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6.3.6. Factorization through coherent sheaves on Ñ . . . . . . . . . . . . . . . . . . . . . . . . 230



CONTENTS 9

6.4. Antispherical and Iwahori–Whittaker categories. . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.4.1. The antispherical category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.4.2. The Iwahori–Whittaker category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.4.3. Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.4.4. Some preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.4.5. Proof of Theorem 6.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.5. Central sheaves and tilting Iwahori–Whittaker perverse sheaves. . . . . . . . . . 238
6.5.1. Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.5.2. Computing multiplicities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.5.3. Propagation through tensor products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.5.4. Minuscule and quasi-minuscule coweights. . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.5.5. Extremal coweights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6.5.6. The regular quotient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.5.7. Description of the regular quotient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.5.8. Regularity of n0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
6.5.9. Consequence for the stalks and costalks of central sheaves. . . . . . . . . . . 251
6.5.10. The case of quasi-minuscule coweights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
6.5.11. Restriction to the regular orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.6. Proof of the equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.6.1. Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.6.2. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.6.3. Proof of Theorem 6.6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.6.4. Application: indecomposability of Z IW(V ) when V is simple. . . . . . . 259

7. Complements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.1. t-structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

7.1.1. Exceptional collections and associated t-structures. . . . . . . . . . . . . . . . . . 261
7.1.2. The exotic t-structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.1.3. Exotic and perverse t-structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.1.4. Some consequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

7.2. Description of the regular quotient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.2.1. Support of simple exotic sheaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.2.2. Induced equivalence for the regular nilpotent orbit. . . . . . . . . . . . . . . . . . 267
7.2.3. Consequence for the equivalence Φ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

7.3. A perverse description of equivariant coherent sheaves on N . . . . . . . . . . . . . 272
7.3.1. Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
7.3.2. Pushforward to the nilpotent cone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
7.3.3. Quotient by some simple exotic shaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
7.3.4. Proof of Theorem 7.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

8. A modular Arkhipov–Bezrukavnikov equivalence for GL(n). . . . . . . . . . 281
8.1. Coherent sheaves on the Springer resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8.1.1. The basic affine space and its affine completion. . . . . . . . . . . . . . . . . . . . . . 281
8.1.2. The Springer resolution and some variants. . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.1.3. Koszul complexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284



10 CONTENTS
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fr,tilt (ÛX ,k). . . . . . . . . . . . . . . . . . . . . . . . . . 290
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9.2. Bĕılinson’s construction of unipotent nearby cycles. . . . . . . . . . . . . . . . . . . . . . . 315
9.2.1. The unipotent nearby cycles functor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
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INTRODUCTION

0.1. Overview

0.1.1. Langlands duality philosophy. — Let G be a complex connected reduc-
tive algebraic group. Let k be a commutative noetherian ring of finite global dimen-
sion, and let G∨

k be the (split) reductive algebraic group over k that is Langlands dual
to G. Broadly speaking, the “Langlands duality philosophy” suggests that various
algebraic objects related to G∨

k (representations, coherent sheaves, etc.) should be re-
lated to topological objects related to G (especially perverse or constructible sheaves
on partial affine flag varieties).(1) These ideas emerged (at the level of combinatorics)
in the representation theory of reductive groups over local fields, and their geometric
incarnations have a relatively long history in the case where k = C. However, recent
developments in geometric representation theory (see e.g. [FM, RW1, AR2, RW2])
have highlighted the importance of this philosophy for general k (or at least in the
case when k is a field of positive characteristic) as well.

This book, which may be regarded as a sequel to [BR], is part of a project to
present an exposition of some of the key applications of this philosophy in geometric
representation theory.

0.1.2. Geometric Satake equivalence. — The starting point of all of these con-
structions is the geometric Satake equivalence, whose proof was reviewed in detail by
P. Baumann and the second author in [BR]. (Its main ingredients are recalled in
Chapter 1 of the present book.) Consider some group G as in §0.1.1, and let T ⊂ G
be a maximal torus. We consider the loop group GK and the arc group GO , and
the affine Grassmannian GrG defined as the quotient GK /GO . (See §1.2.1 below for
a more formal definition.) Given a commutative noetherian ring k of finite global
dimension, one can consider the abelian category

PervGO (GrG,k)

(1)It is expected by some that there should exist more symmetric versions of this duality, in which
one does not have to distinguish between an “algebraic side” and a “topological side”; this idea has

not been realized concretely so far, however.
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of GO-equivariant k-perverse sheaves on GrG, namely the heart of the perverse t-
structure on the GO-equivariant derived category Db

GO
(GrG,k). A standard con-

struction (called “convolution”) for categories of sheaves on (partial) flag varieties
provides a monoidal product ⋆GO on Db

GO
(GrG,k), and a much more specific analysis

in this case shows that the bifunctor

(A ,B) 7→ A ⋆GO
0 B := pH 0(A ⋆GO B)

defines a monoidal structure on PervGO (GrG,k). Out of these data, the geometric Sa-
take equivalence as considered in [MV2] provides a canonical reductive group scheme
G∨

k over k, an equivalence of monoidal categories

(0.1.1) (PervGO (GrG,k), ⋆GO
0 )

∼−→ (Rep(G∨
k ),⊗k)

(where the right-hand side is the category of algebraic representations of G∨
k on finitely

generated k-modules) and a canonical split maximal torus T∨
k ⊂ G∨

k such that the
root datum of (G∨

k , T
∨
k ) is dual to that of (G,T ); in rough terms, G∨

k is Langlands
dual to G.

Part of this claim is the assertion that we have a canonical identification between
the cocharacter latticeX∗(T ) of T and the character latticeX∗(T∨

k ) of T∨
k . The choice

of a Borel subgroup B ⊂ G containing T determines a system of positive roots for G,
and hence a subset X+

∗ (T ) ⊂ X∗(T ) of dominant cocharacters. The GO-orbits on GrG
are naturally parametrized byX+

∗ (T ), and each orbit is simply connected; in case k is a
field, we deduce that the simple objects in PervGO (GrG,k) are naturally parametrized
by X+

∗ (T ). On the other hand, under the identification X∗(T ) = X∗(T∨
k ), X+

∗ (T ) is
the subset of dominant characters of T∨

k for an appropriate choice of positive roots;
if k is a field, this subset therefore also parametrizes the simple objects in Rep(G∨

k ).
In this case, these parametrizations of simple objects on both sides of (0.1.1) match
under the geometric Satake equivalence.

This story also has a version for étale sheaves. In this setting, G is defined over an
algebraically closed field F; we choose a prime number ℓ invertible in F; and we work
with étale k-sheaves on GrG, where k may be a finite field of characteristic ℓ, a finite
extension of Qℓ, or the ring of integers of such an extension. (It is also possible to
take k to be an algebraic closure of either Qℓ or Fℓ.) In case char(F) > 0, since G is
in fact defined over the prime subfield of F, one can speak of the “trace of Frobenius”
on stalks of various perverse sheaves.

0.1.3. History of the geometric Satake equivalence. — Let us first briefly
discuss the history of the geometric Satake equivalence.

0.1.3.1. Lusztig’s work. — The geometric Satake equivalence is often presented as a
“geometric” (or “categorical”) version of the Satake isomorphism [Sa] describing the
spherical Hecke algebra of a p-adic group in terms of invariant functions on the Lang-
lands dual group, via Grothendieck’s “faisceaux–fonctions” dictionnary. However, the
first clear indication that this isomorphism could have such a geometric version is to
be found in work of Lusztig [Lu1].(2) The main results of this paper are concerned

(2)Some of the main results of [Lu1] are given a shorter proof in the later paper [Lu2].
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with the Kazhdan–Lusztig basis of the Hecke algebra associated with the affine Weyl
group of a complex connected reductive group G, but this algebra is known to be
a “categorical trace” of the category of Iwahori-equivariant perverse sheaves on the
affine flag variety FlG of G, in such a way that the Kazhdan–Lusztig basis corresponds
to simple perverse sheaves (with coefficients in a field of characteristic 0). These re-
sults can therefore also be interpreted in terms of perverse sheaves on FlG or GrG.
With this translation, the main results of [Lu1] take the following form:

– [Lu1, Theorem 6.1] the dimension of the stalk of the intersection cohomology
complex associated with the GO-orbit on GrG associated with λ ∈ X+

∗ (T ) along
the orbit associated with µ ∈ X+

∗ (T ) is the multiplicity of µ in the simple
representation of the Langlands dual group of highest weight λ;

– [Lu1, Corollary 8.7] the convolution of two simple GO-equivariant perverse
sheaves on GrG is perverse; moreover, the multiplicities of simple perverse
sheaves in such a convolution product agree with the multiplicities of simple
representations in the corresponding tensor product of simple representations
for the dual group;

– [Lu1, Last line on p. 228] for any dominant coweight λ, the dimension of the
total cohomology of the intersection cohomology complex associated with the
orbit of a dominant cocharacter λ is the dimension of the simple representation
of the dual group with highest weight λ.

This paper also explains how to construct the affine Grassmannian GrG in terms of
some lattices in g ⊗C C((z)) where g is the Lie algebra of G; see [Lu1, §11]. An
immediate interpretation of these results is that they identify the basis corresponding
to classes of simple modules under the Satake isomorphism as the trace of Frobenius
on intersection cohomology complexes on GrG.

Lusztig remarked that the results of [Lu1] suggest an equivalence between the cat-
egory of spherical perverse sheaves on GrG (for coefficients in a field k of characteristic
0) and the category of representations of the dual group (over k), and that the total
cohomology functor should correspond to the functor sending a representation to the
underlying vector space. However, as he did not see how to interpret the commuta-
tivity of the tensor product of representations on the other side, he did not pursue
further work on this subject.

0.1.3.2. Drinfeld’s contribution. — Some years later, and in relation with his work
with Bĕılinson [BD], Drinfeld also noticed this possible application of Lusztig’s
work, and understood how to define a commutativity constraint on the category
PervGO (GrG,k), based on a new description of the convolution product in terms
of the fusion product. This construction uses a new family of schemes, now called
Bĕılinson–Drinfeld Grassmannians, defined as certain “relative” versions of the affine
Grassmannian over copies of a curve. Drinfeld explained this construction to a
number of people, including V. Ginzburg. It did not appear in written form before
the announcement [MV1] (see §0.1.3.4 below).

0.1.3.3. Ginzburg’s work. — In [Gi], V. Ginzburg claimed to give the first proof of
the geometric Satake equivalence (for coefficients in a field of characteristic 0). This
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proof relies on Lusztig’s results explained in §0.1.3.1, but does not use Drinfeld’s
idea for the construction of the commutativity constraint. It proposes a different
construction of this isomorphism, based on the localization theorem in equivariant
cohomology. Unfortunately, this construction has a gap: it defines the isomorphism
as the unique morphism satisfying an appropriate property (see the proof of [Gi,
Proposition 2.3.1]), but there is no proof that such a morphism exists. (In later
work Zhu [Zh1] observed that Ginzburg’s condition is not the property that the
commutativity constraint should satisfy; an appropriate sign must be added.)

The strategy of proof relies on the Tannakian formalism developed by Saavedra-
Rivano [SR] and Deligne–Milne [DM]: one constructs some structures on the category
PervGO (GrG,k) (essentially, in addition to the monoidal structure, a commutativity
constraint and a fiber functor), and then uses these structures to apply general results
that guarantee that this category must be equivalent to the category of representations
of a group scheme. One then proves that this group scheme is in fact the Langlands
dual group.

The preprint [Gi] introduced many ideas and geometric constructions that were
later extremely useful in various applications of the geometric Satake equivalence, but
it does not contain a complete proof of this equivalence.

0.1.3.4. Mirković–Vilonen’s work. — The paper [MV2] by Mirković–Vilonen con-
tains the first complete(3) proof of the geometric Satake equivalence, and in fact proves
such an equivalence for any ring of coefficients which is noetherian and of finite global
dimension. (These assumptions are necessary to have a nice theory of constructible
derived categories of sheaves.) The proof again uses the ideas of the Tannakian for-
malism, but requires new ingredients to work over rings since there is no general
Tannakian formalism for such coefficients. The construction of the commutativity
constraint follows Drinfeld’s suggestion. The main new ingredient compared to pre-
vious works is the notion of semi-infinite orbits, defined as orbits of the loop group of
the unipotent radical of B. These orbits appeared earlier in some form in the p-adic
group literature and in [Lu1] (in the guise of the periodic module); here they are
given a geometric structure, and their relation with GO-orbits is studied.

The semi-infinite orbits are used in an essential way at (at least) three stages of
the argument:

– in the construction of the maximal torus of the dual group;
– in the application of Braden’s “hyperbolic localization theorem;”
– in the construction of the Tannakian group scheme over rings.

They also provide “canonical” bases of weight spaces of certain representations of the
dual group, in terms of certain varieties now called Mirković–Vilonen cycles, which
have subsequently been extensively studied by various authors.

This proof was first announced in [MV1]. However, the proof outlined there had a
gap, in the argument used to check that the group scheme constructed by the authors
has reduced fibers. This gap was filled in [MV2] using a general result on reductive
group schemes proved in the meantime by Prasad–Yu [PY]. The proof in [MV2] is

(3)An erratum correcting some minor inaccuracies later appeared in [MV3].
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written in a topological setting. The authors claim that a similar proof can be given
for étale perverse sheaves; some technical details in fact have to be treated with some
care, which is done in particular in [Zh4].

0.1.3.5. Later contributions. — The geometric Satake equivalence was very influen-
cial. After the proof of Mirković–Vilonen, among numerous contributions, one can cite
a different proof (for étale Qℓ-sheaves) given by Richarz [Rc1] which also considers
the case when G is defined over a not necessarily separably closed field, generaliza-
tions to the “ramified” setting (where one starts with a reductive group over F((z))
and a model over F[[z]] which are not necessarily obtained by base change from F)
by Zhu [Zh2] under a technical assumption and by Richarz [Rc2] in full generality
(for étale Qℓ-sheaves in both cases), and a version for a “mixed characteristic” affine
Grassmannian by Zhu [Zh3] (for étale Qℓ-sheaves) and Yu [Yu] (for integral or mod-
ular coefficients). The papers [HR1, HR2] by Haines–Richarz also contain a more
careful analysis of the description of affine Grassmannians attached to B and T as
attractors and fixed points for an action of Gm respectively.

