a field then each representation ideal of B is a complete intersection ideal.

Proof. Let $\{f_1, \ldots, f_n\} \subset K[X_1, \ldots, X_n]$ be a representation of B and denote by J the associated representation ideal. First assume that $n = 1$. In this case $f_1(X_1) = a \in K$ or $f_1(X_1) = X$ [9, 3.4] which yields $J = (X - a)$ or $J = 0$. Now assume that $n > 1$. We set $A = K[X_1, \ldots, X_{n-1}]$, $X_n = T$ so that $B = A[T]/J$ where A is a Noetherian UFD since K is a UFD by (1.30). According to (2.11)(2), we can assume that J contains a monic polynomial of $A[T]$. Hence, $\mu(J) = \mu(J/J^2)$ follows from (2.13). Now, $\text{rk}_B(J/J^2) \leq \text{ht}(J) \leq \mu(J)$ is a consequence of (2.14)(4) and then $\mu(J/J^2) = \text{rk}_B(J/J^2)$ implies $\text{ht}(J) = \mu(J)$. It follows that J is a complete intersection ideal. Moreover, B is an affine integral domain and we have $n = \text{ht}(J) + \text{rk}_B(\Omega_K(B))$ so that $\dim(B) = \text{rk}_B(\Omega_K(B))$. \[\square\]
Definition 2.16. We call a ring \(B \) a global complete intersection ring if \(B \cong A[X_1, \ldots, X_n]/J \) where \(A \) is a regular ring and \(J \) is a complete intersection ideal (generated by a regular sequence).

It follows that \(A[X_1, \ldots, X_n] \) is a global complete intersection ring when \(A \) is a regular ring. We do not know whether the previous definition is independent of the presentation of the ring \(B \) although this is known for local rings.

The adjective global is added because of possible confusions with complete intersection rings (rings which are locally complete intersection).

Corollary 2.17. Let \(A \to B \) be an a-projective morphism of finite type. Then \(A \to B \) is a global complete intersection morphism.

Let \(A \to B \) be an a-projective morphism of finite type. In view of Proposition 2.11 (1), \(A \to B \) has a retract \(B \to A \) with kernel \(I = (f_1, \ldots, f_n) \). Tronin used this fact to exhibit some morphisms [33]. Consider the ideal \(M = (X_1, \ldots, X_n) \) of \(L = A[X_1, \ldots, X_n] \). There is a factorization \(B = A \oplus I \to L = A \oplus M \to B = A \oplus I \) of \(\text{Id}_B \) where \(\phi : B \to L \) is the canonical injection and \(\sigma \) is defined by \(\sigma(X_i) = f_i \). This factorization induces injective morphisms of \(A \)-algebras

\[
\Phi : B \to L \cong S_A(M/M^2) \to S_A(I/I^2) = B',
\]

\[
\Psi : B' = S_A(I/I^2) \to S_A(M/M^2) \to L \to B.
\]

Now, observe that \(B' \cong S_A(\Omega_A(B) \otimes_B A) \) since the exact sequence

\[
0 \to I/I^2 \to \Omega_A(B) \otimes_B A \to \Omega_A(A) \to 0,
\]

ensures us that \(I/I^2 \cong \Omega_A(B) \otimes_B A \) and \(\text{rk}_B(\Omega_A(B)) = \text{rk}_A(I/I^2) \).

Using our previous results, we can improve a result by Tronin [33].

Proposition 2.18. Let \(A \to B \) be an a-projective morphism of finite type.

(1) The following sequences are exact

\[
0 \to \Omega_A(B) \otimes_B B' \to \Omega_A(B') \to \Omega_B(B') \to 0,
\]

\[
0 \to \Omega_A(B') \otimes_B' B \to \Omega_A(B) \to \Omega_B'(B) \to 0.
\]

(2) If \(A \) is a connected PPF ring and \(\text{rk}_B(\Omega_A(B)) = r \), then \(\text{rk}_A(I/I^2) = r \) and there are two injective morphisms of \(A \)-algebras

\[
B \xrightarrow{\alpha} A[X_1, \ldots, X_r] = B' \text{ and } B' = A[X_1, \ldots, X_r] \xrightarrow{\beta} B,
\]

where \(r = \dim(B) \) when \(A \) is a field.

(3) If \(A \) is a PPF integral domain, \(\alpha \) and \(\beta \) induce separable algebraic extensions of the quotient fields.