Finally, we would like to cite the new proof of the equivalence (for general coeffi-
cients) given recently by Fargues–Scholze in [FS, Chap. VI]. This proof is written in
the language of spatial diamonds, but it can in fact be “translated” into the world of
étale sheaves on schemes using the general theories developed in particular in [BS]
and [HS]. The proof follows closely the strategy of [MV2]. The main new ingre-
dient is a way of defining a “Satake category” of sheaves on the Bĕılinson–Drinfeld
Grassmannians (via ULA relative perverse sheaves), which makes the proof of the
compatibility between the various structures of the Satake category more transpar-
ent. Note in passing that for integral coefficients the category considered in [FS]
(see [FS, §VI.7.1]) is not an immediate counterpart of that considered in [MV2]: the
definition in [FS] imposes a certain flatness condition, which on the representation-
theoretic side corresponds to restricting to representations which are flat over k.

0.1.4. Gaitsgory’s central functor. — Let us now discuss the main topics that
are studied in this book.

After the Satake isomorphism, another classical fact about the spherical Hecke alge-
bra, due to Bernstein (but whose first appearance in print seems to be in [Lu1]), is that
it is isomorphic to the center of the affine Hecke algebra. To upgrade this observation
to the categorical level, one might seek a functor from the category PervGO (GrG,k)
to the Iwahori-equivariant derived category of the affine flag variety FlG of G, which
factors through the Drinfeld center of the latter category. Such a functor (known as
the “central functor”) was first constructed by Gaitsgory [G1], following suggestions
of Bĕılinson, Haines and Kottwitz. (The context considered in [G1] is that of étale
Qℓ-sheaves; however his construction makes sense for general coefficients, and the
proofs of its properties also apply in general.) By definition, central sheaves are the
perverse sheaves on FlG in the image of this functor.

Part I of the present book is an account of the theory of central sheaves (mostly fol-
lowing a variant of Gaitsgory’s construction suggested by Heinloth [He] and explicitly
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worked out by Zhu [Zh1]). The key to defining the central functor is the construc-

tion of an ind-scheme GrCen
G over A1 that exhibits FlG as a degeneration of GrG:

the central functor Z is then defined in terms of nearby cycles for this family. Cer-
tain subschemes of this family (the so-called global Schubert varieties) had previously
appeared in the number theory literature, in the guise of “local models of Shimura
varieties” (see, for instance, [HN, GH]). Indeed, central sheaves have recently found
new applications in the geometry of Shimura varieties in work of Zhu [Zh1, Zh2],
Pappas–Zhu [PZ] and Haines–Richarz [HR1, HR2] in particular.

0.1.5. Arkhipov–Bezrukavnikov equivalence(s). — Part II of the book is de-
voted to a study of one of the most useful applications of central sheaves in geo-
metric representation theory, again suggested by the Langlands philosophy, and due
to Arkhipov–Bezrukavnikov[AB]. It consists of a derived equivalence relating equiv-
ariant coherent sheaves on the Springer resolution for G∨

k and Iwahori–Whittaker
k-perverse sheaves on FlG. This equivalence can be seen as a categorical upgrade of
the fact that both categories’ Grothendieck groups are incarnations of the antispheri-
cal module for the affine Hecke algebra. It has found applications in several problems
from representation theory (see e.g. [Be3, BM]), and is also the main ingredient
of the construction of Bezrukavnikov’s equivalence [Be5] relating equivariant coher-
ent sheaves of the Steinberg variety of G∨

k and Iwahori-equivariant perverse sheaves
on FlG.

The original construction of this equivalence is carried out in the setting of étale
Qℓ-sheaves, in order to use some specific features from Deligne’s theory of weights for
ℓ-adic sheaves together with the easier cohomological behavior of representations of
reductive algebraic groups over fields of characteristic 0. In this book, we will see that
this proof can be adapted to treat the case when G is a general linear group and k is an
algebraically closed field of large enough positive characteristic (with an explicit bound
depending on the rank of the general linear group under consideration). We also
explain the relationship of this construction to the exotic t-structure on the derived
category of equivariant coherent sheaves on the Springer resolution, and some variants
describing the category of representations of the centralizer of a regular nilpotent
element, and that of equivariant coherent sheaves on the nilpotent cone. (This first
variant is stated without proof in [AB]; the second one is due to Bezrukavnikov [Be4]).

0.2. Contents

Let us now review in more detail the content of each chapter of this book.

0.2.1. Part I. — Part I provides a detailed account of the construction and main
properties of central sheaves.

First, in Chapter 1 we provide a brief overview of the Mirković–Vilonen proof of the
geometric Satake equivalence. A detailed exposition can be found in [BR], and here
we only explain the structure of this proof and highlight its main features, without
repeating any arguments.
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Chapter 2 is concerned with the geometric input for the construction of the central
functor and the proofs of its main properties. Following Heinloth [He] and Zhu [Zh1],
we consider a certain (non-constant) group scheme G over A1 constructed by gluing
the constant group scheme with value G on A1∖{0} and the Iwahori group scheme on
the formal neighborhood of 0. Then, considering a certain moduli problem involving
a principal G-bundle with a trivialization we construct the “central affine Grassman-
nian,” an ind-scheme GrCen

G over A1 whose fiber over any point in A1 ∖ {0} is GrG,
and whose fiber over 0 is FlG. This ind-scheme is the main ingredient for the definition
of the functor

Z : Db
GO

(GrG,k)→ Db
I (FlG,k)

from the GO-equivariant derived category of k-sheaves on GrG to the I-equivariant
derived category of k-sheaves on FlG. (Here, I is the Iwahori subgroup of the arc
group GO associated to G.)

Gaitsgory’s original construction of the functor Z uses a different ind-scheme, whose
fiber over a point in A1 ∖ {0} is the product of GrG with the flag variety of G. (This

suggests that GrCen
G can be identified with a closed sub-ind-scheme in Gaitsgory’s

version; this question will not be studied here.) The properties of this ind-scheme

are very similar to those of GrCen
G , but for technical reasons it turns out to be eas-

ier to work with the latter ind-scheme. (The difference appears in particular when
considering the equivariant structure on central sheaves, and the construction of the
“centrality” isomorphism; see Remark 3.2.4 for more comments.)

As preparation for the proof of some of this functor’s main properties, we also ex-
plain in this chapter the construction of “iterated” variants of this ind-scheme, defined
in terms of a moduli problem involving several principal G-bundles with trivializations.
This construction is closely related with Bĕılinson–Drinfeld’s factorization Grassman-
nian, some instances of which already appear in the proof of the geometric Satake
equivalence. Some particular cases of this construction are considered in [Zh1], but
its general treatment is new (to the best of our knowledge). In Section 2.4 we finally
consider the nearby cycles functors associated with these ind-schemes (which exhibit
the functor Z as a special case), and prove a first general compatibility property with
respect to the convolution product.

Chapter 3 is devoted to the proof of the fact that Z is monoidal and factors through
the Drinfeld center of Db

I (FlG,k). This involves the following ingredients:

1. constructing a canonical “centrality” isomorphism

Z(A ) ⋆I F
∼−→ F ⋆I Z(A )

for any A in Db
GO

(GrG,k) and F in Db
I (FlG,k);

2. constructing a “monoidality” isomorphism

Z(A ⋆GO B)
∼−→ Z(A ) ⋆I Z(B)

for any A ,B in Db
GO

(GrG,k);
3. and finally proving that these isomorphisms satisfy various compatibility prop-

erties with each other and with some structures we have on Db
GO

(GrG,k) and

Db
I (FlG,k).
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All of these results are due to Gaitsgory: items (1) and (2) were obtained in [G1],
while (3) is proved in [G2]. In particular, one of the properties from (3) involves
comparing the isomorphism from (1) in the special case when F = Z(B) for some
B in Db

GO
(GrG,k) with the image under Z of the commutativity constraint in the

Satake category; this part of the proof requires the use of a version of “nearby cycles
over a 2-dimensional base.”

In passing, we remark that most of the constructions of this chapter have obvi-
ous variants in the setting where the non-constant group scheme G is replaced by
the constant group scheme G × A1; these variants allow one to reinterpret various
constructions from the proof of the geometric Satake equivalence in terms of nearby
cycles.

Chapter 4 is devoted to the proof of another property of central sheaves, namely
that they possess a canonical filtration whose subquotients are “Wakimoto sheaves.”
This property is due to Arkhipov–Bezrukavnikov, and was obtained in the course of
the construction of their equivalence in [AB]. Its proof is essentially formal, and based
on the observation that, for A in the Satake category, convolution with the perverse
sheaf Z(A ) is exact for the perverse t-structure. (This property holds unconditionally
in case k is a field, and under the assumption that H•(GrG,A ) is k-flat in general.)
We also explain that this filtration can be used to give an alternative description of
the canonical maximal torus in G∨

k .
Finally, in Chapter 5 we describe the effect of the central functor at the “combi-

natorial” level, on Grothendieck groups. For ℓ-adic coefficients, we explain how to
compute in terms of the Hecke algebra the composition factors in each piece of the
associated graded of the weight filtration on central sheaves.

The existing literature on all of these subjects focuses on the case where k = C
(or k = Qℓ). It has long been known to experts that most of the arguments go
through for general coefficients, but our treatment is the first which systematically
allows k to be any commutative noetherian ring of finite global dimension (at least,
whenever possible). In a few cases, this requires more delicate arguments than those
from [G1, Zh1, AB].

0.2.2. Part II. — Part II explains the application of central sheaves to the con-
struction of the Arkhipov–Bezrukavnikov equivalence.

First, in Chapter 6 we consider the original setting from [AB], when k = Qℓ. This
equivalence involves the “Iwahori–Whittaker” category Db

IW(FlG,Qℓ) of sheaves on
FlG, whose definition is reminiscent of that of “Whittaker modules” in the representa-
tion theory of p-adic groups.(4) This category has a natural perverse t-structure, and
its heart is naturally a highest-weight category. An essential ingredient in the proof
is the fact that the images of central sheaves in the Iwahori–Whittaker category are
tilting objects with respect to this highest-weight structure. Under the constructed
equivalence

Db
IW(FlG,Qℓ) ∼= DbCoh

G∨
Qℓ (ÑQℓ

),

(4)More precisely, the definition resembles a “baby version” of the Whittaker vector condition, in-

volving the pro-unipotent radical of an Iwahori subgroup.
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where ÑQℓ
is the Springer resolution of G∨

Qℓ
, the central sheaf Z(A ) (were A is in

the Satake category) corresponds to the “free” coherent sheaf V ⊗ OÑQℓ

, where V is

the image of A under the geometric Satake equivalence, and the images of Wakimoto

sheaves correspond to the natural line bundles on ÑQℓ
attached to coweights of G

(i.e. weights of G∨
Qℓ
).

In Chapter 7 we discuss some complements to this topic, still in the setting where
k = Qℓ:

1. we show that the transport of the perverse t-structure on Db
IW(FlG,Qℓ) along

the equivalence above is the exotic t-structure on DbCoh
G∨

Qℓ (ÑQℓ
) (whose defi-

nition is in terms of a certain exceptional collection of objects);
2. we show that the category of representations of the centralizer of a regular

nilpotent element in the Lie algebra of G∨
Qℓ

can be described in terms of a

certain quotient of the category of Iwahori-equivariant perverse sheaves on FlG;
3. we explain how to describe the category of equivariant coherent sheaves on the

nilpotent cone of G∨
Qℓ

in terms of the derived category of another quotient of

the category of Iwahori-equivariant perverse sheaves on FlG.

All of these results are due to Bezrukavnikov (although no proof of (2) was available
so far in the literature).

Finally, in Chapter 8 we provide the first example of a modular version of the
Arkhipov–Bezrukavnikov equivalence. Namely, we prove an equivalence

Db
IW(FlG,k) ∼= DbCohG

∨
k (Ñk)

in the case when G = GL(n) and k is the algebraic closure of a finite field Fℓ
with 2ℓ >

(
n

⌊n/2⌋
)
. Adapting the constructions of [AB] to the setting of positive-

characteristic coefficients presents several rather delicate difficulties, that we are able
to overcome in this special case. Obtaining a general proof of this equivalence (under
mild assumptions of the characteristic) based on different techniques is an ongoing
project of the second author with R. Bezrukavnikov and L. Rider; see [BRR, BeR3]
for first steps in this direction.

0.2.3. Part III. — This book finishes with two appendices, gathered in Part III.
First, in Chapter 9 we review some aspects of the theory of nearby cycles that are

important for our constructions. In particular we explain Bĕılinson’s construction of
unipotent nearby cycles, and a version of “nearby cycles over a 2-dimensional base”
inspired by this construction and due to Gaitsgory.

Then, in Chapter 10 we explain how to extend the well-known construction of
Bernstein–Lunts’ equivariant derived category to the case of group schemes over a
curve. This construction (which is new, to the best of our knowledge) is used in a
systematic way in our construction and study of the central functor; this framework
lets us obtain stronger results (with less work!) about the equivariant behavior of this
functor.
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0.3. Some conventions

Given a separated scheme X of finite type over C, and a commutative ring k, by
a k-sheaf on X we will mean a sheaf of k-modules on the topological space X(C) of
C-points of X, endowed with the “classical” (or “analytic”) topology. Of course this
notion only depends on the reduced scheme Xred associated with X; but to lighten
notation it is sometimes useful to allow non-reduced schemes also. The derived cate-
gory of k-sheaves on X will be denoted by Db(X,k), and (in case k is noetherian) the
subcategory of constructible complexes will be denoted Db

c (X,k); see e.g. [BBDG,
§2.2.1] or [Ac3]. We will usually assume that k is noetherian and of finite global
dimension, so that we have the full “6-functors formalism” for these categories (in
particular, the Verdier duality functor).
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CHAPTER 1

REVIEW OF THE GEOMETRIC SATAKE
EQUIVALENCE

The “central sheaves” that are the main object of study in this book are produced
starting from certain constructible complexes on the affine Grassmannian GrG as-
sociated with a connected complex reductive algebraic group G. Perhaps the most
important such complexes are the GO-equivariant perverse sheaves, which are related
to representations of the Langlands dual group via the celebrated geometric Satake
equivalence (see §0.1.3 for references). A complete exposition of the proof of this
theorem can be found in the notes [BR] by P. Baumann and the second author.