Proof. See [33] for a proof of (1). To show (2), observe that \(\Omega_A(B) \) is a free \(B \)-module of rank \(r \) by (2.14) while \(I/I^2 \cong \Omega_A(B) \otimes_B A \) and \(B' = S_A(I/I^2) \cong A[X_1, \ldots, X_r] \). Next
notice that \(\dim(B) = \text{rk}_B(\mathcal{O}_A(B)) \) when \(A \) is a field by Theorem 2.14. We prove (3). Let \(K \) and \(K' \) be the respective quotient fields of \(B \) and \(B' \). Tensoring the first exact sequence with \(\otimes_{B'} K' \) gives an exact sequence of \(K' \)-vector spaces since \(B' \to K' \) is flat. The first two \(K' \)-vector spaces have the same rank \(r \) so that \(\mathcal{O}_K(K') \cong \mathcal{O}_B(B') \otimes_{B'} K' = 0 \). The conclusion follows from [6, V.16.6, Corollary 2].

Remark 2.19. Costa proved that when \(A \) is a field and \(A \to B \) is a-projective of finite type with representation \(\{ f_1, f_2 \} \subset A[X_1, X_2] \) or such that \(\dim(B) = 2 \), then \(B = A[X_1, X_2] \) (see [9, 3.5]). We can recover this result thanks to Proposition 2.18. Let \(A \) be a perfect field and \(A \to B \) an a-projective algebra of finite type with \(\dim(B) = 2 \). The \(A \)-algebra \(B \) is isomorphic to \(A[X_1, X_2] \). Indeed, the hypotheses of Castelnuovo’s affine theorem are fulfilled [29, Theorem 3] since in this case \(B' = A[X_1, X_2] \), \(B \) is regular, \(K \otimes_A B \) is a UFD for every morphism \(A \to K \) where \(K \) is a field and the quotient fields extension is separable by Proposition 2.18. If \(A \) is not perfect, let \(A \to C \) where \(C \) is an algebraic closure of \(A \). Then \(A \to C \) is faithfully flat and we can use the descent result of Proposition 2.23.

The previous proposition cannot be used to prove that \(B \) is isomorphic to a polynomial algebra when \(\dim(B) > 2 \) since Castelnuovo’s Theorem is no longer true when \(d > 2 \) [15, p. 297].

We give here some descent results.

Proposition 2.20. Algebraically pure morphisms descend a-projective algebras of finite presentation.

Proof. Observe that a pure morphism descends algebras of finite presentation [25, 5.3]. To conclude use Theorems 2.4 and 1.16. □

A ring morphism \(A \to A' \) is called strongly Nakayama if for every \(A \)-module \(M \), the equation \(M \otimes_A A' = 0 \) implies \(M = 0 \). A strongly Nakayama morphism \(A \to A' \) descends the surjectivity of \(A \)-module morphisms [25].

Lemma 2.21. Let \(A \to B \) be a ring morphism and \(A \to A' \) a strongly Nakayama morphism. If \(\{ b_2 \} \) is a family of elements in \(B \) such that \(\{ b_2 \otimes 1 \} \) generates the \(A' \)-algebra \(B \otimes_A A' \), then so does \(\{ b_2 \} \) in \(B \).

Proof. Consider the morphism of \(A \)-algebras \(A[X_1] \to B \) defined by \(X_1 \mapsto b_2 \). Then \(A[X_2] \otimes_A A' \to B \otimes_A A' \) is surjective and so is \(A[X_2] \to B \). □

Proposition 2.22. Let \(A \to B \) and \(A \to A' \) be ring morphisms. If \(\{ b_2 \} \subset B \) is a family such that \(B \otimes_A A' = A'[b_2 \otimes 1] \) is a polynomial \(A' \)-algebra with respect to the elements \(b_2 \otimes 1 \), then \(B = A[b_2] \) is a polynomial \(A \)-algebra with respect to the elements \(b_2 \) in the following cases:

1. \(A \to A' \) is faithfully flat.
2. The kernel of the morphism \(A[X_1] \to B \) defined by \(X_1 \mapsto b_2 \) is a pure \(A \)-submodule of \(A[X_1] \) and \(A \to A' \) is strongly Nakayama.
Lemma 2.21. Let $A[X_i] \otimes A' \to B \otimes A'$ be surjective with kernel I. Then tensor the exact sequence $0 \to I \to A[X_i] \to B \to 0$ by $\otimes A'$. The new sequence is exact and then $I \otimes_A A' = 0$ implies $I = 0$. □

Proposition 2.23. Let $A \to B$ and $A \to A'$ be ring morphisms such that the A'-algebra $B \otimes_A A'$ is isomorphic to $A'[X_1, \ldots, X_n]$. Then A is strongly Nakayama.