In this chapter, we review the statement of the geometric Satake equivalence, and
we briefly outline the main steps in its proof. On the way to the statement, we will
discuss various additional features of GO-equivariant perverse sheaves, or of the GO-
equivariant derived category, including the monoidal structure on these categories.
Essentially all the results we will state are taken from [MV2], but we will usually
give references to [BR] for convenience.

Although the geometric Satake equivalence itself is not strictly needed for the
construction of central sheaves, the monoidal structure on GO-equivariant complexes
is essential for the main results of Chapter 3. We will also use the geometric Sa-
take equivalence in a crucial way in Part II for the construction of the Arkhipov–
Bezrukavnikov equivalence.

1.1. Some technical preliminaries

Before going into more specific constructions, let us review some very general def-
initions and constructions that will be essential techniques for our study, and which
were not reviewed in detail in [BR].

1.1.1. Ind-schemes. — First, let us recall the definition and some basic properties
of ind-schemes. Our main reference for this subject will be [Rc4].

1.1.1.1. Definitions. — We denote by AffSch the category of affine schemes, which
identifies with the opposite of the category Rings of unital commutative rings via the
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Spec construction. Any scheme X defines a functor AffSchop → Sets via

T 7→ Hom(T,X),

and this assignment defines a fully faithful functor from the category of schemes to the
category of functors AffSchop → Sets; we will often identify the category of schemes
with its image under this functor. (This follows from the Yoneda lemma and the fact
that any scheme admits an affine open cover.) As usual, when T = Spec(R) for some
R ∈ Rings we write X(R) := Hom(Spec(R), X).

An ind-scheme is a functor

X : AffSchop → Sets

such that there exists a filtered poset (I,≤) and an inductive system (Xi : i ∈ I) of
schemes such that(1)

X ∼= colimi∈IXi,

and moreover each transition morphism Xi → Xj is a closed immersion (for i, j ∈ I
with i ≤ j). We denote by IndSch the full subcategory of the category of func-
tors AffSchop → Sets whose objects are ind-schemes. We will call an isomorphism
X ∼= colimi∈IXi a presentation of X; whenever we write an ind-scheme in this way,
we implicity assume that the Xi’s form an inductive system of schemes with closed
immersions as transition morphisms, as above. As explained in [Rc4, Lemma 1.10],
IndSch is closed under fiber products.(2)

Of course, each scheme defines an ind-scheme, and this assignment defines a fully
faithful functor from the category of schemes to IndSch. Note that if X is a scheme
and Y = colimi∈IYi is an ind-scheme, then the canonical map

(1.1.1) colimi∈IHom(X,Yi)→ Hom(X,Y )

is injective, but not necessarily surjective. It is surjective (and hence an isomorphism)
if X is quasi-compact, though; see [Rc4, Ex. 1.26].(3)

We will also consider ind-schemes over a fixed base scheme S. Such a datum
consists of an ind-scheme X together with a morphism X → S. We will denote by
IndSchS the category whose objects are ind-schemes over S and whose morphisms are
morphisms of ind-schemes compatible with the given morphisms to S. In fact, if we
denote by AffSchS the category of affine schemes T endowed with a morphism T → S,
then the category of schemes over S embeds fully faithfully in the category of functors
AffSchopS → Sets, and IndSchS identifies with the category of functors AffSchopS → Sets
isomorphic to colimi∈IXi where (Xi : i ∈ I) is a filtered inductive system of schemes
over S such that the transition morphisms Xi → Xj are closed immersions (over

(1)Here, recall that colimits of functors can be computed termwise: if (Fi : i ∈ I) is an inductive

system of functors AffSchop → Sets, then (colimiFi)(T ) = colimiFi(T ) for all T ∈ AffSch.
(2)Here again, fiber products of functors can be computed termwise, see [SP, Tag 0022].
(3)Let us give a sketch of proof of this fact: if X = Spec(R) is affine, then a morphism Spec(R) → Y

is the same as an element of Y (R), hence factors through some Yj by definition. In general, a

quasi-compact scheme is a finite union of affine open subschemes; on each such open subscheme the
morphism must factor through some Yj , and then one can use the assumption that I is filtered to

see that one can choose j which works for all open subschemes in our covering at the same time.

https://stacks.math.columbia.edu/tag/0022
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S). Of course, in case S = Spec(R) for some R ∈ Rings, then the category AffSchS
identifies with the opposite of the category AlgR of unital commutative R-algebras.

1.1.1.2. Immersions. — IfX,Y are ind-schemes and f : X → Y is a morphism, then
we say that f is representable by schemes(4) if for any scheme Z and any morphism
Z → Y the fiber product X×Y Z is a scheme. Similarly, we say that f is representable
by a locally closed, resp. closed, resp. open, immersion if for any scheme Z and any
morphism Z → Y the fiber product X ×Y Z is a scheme and the induced morphism
X ×Y Z → Z is a locally closed, resp. closed, resp. open, immersion of schemes. (In
fact, by [Rc4, Lemma 1.7] it suffices to check these properties when Z is affine. This
turns out to be very useful since (1.1.1) is an isomorphism in this case.)

1.1.1.3. Underlying topological space and connected components. — IfX is a scheme,
we will denote by |X| its underlying topological space. If now X is an ind-scheme,
its underlying topological space |X| can be defined as the colimit of the sets X(K)
where K runs over fields, with an appropriate topology; see [Rc4, Definition 1.11]
for details. In fact, if X = colimiXi is a presentation, then we have a canonical
identification

|X| = colimi|Xi|
where the right-hand side is equipped with the colimit topology.(5)

For any scheme X, any connected component of the underlying topological space
|X| admits a canonical scheme structure, which is characterized by the property that
the corresponding embedding is a flat closed immersion, see [SP, Tag 04PX]. If X is
an ind-scheme and X = colimiXi is a presentation, the connected components of |X|
are increasing unions of connected components of the spaces |Xi|. Hence they admit
a canonical ind-scheme structure.

It is not clear to us how this structure behaves in a general setting (e.g., if the
inclusion of a connected component is representable by a closed immersion), but
under appropriate technical conditions that will be satisfied in all the cases we want
to consider it is well behaved, as we now explain. Consider an ind-scheme X with
a presentation X = colimiXi such that each Xi is noetherian and each transition
morphism Xi → Xj induces an injection on connected components.

Lemma 1.1.1. — Under the assumptions above, for any connected component Y of
X the natural morphism Y → X is representable by an open and closed immersion.

Proof. — Our assumptions imply in particular that Xi has a finite number of con-
nected components for any i (see [SP, Tag 0052]); in particular, these connected
components are open and closed. As explained above, if Y is a connected component
of X we have a presentation Y = colimiYi where Yi is a connected component of Xi

for any i, and the closed immersion Xi → Xj restricts to a closed immersion Yi → Yj
for any i ≤ j. Consider now an affine scheme Z and a morphism Z → X. There

(4)One sometimes also finds the terminology “f is schematic.”
(5)Concretely, this means that a subset of |X| is open, resp. closed, iff its intersection with each |Xi|
is open, resp. closed.

https://stacks.math.columbia.edu/tag/04PX
https://stacks.math.columbia.edu/tag/0052
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exists i such that this morphism factors through Xi, and then we have

Y ×X Z = colimj≥iYj ×Xj
Z.

Now, for any j ≥ i we have

Yj ×Xj
Z = (Yj ×Xj

Xi)×Xi
Z.

The fact that the morphism Xi → Xj induces an injection on connected components
means that the underlying topological space of Yj ×Xj Xi is Yi; since the natural
morphism Yj ×Xj Xi → Xi is a flat closed immersion (because so is Yj → Xj), it
follows that Yj ×Xj

Xi = Yi; in particular,

Y ×X Z = Yi ×Xi
Z

is a scheme. Since Yi is open and closed inXi, we deduce that the morphism Y ×XZ →
Z is an open and closed immersion, as desired.

1.1.1.4. Additional properties. — An ind-scheme X is said to be reduced if it admits
a presentation X = colimiXi where each Xi is reduced. By [Rc4, Lemma 1.17], given
any ind-scheme X, there exists a unique reduced ind-scheme Xred together with a
monomorphism Xred → X such that for any reduced affine scheme T the induced
map Xred(T )→ X(T ) is an equality. In fact, given a presentation X = colimiXi, we
have a presentation Xred = colimi(Xi)red.

If X,Y are ind-schemes and f : X → Y is a morphism, then f is said to be ind-
affine if there exist presentations X = colimiXi and Y = colimjYj such that f is
represented by a pro-ind-system of morphisms fi,j : Xi → Yj which are affine.

If X is an ind-scheme over Spec(k) for some base field k, we will say that X is of
ind-finite type if it admits a presentation X = colimiXi (over k) where each Xi is of
finite type over k.

Finally, we say that an ind-scheme X over a scheme S is separated if the diagonal
morphism X → X ×S X is representable by a closed immersion. For this condition
to hold, it suffices that X admit a presentation X = colimiXi over S where each
morphism Xi → S is separated, see [Rc4, Exercise 1.31]. In fact, if this property
holds, given any presentation X = colimiXi over S, each scheme Xi is separated
over S.(6)

1.1.2. Attractors and repellers. — Now we explain the theory of attractors, re-
pellers and fixed points for an action of the multiplicative group on a scheme.

1.1.2.1. Definitions. — Let us consider a base scheme S, and a scheme X over S.
An action of Gm on X is the datum of a morphism of S-schemes Gm,S ×S X → X

which satisfies the obvious axioms.(7)

(6)To check this, one notes (by consideration of points over each affine scheme) that (Xi ×S

Xi) ×X×SX X = Xi where the morphism X → X ×S X is the diagonal morphism, and then
one uses the definition.
(7)Here, Gm,S is the group scheme over S sending T ∈ AffSchS to O(T )×. In practice, below S will

be a k-scheme for some algebraically closed field k. The datum of an action of Gm on X is then
equivalent to the datum of an action on X seen as a k-scheme, such that the structure morphism

X → S is Gm-equivariant for the trivial action on S.
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Following [Dr, Rc3], we define the functor X0 of Gm-fixed points in X as sending
T ∈ AffSchS to the set of morphisms ϕ : T → X ×S T over T such that the diagram

Gm,T Gm,T ×T (X ×S T )

T X ×S T

idGm,T
×ϕ

ϕ

commutes, where the left vertical arrow is the structure morphism, the right vertical
arrow is induced by the action morphism Gm,S ×S X → X. In other words, given
T ∈ AffSchS , X

0(T ) consists of the T -points of X such that for any affine scheme
T ′ → T the induced morphism T ′ → X ×S T ′ commutes with the action of elements
in Gm(T

′) (where the action on the left-hand side is trivial).
Similarly, we denote by (A1

S)
+, resp. (A1

S)
−, the scheme A1

S with the natural action
of Gm, resp. the opposite of the natural action. Then we define X+ as the functor
sending T ∈ AffSchS to the set of morphisms ϕ : (A1

T )
+ → X ×S T over T such that

the diagram

Gm,T ×T (A1
T )

+ Gm,T ×T (X ×S T )

(A1
T )

+ X ×S T

idGm,T
×ϕ

ϕ

commutes, where the vertical arrows are the action morphisms. In other words, given
T ∈ AffSchS , X

+(T ) consists of the A1
T -points of X such that for any affine scheme

T ′ → T the induced morphism A1
T ′ → X×S T ′ commutes with the action of elements

in Gm(T
′). The functor X− is defined similarly, replacing (A1

S)
+ by (A1

S)
−.

By definition there exists a natural morphism of functors

X0 → X.

On the other hand, using the morphisms(8) T → (A1
T )

± defined by 0 and 1 we obtain
natural morphisms of functors

X0 ← X± → X.

1.1.2.2. Local linearizability. — If X is a scheme over S with an action of Gm, this
action is said to be étale (resp. Zariski) locally linearizable if there exists a Gm-
equivariant covering family (Ui → X : i ∈ I) where each Ui is affine over S and the
maps Ui → X are étale (resp. open immersions). This condition is interesting in this
context since, thanks to [Rc3, Theorem 1.8, Proposition 1.17], if the Gm-action is
étale locally linearizable then:

– the functors X0, X+ and X− are representable by schemes over S;
– the natural morphism X0 → X is a closed immersion;
– the natural morphismsX± → X0 are affine, with geometrically connected fibers,

and they induce a bijection between sets of connected components.

(8)Here and below, we use the symbol ± to mean either + or −.
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Moreover, the morphisms (U0
i → X0 : i ∈ I), resp. (U+

i → X+ : i ∈ I), resp. (U−
i →

X− : i ∈ I), constitute an étale covering of X0, resp. X+, resp. X−.
In practice, all the actions we have to consider in the constructions below will be

Zariski locally linearizable. In this case the properties considered above have much
more elementary proofs. For instance, to see that X0 is representable and that the
morphism X0 → X is a closed immersion one can work locally (using e.g. [GW,
Theorem 8.9] for representability), and thus assume that X is affine over S. In
this case, the Gm-action on X defines a Z-grading on the quasi-coherent sheaf of
OS-algebras f∗OX (where f : X → S is the structure morphism), and X0 is the
closed subscheme defined by the quasi-coherent ideal generated by the components
of nonzero degree in this sheaf of algebras; see [Rc3, §1.3] for details.(9) For the
representability of X+ one first treats the case when X → S is affine; in this case X+

is the closed subscheme defined by the quasi-coherent ideal generated by components
of negative degree in f∗OX . One then considers the natural morphism X+ → X0.
The considerations above show that X0 is a scheme, and that it admits a Zariski
covering by open subschemes of the form U0 where U runs over the Gm-stable affine
open subschemes of X. But for any Gm-stable open subscheme U of X, it is easy to
see that the natural morphism

U+ → X+ ×X0 U0

is an isomorphism (see [Dr, Lemma 1.4.7] for details); this implies that X+ is a
scheme by [GW, Theorem 8.9].

Example 1.1.2. — Assume that S = Spec(k) where k is a field, and V is a k-vector
space endowed with a linear action of Gm,k. (In other words, V is a representation of
Gm,k.) Then V decomposes as a sum of its weight spaces

V =
⊕
i∈Z

Vi.

Consider the induced action of Gm,k on P(V ). This action is Zariski locally linearis-
able: in fact the standard affine covering associated with a basis of V consisting of
weight vectors is Gm-stable. It is easily seen that we have identifications

P(V )0 =
⊔
i∈Z
Vi ̸=0

P(Vi), P(V )+ =
⊔
i∈Z
Vi ̸=0

P(V≥i)∖ P(V≥i+1)

where V≥j :=
⊕

j′≥j Vj′ .

1.1.2.3. Compatibility with closed immersions. — We will need the following facts
below.

Lemma 1.1.3. — Let X be a scheme over S endowed with an étale, resp. Zariski,
locally linearizable action of Gm. If Y ⊂ X is a Gm-stable closed subscheme, then
the Gm-action on Y → S is étale, resp. Zariski, locally linearizable, and the natural

(9)The assumption that the base scheme S is connected in [Rc3, §1.3] is not necessary.
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morphisms Y 0 → X0 and Y ± → X± are closed immersions. More specifically, the
canonical morphisms

Y 0 → Y ×X X0, Y ± → Y ×X X±

are isomorphisms.

Proof. — If (Ui → X : i ∈ I) is an equivariant étale, resp. Zariski, covering for X as
above, then of course (Ui ×X Y → Y : i ∈ I) is an equivariant étale, resp. Zariski,
covering of Y , and each Ui ×X Y is affine over S since it is a closed subscheme of the
affine scheme Ui. Hence the Gm-action on Y is étale, resp. Zariski, locally linearizable,
so that we can consider the schemes Y 0 and Y ±.

We will construct the isomorphism Y + ∼−→ Y ×X X+; the other assertions can be
obtained similarly. First, the natural morphisms Y + → Y and Y + → X+ induce a
canonical morphism

(1.1.2) Y + → Y ×X X+.

Now, assume that X → S is affine. Checking that (1.1.2) is an isomorphism can be
done Zariski locally over S, so that we can assume that S (hence also X) is affine. In
this case for T ∈ AffSchS , a T -point of Y ×X X+ is a certain morphism of T -schemes
A1
T → X whose restriction to Gm,T takes values in Y . It is clear that this morphism

then factors uniquely through a morphism A1
T → Y , which proves that (1.1.2) is an

isomorphism in this case.
To treat the general case, consider an equivariant étale covering (Ui → X : i ∈ I)

where each Ui → S is affine. Then we have an étale covering (Ui ×X Y → Y : i ∈ I),
and hence étale coverings (U+

i → X+ : i ∈ I) and ((Ui ×X Y )+ → Y + : i ∈ I) by the
results recalled in §1.1.2.2, and from the affine case treated above we see that for any
i we have a canonical identification

(Ui ×X Y )+
∼−→ (Ui ×X Y )×Ui

(Ui)
+ = Y ×X U+

i .

This shows that (1.1.2) is an isomorphism étale locally over the target. Hence it is
an isomorphism by [SP, Tag 02L4].

1.1.2.4. Points over fields. — Now we assume that S = Spec(k) for some field k.

Lemma 1.1.4. — Let X be a proper k-scheme with an étale locally linearizable
action of Gm. Then the natural morphism X+ → X induces a bijection

X+(K)
∼−→ X(K)

for each field extension k → K. In particular, this morphism induces a bijection

|X+| ∼−→ |X|

on the underlying topological spaces.

Proof. — Since X is separated, the morphism X+ → X is a monomorphism by [Rc3,
Remark 1.19(i)] or [Dr, §1.3.3(ii)]. In particular, the map X+(K) → X(K) is injec-
tive for any K. The surjectivity of this map follows from the fact that any morphism
Gm,K → X ⊗k K can be extended to a morphism A1

K → X ⊗k K by properness,

https://stacks.math.columbia.edu/tag/02L4
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see [SP, Tag 0BXZ]. The final claim follows from the fact that the underlying topo-
logical space of a scheme is the colimit of its points over all fields, see [SP, Tag
01J9].

Remark 1.1.5. — In the setting of Lemma 1.1.4, the map |X+| ∼−→ |X| is not a
homeomorphism in general. (This can be seen e.g. in the case considered in Exam-
ple 1.1.2.)

1.1.3. Attractors and repellers for ind-schemes. — Now we explain how to
adapt the constructions of §1.1.2 to the setting of ind-schemes.

1.1.3.1. Definitions. — We continue with our base scheme S, and consider an ind-
scheme X over S. An action of Gm on X is the datum of a morphism of S-ind-
schemes Gm,S ×S X → X which satisfies the obvious axioms. In practice, we will in
fact assume that there exists a presentation X = colimiXi by S-schemes such that
the action morphism is defined by compatible actions of Gm on each Xi (in the sense
of schemes). As explained in [RS, Lemma A.5], this condition is always satisfied if S
is noetherian and X is of ind-finite type over S.

Given X → S as above, we will say that the Gm-action is étale (resp. Zariski)
locally linearizable if there exists a presentation X = colimiXi such that the action
of Gm is induced by compatible actions on the Xi’s, and the action on Xi → S is
étale (resp. Zariski) locally linearizable for any i. Given such a datum, when writing a
presentation X = colimiXi we will always implicitly assume that each Xi is Gm-stable
with an étale (resp. Zariski) locally linearizable action.

1.1.3.2. Representability. — The following theorem is an easy extension of the first
main result of [Rc3], treated in [HR2, Theorem 2.1].

Theorem 1.1.6. — Let X → S be an S-ind-scheme endowed with an étale locally
linearizable Gm-action, and write a presentation X = colimiXi as above.

1. The functor X0 is an S-ind-scheme, and we have a presentation X0 =
colimi(Xi)

0. Moreover, the natural morphism X0 → X is representable by a
closed immersion.

2. The functor X± is an S-ind-scheme, and we have a presentation X± =
colimi(Xi)

±. Moreover, the natural morphism X± → X is representable by
schemes.

Proof. — If X = colimiXi is a presentation such that each Xi has an étale locally lin-
earizable action, then as functors we have X0 = colimi(Xi)

0 and X± = colimi(Xi)
±.

Hence X0 and X± are ind-schemes by Lemma 1.1.3. To show that X0 → X,
resp.X± → X, is representable by a closed immersion, resp. representable by schemes,
one notices that if Z is an affine scheme and Z → X is a morphism, then there exists
i such that this morphism is induced by a morphism Z → Xi, and we have

Z ×X X0 = Z ×Xi (Xi)
0, resp. Z ×X X± = Z ×Xi (Xi)

±.

(For instance, in the case of attractors, we have Z×XX+ = colimj≥iZ×Xj (Xj)
+, and

for any j ≥ i we observe that Z ×Xj
(Xj)

+ = Z ×Xi
(Xi ×Xj

(Xj)
+) = Z ×Xi

(Xi)
+

by Lemma 1.1.3.)

https://stacks.math.columbia.edu/tag/0BXZ
https://stacks.math.columbia.edu/tag/01J9
https://stacks.math.columbia.edu/tag/01J9
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1.1.3.3. Compatibility with immersions. — We will also need the following property,
which is more technical (in the “open” case); see [HR2, Corollary 2.3].

Proposition 1.1.7. — Let X and Y be S-ind-schemes equipped with Gm-actions.
Assume that the actions on X and Y are étale locally linearizable, and that Y is
separated. Also let f : X → Y be a Gm-equivariant morphism. If f is representable by
a closed, resp. open, immersion, then so are the morphisms X0 → Y 0 and X± → Y ±.

Remark 1.1.8. — In [HR1, Corollary 2.3] it is assumed that S is affine and con-
nected. However the connectedness is not necessary for the arguments there to apply,
and one can reduce to the case where S is affine by considering an affine open cover.

1.2. Affine Grassmannians

In this section we introduce the main geometric object that takes part in the geo-
metric Satake equivalence, namely the affine Grassmannian attached to a complex(10)

reductive algebraic group.

1.2.1. Definition and representability. —

1.2.1.1. Loop group, positive loop group, and affine Grassmannian. — Given a C-
algebra R, we denote by R[[x]] the C-algebra of power series in the indeterminate
x with coefficients in R, and by R((x)) the localization of R[[x]] with respect to x
(i.e. the algebra of formal Laurent series in x with coefficients in R). If R is a field,
then R((x)) is the field of fractions of the integral ring R[[x]]. In particular, we will
consider O := C[[x]] and K := C((x)).

Recall that if G is a smooth affine group scheme over C, then the associated loop
group GK is the functor AlgC → Sets defined by

GK (R) = G(R((x))).

The positive loop group (or arc group) GO is the subfunctor defined by

GO(R) = G(R[[x]]).

It is a standard fact that GO is represented by an affine group scheme over C, and
that GK is represented by an ind-affine group ind-scheme over C; see [Zh4, Propo-
sition 1.3.2] or [Rc4].

The affine Grassmannian GrG is the fppf sheaf on the category AlgC associated
with the functor

R 7→ GK (R)/GO(R).

It is known that GrG is represented by a separated ind-scheme of ind-finite type,
see [Zh4, Theorem 1.2.2 and Proposition 1.3.6] or [Rc4, Theorem 3.4 and Proposi-
tion 3.18]. The proof of this fact in case G is reductive is reviewed in §1.2.1.4 below;
the general case is not very different.

(10)We restrict to the case the base field is C because this is the only case that will be used below,

but all the results that appear in this section hold over any algebraically closed field.
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Remark 1.2.1. — Some comments and references on fppf sheaves, and the asso-
ciated sheafification functor, can be found in §2.1.1 below. (There we will consider
sheaves on the category of all schemes rather than affine schemes. The relation be-
tween the two versions is explained in Remark 2.1.1.) Other details on the construc-
tion of GrG, which can be ignored at this stage, will be discussed in §§2.2.1–2.2.2.

The points of GrG over separably closed fields admit an explicit description,
see [Rc4, Corollary 3.22]. In particular, we have

(1.2.1) GrG(C) = G(K )/G(O).

We will denote by pGr : GK → GrG the quotient morphism.

1.2.1.2. Big cell. — We will also consider the functor L−G : AlgC → Sets defined
by(11)

L−G(R) = G(R[x−1]).

It is known that L−G is represented by an ind-affine group ind-scheme of ind-finite
type over C; see [Zh4, §2.3]. There exists a canonical morphism L−G → G induced
by the ring morphisms R[x−1]→ R sending x−1 to 0; the kernel of this morphism is
denoted L−−G. The following statement is somewhat classical; a formal proof can be
found in this generality in [HR2, Lemma 3.1].

Lemma 1.2.2. — Let L0 ∈ GrG(k) be the base point. Then the orbit morphism

L−−G→ GrG, g 7→ g · L0

is representable by an open immersion.

A closely related fact is that the multiplication morphism

L−−G×GO → GK

is representable by an open immersion. Over the image of the morphism of
Lemma 1.2.2, the morphism pGr : GK → GrG restricts to the obvious projection
L−−G×GO → L−−G.

1.2.1.3. The case of GL(n). — Let us quickly review the description of GrGL(n) in
terms of lattices, following [Rc4, §2]. (For a formal definition of what we mean by a
lattice, see [Rc4, Definition 2.1].)

Writing Λ0,R for the lattice (R[[x]])n ⊂ (R((x)))n (for any R ∈ AlgC), we have a
presentation GrGL(n) = colimi≥0GrGL(n),i where GrGL(n),i is the scheme whose set of
R-points is the set of R[[x]]-lattices Λ ⊂ R((x))n with

xiΛ0,R ⊂ Λ ⊂ x−iΛ0,R.

For any finite-dimensional C-vector space V , it is known that the functor Grass(V )
sending a C-algebra R to the set of R-submodulesM ⊂ V ⊗CR such that the quotient
(V ⊗CR)/M is locally free is a smooth projective scheme over C (see [GW, §8.4]); in
fact it is a disjoint union of the Grassmannians Grassd(V ) of d-dimensional subspaces

(11)In this formula, x−1 is treated as a formal variable; this element is not the inverse of anything.
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in V , and for any d we have a natural closed immersion Grassd(V ) ↪→ P(
∧d

V ),
see [GW, §8.10].

Writing Mi := x−iΛ0,C/x
iΛ0,C, we then have a closed immersion of schemes

GrGL(n),i ↪→ Grass(Mi)

which is defined on R-points by Λ 7→ Λ/xiΛ0,R, and hence a closed immersion

GrGL(n),i ↪→
⊔
d P(

∧d
Mi).

For i ≥ 0, since GrGL(n),i and GrGL(n),i+1 are proper, the natural morphism
GrGL(n),i → GrGL(n),i+1 is proper as well, see [SP, Tag 01W6]. Since this morphism
is a monomorphism, it must be a closed immersion by [SP, Tag 04XV].

From these considerations we obtain that GrGL(n) is an ind-scheme, and that it
admits a presentation in which all schemes that appear are projective (in particular,
of finite type) over C.

1.2.1.4. The case of reductive groups. — From now on, assume that G is a (con-
nected) reductive algebraic group over C. A choice of a faithful representation of G
provides a closed immersion G ↪→ GL(n) for some n, and the quotient GL(n)/G is
automatically affine by the main result of [Rs]. By [Zh4, Proposition 1.2.6], it follows
that the induced morphism GrG → GrGL(n) is representable by a closed immersion.
In particular, if GrGL(n),i is as above and if we set

GrG,i := GrG ×GrGL(n)
GrGL(n),i,

then GrG,i is a scheme, and the natural morphism GrG,i → GrGL(n),i is a closed
immersion. It is also easily seen that

GrG = colimi≥0GrG,i,

and that for any i ≥ 0 the natural morphism GrG,i → GrG,i+1 is a closed immersion.
In particular, as in the case of GL(n), GrG admits a presentation in which all schemes
that appear are projective over C.(12)

1.2.1.5. Spherical orbits and Schubert varieties. — We continue to assume that G is
reductive, and choose a maximal torus T ⊂ G and a Borel subgroup B ⊂ G containing
T . Let B+ ⊂ G be the Borel subgroup opposite to B with respect to T . We set

X := X∗(T ), X∨ := X∗(T ).

We will denote by R ⊂ X the root system of (G,T ), and by R+ ⊂ R the system of
positive roots consisting of the nonzero T -weights in the Lie algebra of B+. (Thus,
B is the “negative” Borel subgroup. Note that this is opposite to the conventions
of [BR, MV2].) Similarly we have the coroots R∨ ⊂ X∨ and the positive coroots
R∨

+ ⊂ R∨. The positive system R+ determines a subset X∨
+ ⊂ X∨ of dominant

coweights. The Weyl group of (G,T ) will be denoted Wf . (Here, “f” stands for
“finite.”)