Proof. Denote by f the isomorphism $B \otimes A' \to A'[X_1, \ldots, X_n]$ and set $f^{-1}(X_i) = \sum b_i \otimes a_i'$. Then $\{b_i \otimes 1\}$ generates the A'-algebra $B \otimes A'$ and $\{b_i\}$ generates the A-algebra B by Lemma 2.22. Let $u : A[X_1, \ldots, X_n] \to B$ be the surjective morphism defined by $X_i \mapsto b_i$ with kernel I. The composite morphism $f \circ (u \otimes \text{Id}_{A'})$ is a surjective endomorphism of the A'-algebra of finite type $A'[X_1, \ldots, X_n]$, whence an isomorphism. Thus, $u \otimes \text{Id}_{A'}$ is an isomorphism and so is u thanks to (2.22) if $A \to A'$ is faithfully flat. If $A \to B$ is projective, $A[X_1, \ldots, X_n] = I \oplus B$ implies that I is a pure A-submodule of $A[X_1, \ldots, X_n]$ and the proof can be completed as above. □

Next we give some informations on differential properties of a-projective algebras.

For each positive integer m, we denote by $\text{M}_m(R)$ the ring of all size m squared matrices with entries in the ring R and by $\text{LG}_m(R)$ the set of all units in $\text{M}_m(R)$. A ring morphism $\phi : R \to S$ induces a ring morphism $\phi_m : \text{M}_m(R) \to \text{M}_m(S)$ with kernel $\text{M}_m(\text{Ker}(\phi))$. Let A be a ring and $f_1, \ldots, f_n \in A[X_1, \ldots, X_n]$ defining an A-endomorphism $u : A[X_1, \ldots, X_n] \to A[X_1, \ldots, X_n]$ by $u(X_i) = f_i$. We consider the jacobian matrix $J_u = (\frac{\partial f_j}{\partial X_i}) \in \text{M}_n(A[X_1, \ldots, X_n])$ where i is the index of the row and j the index of the column. Now let u, v be two A-endomorphisms of $A[X_1, \ldots, X_n]$. The rule of chained derivations gives here $J_{uv} = J_u(J_v)$.

Let $A \to B$ be an a-projective morphism of finite type with representation $\{f_1, \ldots, f_n\} \subset A[X_1, \ldots, X_n]$ and $u : A[X_1, \ldots, X_n] \to A[X_1, \ldots, X_n]$ the associated idempotent endomorphism defined by $u(X_i) = f_i$. We get $J_u = J_{uv} = J_{uv}(J_u)$ so that $u(J_u)$ is an idempotent matrix of $\text{M}_n(A[X_1, \ldots, X_n])$ and its determinant lies in $\text{Bool}(A)$. The ideal of $A[X_1, \ldots, X_n]$ generated by the entries of $u(J_u)$ is idempotent whence generated by an element of $\text{Bool}(A)$.

Now assume that A is a connected PPF ring. Then $u(J_u)$ is diagonalizable under a similarity transform. Thus there is some $M \in \text{LG}_n(A[X_1, \ldots, X_n])$ such that $Mu(J_u)M^{-1} = \text{Diag}(1, \ldots, 1, 0, \ldots, 0)$ where the last matrix is diagonal with r nonzero entries. The kernel of the canonical surjective morphism $p : A[X_1, \ldots, X_n] \to B$ is $(X_1 - f_1, \ldots, X_n - f_n)$ and $p(M)p(u(J_u))p(M)^{-1} = \text{Diag}(1, \ldots, 1, 0, \ldots, 0)$. As usual, set $p(\frac{\partial f_j}{\partial X_i}) = \frac{\partial f_j}{\partial X_i}$ where x_i denotes the class of X_i in B. Therefore, the relation $\text{Diag}(1, \ldots, 1, 0, \ldots, 0) = p(M)(\frac{\partial f_j}{\partial X_i})p(M)^{-1}$ where $p(M) \in \text{LG}_n(B)$ follows from $p(X_i) = p(f_i)$.

Proposition 2.24. Let B be an a-projective algebra of finite type over a connected PPF ring A and u an associated idempotent endomorphism defining a representation $\{f_1, \ldots, f_n\}$. Then $u(J_u)$ is similar to the matrix $\text{Diag}(1, \ldots, 1, 0, \ldots, 0)$ with
rkₜ(Ωₜ(B)) nonzero entries. If the representation is standard, rkₜ(Ωₜ(B)) = rkₜ((f₁, ..., fₙ)/(f₁, ..., fₙ)²).