By [Rs] again the quotient G/T is affine, so that the morphism GrT → GrG
is representable by a closed immersion (again by [Zh4, Proposition 1.2.6]). Any
λ ∈ X∨ determines a C-point xλ ∈ TK (C), namely the image under the morphism

(12)One must beware that this property does not hold when G is not reductive.

https://stacks.math.columbia.edu/tag/01W6
https://stacks.math.columbia.edu/tag/04XV
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(Gm)K → TK induced by λ of x ∈ (Gm)K (C) = K ×. The image of this point in
GrT (C) will be denoted Lλ. We will also denote by xλ and Lλ the images of these
points in GK (C) and GrG(C) respectively.

Consider a presentation GrG = colimiGrG,i as in §1.2.1.4, so that the GO-action
on GrG is induced by compatible actions on each GrG,i, and that the action on GrG,i
factors through a quotient Ki of GO which is a smooth group scheme of finite type
over C. If µ ∈ X∨

+, we can choose i such that Lµ ∈ GrG,i(C). Then it makes sense to
consider the Ki-orbit GrµG of Lµ, which is a reduced locally closed subscheme of GrG,i.

If GrµG is the closure of GrµG, endowed with the reduced closed subscheme structure,

then GrµG is a projective reduced scheme over C, and the natural morphism GrµG →
GrµG is an open immersion, see [SP, Tag 03DQ]. It is clear that this construction
does not depend on i, nor on the choice of presentation of GrG. The varieties GrµG,

resp. GrµG, are called spherical orbits, resp. Schubert varieties.
The Cartan decomposition states that the reduced ind-scheme (GrG)red associated

with GrG (see §1.1.1.4) admits a stratification

(GrG)red =
⊔

λ∈X∨
+

GrλG.

Here each GrλG is a smooth variety, of dimension

dim(GrλG) = ⟨2ρ, λ⟩,
where ρ ∈ 1

2X is one-half the sum of the positive roots. It is also well known that

(1.2.2) GrλG =
⊔

µ∈X∨
+

λ−µ∈Z≥0R
∨
+

GrµG.

In particular, Lµ belongs to GrλG(C) iff the unique dominant Wf -conjugate µ
+ of µ

satisfies λ− µ+ ∈ Z≥0R
∨
+.

1.2.1.6. Connected components. — If G is as in §1.2.1.5, it is a standard fact that
the connected components of GrG are parametrized by X∨/ZR∨, see e.g. [PR, The-

orem 0.1]. Given a coset c ∈ X∨/ZR∨, the subscheme GrνG is contained in the
component corresponding to c iff ν ∈ c. We will denote by GrcG the component
corresponding to a coset c ∈ X∨/ZR∨; it satisfies

(GrcG)red =
⊔
λ∈c

GrλG.

Since the function ⟨2ρ,−⟩ takes even values on ZR∨, the parity of the dimension of
GO-orbits is constant on each connected component of GrG. Such a component will
be called even if these dimensions are even, and odd if they are odd.

We will call a coweight λ minuscule(13) if ⟨λ, α⟩ ∈ {0, 1} for any positive root α.
If we denote by X∨

min ⊂ X∨ the subset of minuscule coweights, then it is well known

(13)Note that our definition is more general than in many other sources, including [Bou]. In partic-

ular, for us 0 is a minuscule coweight.

https://stacks.math.columbia.edu/tag/03DQ
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that the composition

X∨
min ↪→ X∨ ↠ X∨/ZR∨

is a bijection. Moreover, for any c ∈ X∨/ZR∨, if λ0 is the unique minuscule coweight

in c we have λ0 ≤ λ for any λ ∈ c∩X∨
+. As a consequence, the orbit Grλ0

G is closed, and

for any such λ we have Grλ0

G ⊂ GrλG. The Schubert varieties attached to minuscule
coweights will also be called minuscule; these Schubert varieties are smooth.

This property implies that the assumptions of Lemma 1.1.1 are satisfied in this case:
given any presentation GrG = colimiGrG,i such that the GO-action on GrG is induced
by compatible actions on the GrG,i’s which factor through an action of a smooth
group scheme of finite type, the connected components in GrG,i are determined by
the unique minuscule Schubert variety that they contain (because they are closed and
GO-stable), so that the morphism GrG,i → GrG,j indeed induces an injection on sets
of connected components if i ≤ j. In particular, the embedding of any connected
component in GrG is representable by an open and closed immersion.

Example 1.2.3. — Let us revisit the case of G = GL(n) from §1.2.1.3. Choose for
B the subgroup of lower-triangular matrices, and for T the maximal torus consisting
of diagonal matrices. We then have a standard identification

X∨ = Zn,

for which the i-th element in the standard basis of Zn corresponds to the coweight

ε∨i : t 7→ diag(1, . . . , 1, t, 1, . . . , 1)

where t appears in i-th position.
We have an identification X∨/ZR∨ ∼−→ Z, induced by (λ1, . . . , λn) 7→

∑
i λi, and

the minuscule coweights are those of the form (k, . . . , k, k − 1, . . . , k − 1) with k ∈ Z.
(Here the number of k−1’s can be 0.) In particular, the coweight ε∨1 is minuscule; its

Weyl group orbit consists of the coweights ε∨1 , . . . , ε
∨
n . The orbit Gr

ε∨1
GL(n) is therefore

closed.
In terms of lattices, the point Lε∨1 corresponds to the lattice

(xO)× On−1 ⊂ K n.

Its orbit under GO is

{Λ ⊂ K n lattice | x · On ⊂ Λ ⊂ On, dim(On/Λ) = 1}.

The quotient On/x ·On identifies canonically with Cn, and via this identification the

variety Gr
ε∨1
GL(n) identifies with the projective space Pn−1 of hyperplanes in Cn.

1.2.2. Gm-actions via cocharacters. — We continue with our complex reductive
algebraic group G, and consider a cocharacter χ : Gm → G. From the action of GO on
GrG, and using the embedding Gm ⊂ (Gm)O (as constant loops) and the morphism
(Gm)O → GO induced by χ we obtain an action of Gm on GrG.
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1.2.2.1. Local linearizability. — In order to start considering the formalism of §1.1.2,
we need to check that the action under consideration is locally linearizable.

Lemma 1.2.4. — The Gm-action on GrG is Zariski locally linearizable.

Proof. — First we consider the case G = GL(n). Recall the construction of §1.2.1.3;
we use the notation introduced there. The cocharacter χ defines a Gm-action on AnC,
and hence on Mi, on

∧d
Mi, and finally on P(

∧d
Mi) (for any i and d), such that the

closed embedding GrGL(n),i ↪→
⊔
d P(

∧d
Mi) is Gm-equivariant. Since the Gm-action

on P(
∧d

Mi) is Zariski locally linearizable (see Example 1.1.2), we deduce that the
same holds for the Gm-action on GrGL(n),i, which finishes the proof in this case.

To treat the case of a general reductive groupG, we choose a closed embeddingG ↪→
GL(n) for some n as in §1.2.1.4. We then get a presentation GrG = colimi≥0GrG,i and
closed immersions GrG,i → GrGL(n),i. The composition of χ with the embedding G→
GL(n) provides a cocharacter χ′ of GL(n). This cocharacter defines a Gm-action on
each GrGL(n),i, such that the closed immersion GrG,i → GrGL(n),i is equivariant. Since
the action on GrGL(n),i is Zariski locally linearizable by the case treated above, the
same is true for the action on GrG,i (see Lemma 1.1.3), which finishes the proof.

In view of Lemma 1.2.4 and Theorem 1.1.6, we can consider the ind-schemes (GrG)
0

and (GrG)
±, and the natural morphisms

(1.2.3) (GrG)
0 ← (GrG)

± → GrG.

1.2.2.2. Description of fixed points, attractors and repellers. — The cocharacter χ
defines via conjugation a Gm-action on G. If we set

M := G0, P+ := G+, P− := G−

(with respect that this action), then it is known that P+ and P− are parabolic
subgroups of G, that M is a Levi factor in P+ and P−, and that M = P+ ∩ P−,
see [CGP, §2.1]. The natural maps

M ← P± → G

are the projection to the Levi quotient and the natural embeddings, respectively.

Example 1.2.5. — In case χ is obtained from a cocharacter of T which is moreover
strictly dominant, we have P− = B, P+ = B+ and M = T .

We can consider the affine Grassmannians GrM , GrP± , and the induced morphisms

(1.2.4) GrM ← GrP± → GrG.

The following result is implicit in many sources; the first explicit proof (to our knowl-
edge) appears in [HR2, Proposition 3.4].

Theorem 1.2.6. — There exist canonical isomorphisms

GrM
∼−→ (GrG)

0, GrP±
∼−→ (GrG)

±

which identify the diagrams (1.2.3) and (1.2.4).
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For the proof of Theorem 1.2.6 we will need the following preliminary. Recall the
ind-affine ind-scheme L−−G, see §1.2.1.2. The Gm-action on G (via conjugation)
induces an action on L−−G, so that we can consider the (ind-affine) ind-schemes
(L−−G)0 and (L−−G)±. The closed immersion M → G, resp. P± → G, induces a
morphism L−−M → L−−G, resp. L−−P± → L−−G.

Lemma 1.2.7. — The morphisms above induce isomorphisms

L−−M
∼−→ (L−−G)0, L−−P± ∼−→ (L−−G)±.

Proof. — (14) It suffices to prove similar claims for L− instead of L−−. We first
consider L−M and (L−G)0. By definition, for R ∈ AlgC, (L

−G)0(R) consists of the
points g ∈ G(R[x−1]) such that for any R-algebra S and any λ ∈ S× we have

χ(λ) · g · χ(λ)−1 = g

in G(S[x−1]). On the other hand, (L−M)(R) = M(R[x−1]). Since M = G0 for the
Gm-action on G, the set M(R[x−1]) consists of the elements g ∈ G(R[x−1]) such that
for any S′ ∈ AlgR[x−1] and λ ∈ (S′)× we have

χ(λ) · g · χ(λ)−1 = g

in G(S′). We will check that these two subsets of G(R[x−1]) coincide.
Given g ∈ M(R[x−1]), for any S ∈ AlgR and λ ∈ S× we can consider the R[x−1]-

algebra S′ := S[x−1] and the element λ ∈ S× ⊂ (S′)×. From the description of
M(R[x−1]) given above we obtain that χ(λ) · g ·χ(λ)−1 = g in G(S′) = G(S[x−1]), so
that g belongs to (L−G)0(R). In the other direction, consider g ∈ (L−G)0(R). Then
if S′ is an R[x−1]-algebra, we can consider S′ as an R-algebra, and the image of x−1

defines an element s ∈ S′. Since g belongs to (L−G)0(R), for any λ ∈ (S′)× we have

(1.2.5) χ(λ) · g · χ(λ)−1 = g

in G(S′[x−1]). The element s ∈ S′ defines an S′-algebra morphism S′[x−1] → S′,
and hence a group homomorphism G(S′[x−1]) → G(S′). Taking the image of the
equation (1.2.5) in G(S′) we see that g belongs to (L−M)(R).

The proof of the isomorphisms involving P± is similar. If R ∈ AlgC, then
(L−G)±(R) is a subset of (L−G)(R[t]) = G(R[x−1, t]) determined by an appropriate
equivariance condition, where t is another indeterminate (such that A1

R = Spec(R[t])).
Similarly we have (L−P±)(R) = P±(R[x−1]), which is a certain subset of G(R[x−1, t])
determined by an a priori different equivariance condition. The same considerations
as above show that these conditions are in fact equivalent.

Proof of Theorem 1.2.6. — The action of Gm is obtained by functoriality from an
action on G. Since the embedding M ↪→ G is Gm-equivariant for the trivial action on
M , we deduce that the induced morphism GrM → GrG is also Gm-equivariant for the
trivial action on GrM , which shows that this embedding factors through a morphism
GrM → (GrG)

0. On the other hand, the conjugation action on G stabilizes P+, and
extends to an action of the monoid A1

C on this subgroup. It follows that the induced

(14)This proof is a corrected version of that appearing in the course of the proof of [HR2, Proposi-
tion 3.4], which is slightly wrong.
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action on GrP+ also extends to an action of A1
C.

(15) For this action, we therefore have
GrP+ = (GrP+)+. We deduce that the morphism GrP+ → GrG factors through a
morphism

GrP+ = (GrP+)+ → (GrG)
+.

We obtain similarly that the morphism GrP− → GrG factors through a morphism
GrP− → (GrG)

−. (In these considerations we have used the fact that GrP+ , GrP− are
separated, so that the morphisms (GrP±)± → GrP± are monomorphisms, see [Rc3,
Remark 1.19(i)].)

To conclude, it remains to prove that the morphisms

GrM → (GrG)
0, GrP+ → (GrG)

+, GrP− → (GrG)
−

are isomorphisms. We will treat the case of the morphism GrP+ → (GrG)
+; the

case of the morphism GrP− → (GrG)
− follows by applying the previous case to the

cocharacter χ−1, and the case of GrM → (GrG)
0 can treated similarly (with some

simplifications).
We fix an embedding G ↪→ GL(n), and consider the presentation GrG =

colimiGrG,i as in the proof of Lemma 1.2.4, so that each GrG,i is projective over C
and Gm-stable. For any g ∈MK (C), it follows from Lemma 1.2.2 that the morphism
L−−G → GrG defined by h 7→ gh · L0 is representable by an open immersion.
Moreover these open subschemes form a covering of GrG, in the sense that for any i
they induce an open covering of GrG,i. (In fact, since these schemes are of finite type
over C, using [GW, Corollary 3.36] it suffices to prove that any C-point in some GrG,i
belongs to such an open subset, which follows e.g. from the Birkhoff decomposition; in
fact it suffices to consider elements in AK (C) where A is a maximal torus contained
in M , see [Fa, Lemma 4].) By Proposition 1.1.7, for any g ∈ MK (C) we deduce a
morphism (L−G)+ → (GrG)

+ which is representable by an open immersion, and by
the results recalled in §1.1.2.2 these open sub-ind-schemes form a covering of (GrG)

+.
For fixed g ∈MK (C), by Lemma 1.2.7 our morphism GrP+ → (GrG)

+ induces an
isomorphism between an open sub-ind-scheme of GrP+ and the open sub-ind-scheme
of (GrG)

+ considered above. We can therefore consider the inverse isomorphism,
for any g ∈ MK (C). Given two elements in MK (C), these inverse isomorphisms
(each defined on the corresponding open sub-ind-scheme of (GrG)

+) coincide on the
intersection of these sub-ind-schemes; in fact since all the schemes considered here are
of finite type (see [GW, Example 3.45]), as above it suffices to prove that they coincide
on C-points, which follows from the fact that the morphism GrP+(C) → GrG(C) is
injective, since these sets identify with P+(K )/P+(O) and G(K )/G(O) respectively,
see (1.2.1). These morphisms therefore glue to define a morphism (GrG)

+ → GrP+ ,
which by construction is an inverse to our given morphism GrP+ → (GrG)

+.

1.2.2.3. Some geometric consequences. —

(15)See [HR2, p. 153] for an explicit description of this action in terms of a Rees construction.
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Proposition 1.2.8. — 1. The natural morphism GrP± → GrM is ind-affine with
geometrically connected fibers.(16) In particular, it induces a bijection between
the sets of connected components of GrP± and GrM ,(17) and for any connected
component of GrP± the embedding in GrP± is representable by an open and
closed immersion.

2. The natural morphism GrP± → GrG is bijective and restricts to a morphism
representable by a locally closed immersion on each connected component of
GrP± .

Proof. — (1) Consider a presentation GrG = colimiGrG,i as in §1.2.1.4. Then by
Theorem 1.2.6 and Theorem 1.1.6 we have

GrP± = colimi(GrG,i)
±, GrM = colimi(GrG,i)

0,

and the morphism GrP± → GrM is induced by the canonical morphisms (GrG,i)
± →

(GrG,i)
0. Each of these morphisms is affine (see §1.1.2.2), proving that our morphism

is ind-affine. Regarding fibers, if K is a field, a morphism Spec(K) → GrM must
factor through a morphism Spec(K)→ (GrG,i)

0 for some i. Then we have

GrP± ×GrM Spec(K) = colimj≥i(GrG,j)
± ×(GrG,j)0 Spec(K).

The underlying topological space of the right-hand side is an increasing union of
connected spaces (see again §1.1.2.2), with closed immersions as transition maps, so
it is connected. The first part of the second sentence follows, since a continuous
map of topological spaces with connected fibers and which admits a section induces
a bijection between connected components.

Finally, since each morphism (GrG,i)
± → (GrG,i)

0 induces a bijection between
sets of connected components, and because (GrG,i)

0 → (GrG,j)
0 induces an in-

jection between sets of connected components for any i ≤ j (by the identifica-
tion in Theorem 1.2.6 and §1.2.1.6), the same property holds for the morphism
(GrG,i)

± → (GrG,j)
±, so that the embedding of each connected component in GrP±

is representable by an open and closed immersion by Lemma 1.1.1.
(2) Fix a presentation GrG = colimiGrG,i as in the proof of Lemma 1.2.4; then we

have a presentation GrP± = colimi(GrG,i)
±. By Lemma 1.1.4, for any i the map

|(GrG,i)
±| → |GrG,i|

is bijective. Passing to colimits we find that |GrP± | → |GrG| is bijective, as claimed.
Let us now prove that for any i the morphism

(GrG,i)
± → GrG,i

restricts to a locally closed immersion on each connected component. In fact, using
the notation of the proof of Lemma 1.2.4 we have a Gm-equivariant closed immersion

GrG,i ↪→
⊔
d P(

∧d
Mi) and an induced closed immersion (GrG,i)

± ↪→
⊔
d(P(

∧d
Mi))

±,

(16)By this we mean that for any field K and any morphism Spec(K) → GrM , the underlying
topological space of the ind-scheme GrP± ×GrM Spec(K) is connected.
(17)More specifically, this bijection sends a connected component of GrP± to its image in GrM , and

a connected component of GrM to its inverse image in GrP± .
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see Lemma 1.1.3. Any connected component of (GrG,i)
± embeds as a closed sub-

scheme in a connected component of
⊔
d(P(

∧d
Mi))

±. On the other hand, as seen

in Example 1.1.2, the morphism P(
∧d

Mi)
± → P(

∧d
Mi) restricts to a locally closed

immersion on each connected component, for any d. We deduce that the composi-

tion (GrG,i)
± →

⊔
d P(

∧d
Mi) restricts to a locally closed immersion on each con-

nected component, see [SP, Tag 02V0]. Using [SP, Tag 07RK] we deduce that
(GrG,i)

± → GrG,i restricts to a locally closed immersion on each connected compo-
nent.

Now, consider a connected component Y of GrP± . We can write Y = colimiYi
where Yi is a connected component of (GrG,i)

± for any i. If Z is an affine scheme and
Z → GrG is a morphism, then this morphism factors through GrG,i for some i, and
we have

Y ×GrG Z = colimj≥iYj ×GrG,j
Z.

Now for any j ≥ i we have

Yj ×GrG,j
Z = (Yj ×GrG,j

GrG,i)×GrG,i
Z

=
(
Yj×(GrG,j)± ((GrG,j)

±×GrG,j
GrG,i)

)
×GrG,i

Z = (Yj×(GrG,j)± (GrG,i)
±)×GrG,i

Z

by Lemma 1.1.3. Now, as seen in the proof of Lemma 1.1.1 we have Yj ×(GrG,j)±

(GrG,i)
± = Yi, so that

Y ×GrG Z = Yi ×GrG,i
Z.

In particular this ind-scheme is a scheme, and the morphism Y ×GrG Z → Z is an
open and closed immersion because so is the morphism Yi → GrG,i.

1.2.3. Semi-infinite orbits. — Recall that we have fixed subgroups T ⊂ B ⊂ G
in §1.2.1.5. We consider the setting of §1.2.2, assuming that χ is a cocharacter of T
which is strictly dominant. In this case we have G0 = T , G+ = B+, and G− = B,
see Example 1.2.5.

1.2.3.1. Definition. — Recall from Proposition 1.2.8(1) that the morphism GrB+ →
GrT induces a bijection between the connected components of GrB+ and GrT . It is a
standard fact that |GrT | is discrete, with

|GrT | = {Lλ : λ ∈ X∨}.

Therefore, the map sending λ ∈ X∨ to the connected component Gr
(λ)
T containing Lλ

induces a bijection between X∨ and the set of connected components of GrT . For any

λ ∈ X∨ we have Gr
(λ)
T (C) = {Lλ} = |Gr

(λ)
T |. By Lemma 1.2.2 and commutativity

of TK , the morphism L−−T → GrT given by g 7→ g · Lλ induces an isomorphism

L−−T
∼−→ Gr

(λ)
T , since it is representable by an open immersion and a bijection on

C-points. (A description of L−−T can be derived from [Rc4, Example 2.8] or [PR,
§3.a].)

For any λ ∈ X∨ we will denote by

Sλ

https://stacks.math.columbia.edu/tag/02V0
https://stacks.math.columbia.edu/tag/07RK
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the connected component of GrB+ corresponding to Gr
(λ)
T under the bijection consid-

ered above; then we have a natural morphism Sλ → GrG which is representable by a
locally closed immersion by Proposition 1.2.8(2).

1.2.3.2. Ind-affineness. — The setting considered in §1.2.2 can be made slightly
more explicit in this case. Namely, choose a presentation GrG = colimiGrG,i as
in §1.2.1.4. Then for any i the scheme of finite type (GrG,i)

0 is discrete, and hence the
spectrum of a finite-dimensional C-algebra, see [EGA1, Chap. I, Prop. 6.4.4]. More-
over this algebra is a finite product of finite-dimensional local algebras (see [EGA1,
Chap. I, §6.2]), so (GrG,i)

0 is the disjoint union of the spectra of these local algebras,
which are the connected components of (GrG,i)

0. If Lλ ∈ (GrG,i)
0(C), we denote by

(GrG,i)
0,(λ) the connected component of (GrG,i)

0 containing Lλ; then (GrG,i)
0,(λ) is

the spectrum of a finite-dimension local C-algebra. The fiber product

Sλ,i := (GrG,i)
+ ×(GrG,i)0 (GrG,i)

0,(λ)

is an affine connected scheme of finite type over C by the results of §1.1.2.2, and we
have

(GrG,i)
+ =

⊔
λ

Sλ,i

where λ runs over the (finite) subset of X∨ consisting of the elements such that
Lλ ∈ (GrG,i)

0(C).
Fix λ ∈ X∨, and choose i such that Lλ ∈ (GrG,i)

0(C). For j ≥ i we have a

closed immersion (GrG,i)
0,(λ) → (GrG,j)

0,(λ) induced by a surjection of the associated
finite-dimensional local C-algebras, and an induced closed immersion

(GrG,i)
+ ×(GrG,i)0 (GrG,i)

0,(λ) = (GrG,i)
+ ×(GrG,j)0 (GrG,i)

0,(λ)

→ (GrG,i)
+ ×(GrG,j)0 (GrG,j)

0,(λ).

Now the natural morphism (GrG,i)
+ → (GrG,j)

+ is also a closed immersion (see
Lemma 1.1.3), so it induces a closed immersion

(GrG,i)
+ ×(GrG,j)0 (GrG,j)

0,(λ) → (GrG,j)
+ ×(GrG,j)0 (GrG,j)

0,(λ).

Composing these immersions we obtain a closed immersion

Sλ,i → Sλ,j ,

and we obtain a presentation

Sλ = colimjSλ,j .

In particular, these considerations show that Sλ is an ind-affine ind-scheme.
Note that this fact can also be seen in a different way, by remarking that the

morphism

(1.2.6) L−−B+ → Sλ

defined by g 7→ xλg ·LB+

0 (where LB
+

0 is the image of L0 ∈ GrT (C) in GrB+(C)) is an
isomorphism, since it is representable by an open immersion (see Lemma 1.2.2) and
gives a bijection on C-points.
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Remark 1.2.9. — Let µ ∈ X∨
+. Using the considerations above, it is not difficult

to check that we have (
GrµG

)+
=
⊔
λ

Sλ ×GrG GrµG

where λ runs over the (finite) subset of X∨ consisting of the elements such that Lλ ∈
GrµG(C), and that moreover each Sλ ×GrG GrµG is an affine scheme of finite type over

C.(18) The fact that this fiber product is affine can be used (combined with a general
result on the codimension of the complement of an affine open subscheme, see [SP,
Tag 0BCV]) to give an alternative proof of the crucial dimension estimates [BR,
Theorem 1.5.2]; see [FS, Corollary VI.3.8] for details.

1.2.3.3. Relation with the Iwasawa decomposition. — We have

GrB+(C) = B+(K )/B+(O),

see (1.2.1). If we denote by U+ the unipotent radical of B+, we have B+ ∼= T ⋉ U+.

Denoting by LB
+

λ the image of Lλ in GrB+(C) we deduce that

GrB+(C) =
⊔

λ∈X∨

U+(K ) · LB
+

λ ,

and

Sλ(C) = U+(K ) · LB
+

λ .

It follows from Proposition 1.2.8(2) that for any λ ∈ X∨ the morphism Sλ → GrG
is representable by a locally closed immersion, and that these morphisms induce a
bijection ⊔

λ∈X∨

Sλ(C)
∼−→ GrG(C).

By (1.2.1) once again we have GrG(C) = G(K )/G(O). These considerations therefore
show that

G(K ) =
⊔

λ∈X∗(T )

U+(K ) · xλ ·G(O),

which provides a geometric proof of the Iwasawa decomposition in this setting.

Remark 1.2.10. — For any λ ∈ X∨, the action of xλ induces an isomorphism of
ind-schemes S0

∼−→ Sλ. This lets us reduce many questions about semi-infinite orbits
to the case of S0.

1.2.3.4. Opposite version. — One can of course play the same game with the Borel
subgroup B (and its unipotent radical U) instead of B+. The connected components
of GrB are again parametrized by X∨; the component corresponding to λ is denoted
Tλ. All the considerations above have obvious analogues for these variants.

(18)A more complicated proof of this fact is given in [FS, Proposition VI.3.7]. The simpler argument

was explained to us by T. Richarz.

https://stacks.math.columbia.edu/tag/0BCV
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1.3. Main sheaf-theoretic constructions

In this section, we work up to the statement of the geometric Satake equivalence.
Along the way, we review a number of other essential definitions and statements. (For
more details, see [BR] or [Ac3, Chapter 9].)

1.3.1. Sheaves and convolution. — Let k be a noetherian commutative ring of
finite global dimension. This ring will be the coefficient ring for all constructible
(complexes of) sheaves.

We denote by

Db
GO

(GrG,k)
the constructible GO-equivariant derived category of GrG in the sense of Bernstein–
Lunts, and by

PervGO (GrG,k) ⊂ Db
GO

(GrG,k)
the abelian category of GO-equivariant perverse sheaves. (For a discussion of techni-
cal issues related to the definition of Db

GO
(GrG,k), see [Ac3, §9.1] or [BR, §1.16.4].

For an overview of equivariant perverse sheaves, see [Ac3, §6.2] or [BR, §1.4.1
and §1.16.1].)

For λ ∈ X∨
+, let j

λ : GrλG → GrG denote the embedding. We have three GO-
equivariant perverse sheaves naturally associated with λ:

J∗(λ,k) := pH 0
(
(jλ)∗kGrλG

[⟨λ, 2ρ⟩]
)
,

J!(λ,k) := pH 0
(
(jλ)!kGrλG

[⟨λ, 2ρ⟩]
)
,

J!∗(λ,k) := (jλ)!∗kGrλG
[⟨λ, 2ρ⟩].

The k-module HomPervGO
(GrG,k)(J!(λ, k),J∗(λ,k)) is free of rank 1 (with a canonical

generator provided by adjunction), and the image of any generator is J!∗(λ,k). If k is
a field then J!∗(λ,k) is a simple perverse sheaf. If k is a connected ring then J!(λ, k)
and J∗(λ,k) are indecomposable.

Example 1.3.1. — 1. In case λ = 0, the natural morphisms

J!(0,k)→ J!∗(0,k)→ J∗(0,k)
are clearly isomorphisms. The resulting object will be denoted δGr.

2. In the setting considered in Example 1.2.3, we observed that the orbit Gr
ε∨1
GL(n)

is closed. Therefore the natural morphisms

J!(ε∨1 ,k)→ J!∗(ε∨1 ,k)→ J∗(ε∨1 ,k)
are all isomorphisms, and these perverse sheaves identify with k

Gr
ε∨1
GL(n)

[n − 1].

Similar comments apply more generally to minuscule coweights (in the sense
of §1.2.1.6).