Proof. Let z be the B-module endomorphism of Bⁿ with matrix ((c(xⱼ − fⱼ))/cᵫxᵢ) = Iₙ − (c fⱼ/cᵫxᵢ) in the canonical basis of Bⁿ. Since z is idempotent, we get Bⁿ = Im(z) ⊕ Ker(z). Then observe that Ωₜ(B) ∼= Bⁿ/Im(z) ∼= Ker(z). The result follows immediately, the last statement being a consequence of (2.18)(2). □

We come back to Lemma 2.10, where an A-automorphism φ of A[X₁, ..., Xₙ] is considered as well as v = φ ◦ u ◦ ψ where ψ = φ⁻¹. Then φ ◦ u = v ◦ φ gives Jₜφ(Jₜu) = Jₜv(Jₜφ) while φ ◦ ψ = Id = ψ ◦ φ gives Jₜφ(Jₜψ) = Iₙ and Jₜψ(Jₜφ) = Iₙ so that φ(Jₜψ)Jₜφ = Iₙ. It follows that Jₜ = Jₜφ(Jₜu)v(Jₜψ)⁻¹ = Jₜφ(Jₜu)v(φ(Jₜψ)) = Jₜφ(Jₜu)φ(u(Jₜψ)).

Now consider a matrix M = (xᵢⱼ) ∈ Mₙₙ(A) and the associated A-endomorphism φ defined by φ(Xᵢ) = ∑ᵢ xᵢⱼ Xⱼ for j = 1, ..., n that is to say φ is defined by the matrix equation (φ(X₁), ..., φ(Xₙ)) = (X₁, ..., Xₙ)M. Obviously, we have M = Jₜφ. Now assume that M ∈ LGₙₙ(A). With the previous notation, we get that v(Jₜψ) = Jₜφ so that Jₜ = Jₜφ(Jₜu)Jₜ⁻¹ and v(Jₜψ) = Jₜφ(u(Jₜψ)).

Proposition 2.25. Let A → B be an a-projective morphism of finite type with a standard representation {f₁, ..., fₙ} associated to the idempotent endomorphism u. Let hᵢ be the degree one homogeneous component of fᵢ so that there is a matrix equation (h₁, ..., hₙ) = (X₁, ..., Xₙ)Jₜ(u, 0, ..., 0).

1. {h₁, ..., hₙ} defines a representation of an a-projective algebra B₁. Its associated idempotent endomorphism h is defined by Jₜ = Jₜ(u, 0, ..., 0).

2. If in addition A is a connected PPF ring, the A-algebra B₁ is isomorphic to A[X₁, ..., Xₙ] where r = rkₜ(Ωₜ(B))

Proof. (1) is obvious since hᵢ(h₁, ..., hₙ) = hᵢ. Assume that A is a connected PPF ring. Denote by s : A[X₁, ..., Xₙ] → A the substitution morphism defined by s(Xᵢ) = 0 and observe that Jₜ = s(Jₜ) = s(u(Jₜu)). There is an equation Mu(Jₜu)M⁻¹ = Diag(1, ..., 1, 0, ..., 0) where M ∈ LGₙₙ(A[X₁, ..., Xₙ]). Thus we get s(M)Jₜs(M)⁻¹ = Diag(1, ..., 1, 0, ..., 0) where the number of nonzero entries is r = rkₜ(Ωₜ(B)) and s(M) ∈ LGₙₙ(A). Now s(M) defines an A-automorphism φ of A[X₁, ..., Xₙ]. Then k = φ ◦ h ◦ φ⁻¹ is an A-endomorphism associated to the matrix Diag(1, ..., 1, 0, ..., 0) so that k(X₁) = X₁, ..., k(Xᵢ) = Xᵢ and k(Xᵢ) = 0 for i > r. Hence B₁ is isomorphic to A[X₁, ..., Xₙ]. □

Remark 2.26. If A is a PPF affine regular integral domain, dim(B) = dim(Bₜ).

Remark 2.27. Assume that A is a connected PPF ring. Consider the A-automorphism φ defined in Proposition 2.25, v = φ ◦ u ◦ φ⁻¹ and set v(Xᵢ) = gᵢ. From fᵢ = hᵢ + hᵢ where tᵢ ∈ (X₁, ..., Xₙ)², we get that Xᵢ - g₁, ..., Xᵢ - gᵢ ∈ (X₁, ..., Xₙ)² and gᵢ+₁, ..., gₙ ∈ (X₁, ..., Xₙ)². It follows that gᵢ+₁, ..., gₙ ∈ (g₁, ..., gₙ)². Hence the classes of g₁, ..., gₙ in (g₁, ..., gₙ)/(g₁, ..., gₙ)² give a basis of this A-module (see Proposition 2.18 (2)).
References