The category Db
GO

(GrG,k) is equipped with a bifunctor called the convolution

product, and denoted by ⋆GO . To define ⋆GO , we introduce the space

GrG ×̃GrG := GK ×GO GrG.
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(More formally, GrG ×̃GrG is the fppf sheafification of the functor R 7→ (GK (R) ×
GrG(R))/GO(R), where GO acts on GK × GrG via g · (h, x) = (hg−1, g · x).) If

λ, µ ∈ X∨
+, we also set GrλG ×̃GrµG := (pGr)

−1(GrλG) ×GO GrµG. Then the collection

(GrλG ×̃GrµG : λ, µ ∈ X∨
+) provides an algebraic stratification of (the topological space

associated with) the ind-scheme GrG ×̃GrG. We will denote by

(1.3.1) m : GrG ×̃GrG → GrG

the morphism defined bym([g : hGO ]) = ghGO . For A ,B inDb
GO

(GrG,k), we denote
by A ⊠̃B the unique object in Db

GO
(GrG ×̃GrG,k) whose pullback to Db

GO×GO
(GK ×

GrG) is (pGr)
∗(A )⊠Lk B. Then we set

(1.3.2) A ⋆GO B := m∗(A ⊠̃ B).

It is a classical fact that this bifunctor admits a natural associativity constraint, so
that the pair (Db

GO
(GrG,k), ⋆GO ) becomes a monoidal category, with unit object δGr.

Later in the book we will also consider convolution in the case when the first object
is not GO-equivariant; indeed, by the same procedure as above, we may define, for
any A in Db

c (GrG,k) and B in Db
GO

(GrG,k), the complex

A ⋆GO B := m∗(A ⊠̃ B)

in Db
c (GrG,k).

We now consider t-exactness properties of ⋆GO . The following claim is due to
Mirković–Vilonen, see [BR, §1.6.3].

Lemma 1.3.2. — If F is a perverse sheaf on GrG ×̃GrG which is constructible with
respect to the stratification (GrλG ×̃GrµG : λ, µ ∈ X∨

+), then m∗F is a perverse sheaf

on GrG, constructible with respect to the stratification (GrλG : λ ∈ X∨
+).

In (1.3.2), suppose A and B belong to PervGO (GrG,k). Then one can ask whether

A ⊠̃ B is perverse. The answer is yes if at least one of A or B has flat stalks; in
particular, this holds if k is a field, or, more generally, a semisimple ring. In general,

A ⊠̃ B need not be perverse, but it is concentrated in nonpositive perverse degrees.
Lemma 1.3.2 implies that A ⋆GO B again lies in nonpositive perverse degrees, and is
perverse if k is a semisimple ring. We set

A ⋆GO
0 B := pH 0(A ⋆GO B) ∼= m∗

pH 0(A ⊠̃ B).

Using the above considerations, it is not difficult to check that for A ,B,C in
PervGO (GrG,k) we have canonical isomorphisms

(A ⋆GO
0 B) ⋆GO

0 C ∼= pH 0
(
(A ⋆GO B) ⋆GO C

)
,

A ⋆GO
0 (B ⋆GO

0 C ) ∼= pH 0
(
A ⋆GO (B ⋆GO C )

)
.

From this we obtain that the associativity constraint in Db
GO

(GrG,k) induces one in

PervGO (GrG,k), making (PervGO (GrG,k), ⋆GO
0 ) into a monoidal category. Again, the

unit object in this monoidal category is δGr. Note also that Lemma 1.3.2 implies that
for A in PervGO (GrG,k) the functors A ⋆GO

0 (−) and (−) ⋆GO
0 A are right exact.
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Broadly speaking, the goal of the geometric Satake equivalence is to describe the
monoidal category (PervGO (GrG,k), ⋆GO

0 ) in terms of representations of some affine
k-group scheme.

Remark 1.3.3. — Above, we have summarized the t-exactness consequences of
Lemma 1.3.2 for A ⋆GO B in the case where A and B both belong to PervGO (GrG,k).
We will see later (see Corollary 3.3.3) that the same conclusions hold if A is an
arbitary object of Perv(GrG,k) (i.e., not assumed to be GO-equivariant): A ⋆GO B
is concentrated in nonpositive perverse degrees, and is perverse if k is semisimple.
However, the proof will require a rather different perspective on convolution.

1.3.2. The fiber functor. — Let Mofk denote the category of finitely generated
k-modules, and consider the functor

F := H•(GrG,−) : PervGO (GrG,k)→ Mofk.

(Of course this functor actually yields graded k-modules, but this will mostly be
ignored here.). Under the anticipated relation to representations of an affine k-group
scheme, the functor F will correspond to the forgetful functor sending a representation
to its underlying k-module. In order to prove this, we first need to show that F has
some basic properties that a forgetful functor obviously has. The first such property
is the following: see [BR, Theorem 1.10.4].

Proposition 1.3.4. — The functor F is exact and faithful.

The proof involves equipping F with some additional structure coming from the ge-
ometry of the semi-infinite orbits encountered in §1.2.3. A crucial step for the proof of
the geometric Satake equivalence is the following claim, see [BR, Proposition 1.10.1].

Proposition 1.3.5. — For any λ ∈ X∨ and A in PervGO (GrG,k), there exists a
canonical (in particular, functorial) isomorphism of k-modules

H•
c(Sλ,A ) ∼= H•

Tλ
(GrG,A ).

Moreover, these modules vanish in all degrees different from ⟨λ, 2ρ⟩.

In this statement, the isomorphism between the two k-modules follows from
Braden’s theory of hyperbolic localization (see [Bra, DrG, Rc3]), and applies
to a large class of complexes. The vanishing statement, however, only holds for
GO-equivariant perverse sheaves, and relies on a fine analysis of the intersections
Sλ ∩GrµG and Tλ ∩GrµG, see [BR, §1.5.2] (see also Remark 1.2.9).

Once this proposition is proved one sets, for λ ∈ X∨,

Fλ := H⟨λ,2ρ⟩
c (Sλ,−) ∼= H

⟨λ,2ρ⟩
Tλ

(GrG,−) : PervGO (GrG,k)→ Mofk.

These functors let us equip F with a new grading indexed by X∨, as follows.

Corollary 1.3.6. — For any A in PervGO (GrG,k), there exists a canonical (in
particular, functorial) isomorphism of k-modules

F(A ) ∼=
⊕
λ∈X∨

Fλ(A ).
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Moreover, this is an isomorphism of Z-graded k-modules, where the left-hand side
carries its natural grading, and the right-hand side is graded by placing Fλ(A ) in
degree ⟨λ, 2ρ⟩.

Here the corollary follows quite formally from the vanishing statement in Proposi-
tion 1.3.5; see [BR, Theorem 1.10.4] for details. We will not review its proof in detail,
but will only recall that for A in PervGO (GrG,k), the submodule Fλ(A ) ⊂ F(A ) is
the image of the (injective) map

H
⟨λ,2ρ⟩
Tλ

(GrG,A )→ H⟨λ,2ρ⟩(GrG,A )

induced by the (!,
!)-adjunction for the embedding Tλ ↪→ GrG.

Let us sketch how to deduce Proposition 1.3.4 from Proposition 1.3.5 and Corol-
lary 1.3.6. For exactness of F, it is enough to show that each Fλ is exact, and this
follows from the vanishing statement in Proposition 1.3.5 by considering an appropri-
ate long exact sequence in cohomology. Then, given this exactness, the faithfulness
of F is equivalent to the property that it does not kill any nonzero object. For this
one checks (using a description of Tλ ∩GrµG in this case) that Fλ(A ) ̸= 0 if λ ∈ X∨

+ is

such that GrλG is open in the support of A : see [BR, Theorem 1.5.9(2)] for details.

Remark 1.3.7. — In order to define the subfunctor Fλ ⊂ F, we have chosen initially
a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. However, the subfunctor
Fλ ⊂ F does not depend on these choices provided λ is interpreted as a cocharacter
of the “universal maximal torus” H of G, as explained in [BR, Lemma 1.5.11 and
Remark 1.10.5]. (Recall that the universal maximal torus is defined as the quotient
of any Borel subgroup by its unipotent radical. Different choices of Borel subgroups
yield canonically isomorphic tori, but this universal torus is not a subgroup of G.)

Let us explain this more concretely in a special case which will be sufficient for
our purposes. For any w in the Weyl group Wf = NG(T )/T one can consider the
subgroup Bw := ẇBẇ−1 where ẇ is any lift of w to NG(T ); its unipotent radical is
Uw := ẇUẇ−1. Then we have natural isomorphisms

φe : T
∼−→ B/U = H, φw : T

∼−→ Bw/Uw = H,

such that φ−1
w ◦ φe is the automorphism of T defined by w. Therefore if λ ∈ X∨ =

X∗(T ) is considered as a cocharacter of H via φe, then the corresponding cocharacter
of T seen as a maximal torus in Bw is w(λ). Therefore, for any A in PervGO (GrG,k)
we have

HnTw
µ
(GrG,A ) = 0 unless n = ⟨w−1(µ), 2ρ⟩,

and Fλ ⊂ F is also the image of the canonical morphism

H
⟨λ,2ρ⟩
Tw
w(λ)

(GrG,A )→ H⟨λ,2ρ⟩(GrG,A ),

where Twµ is the connected component of GrBw
containing the image of Lµ under

the embedding GrT → GrBw
. (In the vanishing statement in Proposition 1.3.5, the

character “2ρ” should be interpreted as the opposite of the character of T on the
highest nonzero wedge power of the Lie algebra of B; for the Borel subgroup Bw this
character is therefore w(2ρ), which justifies the vanishing statement given here.)
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1.3.3. Fusion product and the commutativity constraint. — If the monoidal
category (PervGO (GrG,k), ⋆GO

0 ) is expected to be equivalent to the category of repre-

sentations of some affine k-group scheme, then the product ⋆GO
0 should be “commu-

tative,” i.e. admit a commutativity constraint. In fact, this commutativity constraint
is a prerequisite to proving the equivalence. The construction of the commutativity
constraint depends on an alternative description of ⋆GO (called the “fusion product”)
which we recall now, following [MV2]. (The idea of this construction goes back to
Drinfeld, see [BD].) This construction is phrased in terms of certain moduli problems
which will be discussed in more detail in Section 2.2 below.

We set C = A1
C. For R a C-algebra, and y an R-point of C, we will denote by

Γy ⊂ CR := C × Spec(R) the graph of y, and by Γ̂y the completion of CR along Γy
(considered as an affine scheme). We also set Γ̂◦

y := Γ̂y ∖ Γy. Similarly, given two

R-points y1, y2 of C, we denote by ̂Γy1 ∪ Γy2 the completion of CR along Γy1 ∪ Γy2 ,

and set ( ̂Γy1 ∪ Γy2)
◦ := ̂Γy1 ∪ Γy2 ∖ (Γy1 ∪ Γy2). Finally, for any C-scheme X we will

denote by F0
X the trivial principal G-bundle over X. (See [BR, §1.7.1] for a very

brief survey of principal G-bundles, or §2.1.2 below for more details and references.)
The “fusion space” (or “Bĕılinson–Drinfeld Grassmannian”) FusG is defined to be

the ind-projective ind-scheme over C2 whose R-points (for R a C-algebra) are given
by {

(y1, y2, E , β)

∣∣∣∣∣ y1, y2 ∈ C(R), E a principal G-bundle on ̂Γy1 ∪ Γy2 ,

β : E|( ̂Γy1
∪Γy2

)◦
∼−→ F0

( ̂Γy1
∪Γy2

)◦
a trivialization

}
.

(Here we implicitly consider isomorphism classes of quadruples (y1, y2, E , β), for the
obvious notion of isomorphism.) See [Zh4, Theorem 3.1.3] for a discussion of the
proof of representability of this functor. This ind-scheme is denoted GrG,C2 in [BR,
§1.7.3].

Let ∆C denote the diagonal copy of C inside C2. It is well known (and easy to
see) that we have canonical identifications

(1.3.3) (FusG)|C2∖∆C
∼= GrG ×GrG × (C2 ∖∆C), (FusG)|∆C ∼= GrG × C,

see [Zh4, Proposition 3.1.13]. Denote the corresponding inclusion maps by

j : GrG ×GrG × (C2 ∖∆C) ↪→ FusG, i : GrG × C ↪→ FusG.

Remark 1.3.8. — Given a choice of cocharacter λ ∈ X∨, as in §1.2.2 we have an
induced action of the multiplicative group Gm,C2 on FusG. One can prove, essentially
as in the case considered in Lemma 1.2.4, that this action is Zariski locally linearisable;
see [HR1, Lemma 3.16] for details.(19) One can thus consider associated schemes
(FusG)

+, (FusG)
− and (FusG)

0. On the other hand, the definition of FusG can be
generalized to more general groups over C, and in particular to the groups P+, P−

(19)In the more general setting considered in [HR1], this action is only étale locally linearizable, but

the stronger condition of Zariski local linearizability holds in the special case we consider here.
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and M of §1.2.2.2. It is proved in [HR1, Theorem 3.17] that we have canonical
identifications

FusM
∼−→ (FusG)

0, FusP+
∼−→ (FusG)

+, FusP−
∼−→ (FusG)

−,

and one deduces consequences similar to those of Proposition 1.2.8.
In particular, consider the case when λ is strictly dominant, as in §1.2.3. In this

case P+ = B+, P− = B and M = T . The connected components of FusT are
parametrized by X∨. More specifically, under the identifications (1.3.3), the com-

ponent parametrized by λ identifies with Gr
(λ)
T over any point of ∆C, and with⊔

µGr
(µ)
T ×Gr

(λ−µ)
T over any point in C2∖∆C. As a consequence, the connected com-

ponents of FusB are also parametrized by X∨, and the component Tλ,C2 parametrized
by λ satisfies

(Tλ,C2)|C2∖∆C
∼=
⊔
µ

Tµ × Tλ−µ × (C2 ∖∆C), (Tλ,C2)|∆C ∼= Tλ × C.

(In [BR, §1.8.3], the analogue of Tλ,C2 for the group B+ is denoted Sλ(X
2).)

The key point for the construction of the commutativity constraint is that for A ,B
in PervGO (GrG,k) there exists a canonical isomorphism

(1.3.4) i∗j!∗(
pH 0(A

L

⊠k B)
L

⊠k kC2∖∆C [2])
∼= (A ⋆GO

0 B)
L

⊠k k∆C [2].

The functor (−)⊠Lk k∆C [2] is fully faithful on perverse sheaves by [BBDG, Proposi-
tion 4.2.5], so to specify a natural isomorphism

σFus
A ,B : A ⋆GO

0 B ∼= B ⋆GO
0 A

it is enough to give a natural isomorphism

(1.3.5) i∗j!∗(
pH 0(A

L

⊠k B)
L

⊠k kC2∖∆C [2])
∼= i∗j!∗(

pH 0(B
L

⊠k A )
L

⊠k kC2∖∆C [2]).

To construct this map, we use the map swap : FusG → FusG that swaps y1 and y2.
The isomorphism (1.3.5) is obtained by combining the natural isomorphisms

swap∗|C2∖∆C(A
L

⊠k B
L

⊠k kC2∖∆C [2])
∼= B

L
⊠k A

L
⊠k kC2∖∆C [2]

and

i∗ ◦ j!∗ ◦ swap∗|C2∖∆C
∼= i∗ ◦ j!∗.

The isomorphism σFus is not quite the commutativity constraint one wants for
Tannakian formalism. To define the constraint that will really be used, by additivity
one can assume that A and B are supported on one connected component of GrG.
If A and B are both supported on odd components one sets

σCom
A ,B = −σFus

A ,B,

and if at least one of A ,B is supported on an even connected component one sets

σCom
A ,B = σFus

A ,B.

(See §1.2.1.6 for the notions of even and odd components.)
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1.3.4. Monoidal structure on total cohomology. — The next task is to con-
struct is a tensor structure on F in the sense of [DM, Definition 1.8], i.e. functorial
isomorphisms

(1.3.6) F(A ⋆GO
0 B) ∼= F(A )⊗k F(B)

for all A ,B in PervGO (GrG,k), which are compatible (in the natural sense) with the
associativity and commutativity constraints defined above.

This construction again involves the fusion product perspective of §1.3.3. More
specifically, using the notation introduced there, and denoting by f : FusG → C2 the
(proper) structure morphism, the main step in the construction is the following claim
(see [BR, Proposition 1.8.1]).

Lemma 1.3.9. — For any A ,B in PervGO (GrG,k), the complex

C := f∗j!∗(
pH 0(A

L

⊠k B)
L

⊠k kC2∖∆C [2])

has the following properties:

1. for any x ∈ ∆C and any n ∈ Z, the n-th cohomology of the stalk of C at x is
canonically isomorphic to Hn+2(GrG,A ⋆GO

0 B);
2. for any x ∈ C2 ∖∆C and any n ∈ Z, the n-th cohomology of the stalk of C at
x is canonically isomorphic to Hn+2(GrG ×GrG,

pH 0(A ⊠Lk B));
3. all cohomology sheaves H n(C ) are locally constant (and hence constant).

In this lemma, (1) follows directly from (1.3.4), and (2) is clear from the defini-
tion. Property (3) however requires an argument. Once these properties are known,
statement (3) allows us to identify the stalks of H n(C ) at all points in a canonical
way. We therefore obtain a canonical isomorphism of graded k-modules

H•(GrG,A ⋆GO
0 B) ∼= H•(GrG ×GrG,

pH 0(A
L

⊠k B)).

To deduce the isomorphism (1.3.6), one then shows that there exists a canonical
isomorphism

(1.3.7) H•(GrG ×GrG,
pH 0(A

L

⊠k B)) ∼= H•(GrG,A )⊗k H
•(GrG,B),

see [BR, Lemma 1.10.10].

Remark 1.3.10. — In case k is a field, (1.3.7) follows from the Künneth formula.
For the general case, an important step in the proof is the following claim (see [BR,
Lemma 1.10.9]), which we recall for later use: if A ,B belong to PervGO (GrG,k) and
if F(A ) is flat over k, then A ⊠Lk B is a perverse sheaf (on GrG ×GrG).

Once we have the isomorphism (1.3.6), one needs to prove that it is compatible with

the associativity and commutativity constraints for ⋆GO
0 , which is not very difficult;

see [BR, §1.8.2] for details. One also shows that this isomorphism is compatible with
the X∨-grading provided by Corollary 1.3.6; see [BR, Proposition 1.8.3].



52 CHAPTER 1. REVIEW OF THE GEOMETRIC SATAKE EQUIVALENCE

1.3.5. Statement. — We are now ready to state the geometric Satake equivalence.
Let G∨

Z be the unique (up to isomorphism) split reductive group scheme over Z whose
base change to C has root datum (X∨,X,R∨,R). (The uniqueness of such a group
scheme is guaranteed by [SGA3.3, Exposé XXIII, Corollaire 5.4]. Also, we insist that
the roles of characters/cocharacters and roots/coroots have been switched compared
to the root datum of G.) If k is a noetherian commutative ring of finite global
dimension, we then set

G∨
k := Spec(k)×Spec(Z) G

∨
Z ,

and let Rep(G∨
k ) denote the symmetric monoidal category of G∨

k -modules that are
finitely generated over k. (The monoidal structure is given by the tensor product
⊗k.) We will also denote by ForG∨

k
: Rep(G∨

k )→ Mofk the natural forgetful functor.

Theorem 1.3.11 (Mirković–Vilonen [MV2]). — Under the assumptions above,
there exists an equivalence of abelian symmetric monoidal categories

S : (PervGO (GrG,k), ⋆GO
0 )→ (Rep(G∨

k ),⊗k)

and an isomorphism of monoidal functors

ForG∨
k
◦ S ∼= F.

Here, PervGO (GrG,k) is considered as a symmetric monoidal category with respect
to the commutativity constraint σCom, and (Rep(G∨

k ),⊗k) is endowed with the ob-
vious commutativity constraint. The equivalence S intertwines the associativity and
commutativity constraints of (PervGO (GrG,k), ⋆GO ) with those of (Rep(G∨

k ),⊗k), and
sends the unit object δGr to the unit object in (Rep(G∨

k ),⊗k), namely the trivial rep-
resentation k.

The formulation of Theorem 1.3.11 given here is slightly disappointing, in that the
group scheme G∨

k is defined only up to isomorphism, so that it is not possible to say
that S is canonical in any sense. But what is proved in [MV2] is slightly better:
in fact, while proving this theorem, one in fact constructs a canonical affine k-group
scheme G̃k for any k as above, then proves that

(1.3.8) G̃k′ ∼= Spec(k′)×Spec(k) G̃k

canonically for any ring morphism k→ k′, and finally that G̃Z is split reductive and

that G̃C has the expected root datum. In the course of the proof, one also constructs

a canonical (split) maximal torus T∨
k ⊂ G̃k whose weight lattice is identified with X∨,

along with a (negative) Borel subgroup B∨
k ⊂ G̃k containing T∨

k . By construction,
the direct summand Fλ(A ) ⊂ F(A ) (see Corollary 1.3.6) is the λ-weight space (for
the action of the maximal torus T∨

k ) of the representation S(A ).

1.4. Overview of the construction of the group scheme

In this section we outline the construction of the group scheme G̃k and the proof
of Theorem 1.3.11. None of these details will be used in the rest of the book.
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1.4.1. Tannakian formalism. — The proof of Theorem 1.3.11 is based on “Tan-
nakian formalism,” which refers to a family of results on recovering a group scheme
from its (tensor) category of representations (see e.g. [Mi2, Chapter X]). A typi-
cal such result is the following statement, for which we refer to [DM, Remark 2.18]
or [BR, Theorem 1.2.7]. Here we assume that k is a field, and denote by Vectk the
category of finite-dimensional k-vector spaces.

Theorem 1.4.1. — Let C be an abelian k-linear category equipped with the following
data:

– an exact k-linear faithful functor ω : C → Vectk;
– a k-bilinear functor ⊗ : C × C → C ;
– an object U ∈ C ;
– an isomorphism ϕX,Y,Z : X ⊗ (Y ⊗Z) ∼−→ (X ⊗ Y )⊗Z, natural in X, Y and Z

(the associativity constraint);

– isomorphisms U⊗X λX−−→
∼

X
ρX←−−
∼

X⊗U , both natural in X (the unit constraints);

– an isomorphism ψX,Y : X⊗Y ∼−→ Y ⊗X natural in X and Y (the commutativity
constraint).

We also assume we are given isomorphisms υ : k ∼−→ ω(U) and

(1.4.1) τX,Y : ω(X)⊗k ω(Y )
∼−→ ω(X ⊗ Y )

in Vectk, with τX,Y natural in X,Y ∈ C . Finally, we assume the following conditions
hold:

1. Taking into account the identifications provided by τ and υ, the isomorphisms
ω(ϕX,Y,Z), ω(λX), ω(ρX) and ω(ψX,Y ) are the usual associativity, unit and
commutativity constraints in Vectk.

2. If dimk
(
ω(X)

)
= 1, then there exists X∗ ∈ C such that X ⊗X∗ ∼= U .

Under these assumptions, there exists an affine k-group scheme H such that ω admits
a canonical factorization

C Rep(H)

Vectk

ω

ω

ForH

where Rep(H) is the category of finite-dimensional algebraic representations of H,
and where ω is an equivalence of categories that respects the tensor product and the
unit in the sense of the compatibility condition (1).

Here, the group scheme H is “reconstructed” from the category C : for any
commutative k-algebra R, an element α ∈ H(R) is a collection of elements
αX ∈ EndR(ω(X) ⊗k R), natural in X ∈ C , and compatible with ⊗ and U via
the isomorphisms τ and υ. (There is no need to specifically ask for invertibility: this
will automatically follow from condition (2).)

Still assuming that k is a field, in the setting where C = PervGO (GrG,k) and ω = F,
given the structures recalled in Section 1.3, this theorem provides an affine k-group
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scheme Hk and an equivalence of symmetric monoidal categories

ω : PervGO (GrG,k)
∼−→ Rep(Hk).

If we denote by VectX
∨

k the category of X∨-graded finite-dimensional k-vector spaces,
our functor F factors through a functor PervGO (GrG,k)→ VectX

∨

k , and all the struc-

tures on this functor lift to the category VectX
∨

k . If we denote by T∨
k the unique

split k-torus whose character lattice is X∨, then VectX
∨

k is canonically equivalent to
Rep(T∨

k ). In this way one obtains a canonical functor Rep(Hk)→ Rep(T∨
k ), which by

Tannakian formalism (see [BR, Proposition 1.2.10]) provides a morphism of k-group
schemes T∨

k → Hk. This morphism can easily be seen to be a closed immersion; we
will therefore identify T∨

k with a closed subgroup of Hk. From this perspective, for
any λ ∈ X∨ and any F ∈ PervGO (GrG,k), we have a canonical identification

(1.4.2) Fλ(F ) ∼= ω(F )λ,

where the right-hand side denotes the λ-weight space of the Hk-representation ω(F ).
One can also prove in the context of Tannakian formalism that Hk is of finite type

and connected (see [BR, Lemma 1.14.2] for details). But this is as far as we can go
without further restrictions: unless char(k) = 0, there is (at present) no known way to
say anything more about Hk without considering more general coefficient rings. For a
general ring k, there are no general results like Theorem 1.4.1; one will therefore need

to construct the group scheme G̃k “by hand,” exploiting more specific structures we
have on the category PervGO (GrG,k).

1.4.2. The case of characteristic-0 coefficients. — We explained in §1.4.1 that
Theorem 1.4.1 is not sufficient to prove Theorem 1.3.11 for general fields. There is
one case where it is sufficient, and which is very important (both in its own right,
and for the general proof), namely the case when char(k) = 0. In fact, under this
assumption, there is a simple criterion that can be used to show that a connected
affine group scheme of finite type is reductive: this holds if and only if its category of
finite-dimensional representations is semisimple (see [DM, Proposition 2.23]). For the
category PervGO (GrG,k), semisimplicity is well known in this case, see [BR, §1.4] for
two slightly different proofs of this fact. Both proofs rely on two key ingredients: the
first is a parity-vanishing property for local intersection cohomology (this goes back
to [KL2] and holds for arbitrary partial flag varieties of Kac–Moody groups), and the
second is that the dimensions of GO-orbits have constant parity on each connected
component of GrG (see §1.2.1.6).

Once it is known that Hk is reductive, it is not difficult to check that T∨
k is a

maximal torus. One can then consider the root datum of Hk with respect to T∨
k .

The simple objects in Rep(Hk) are known (because, by the general theory of perverse
sheaves, they must be the images of the intersection cohomology complexes associated
with the GO-orbits in GrG), and the root datum can be essentially recovered from
this information; see [BR, §1.9.2]. This allows one to prove that this root datum is
the quadruple (X∨,X,R∨,R) (together with the bijection between roots and coroots
of G), or in other words that Hk is the split reductive group over k which is Langlands
dual to G, and therefore finishes the proof of Theorem 1.3.11 in this special case.
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1.4.3. Projective generators. — We now drop our special assumptions on k, and
come back to the setting where it is a general noetherian commutative ring of finite
global dimension. (The other rings denoted k′ below will also tacitly be assumed to
satisfy these conditions.)

The main ingredient in the construction of the k-group scheme G̃k is the repre-
sentability statement in Lemma 1.4.2 below. Let us define the notation needed for
this statement. Let Z ⊂ GrG be a closed union of finitely many GO-orbits, and let
ν ∈ X∨ be such that Z ∩ Tν ̸= ∅. Then for n ≫ 0, the action of GO on Z factors
through an action of the finite-type group scheme GO,n which represents the functor
sending a C-algebra R to G(R[x]/xn). We denote by

a, p : GO,n × Z → Z

the action and projection maps, respectively, and by i : Z ∩ Tν → Z the (locally
closed) embedding.

Lemma 1.4.2. — The GO-equivariant perverse sheaf

PZ(ν, k) := pH 0(a!p
!i!kZ∩Tν

[−⟨ν, 2ρ⟩])

represents the restriction of the functor Fν to PervGO (Z,k) ⊂ PervGO (GrG,k).

The proof of this lemma is rather straightforward (see [BR, Proposition 1.12.1]):
by definition the object i!kZ∩Tν

[−⟨ν, 2ρ⟩] “represents” the functor Fν in the sense that
we have Fν(A ) ∼= HomDb

c (Z,k)(i!kZ∩Tν
[−⟨ν, 2ρ⟩],A ) for any A in PervGO (Z,k), but

it is not an object of PervGO (Z,k). We therefore “force” it to become GO-equivariant
by applying a!p

!, and to become perverse by applying pH 0. One then checks that
these operations do not alter the fact that our complex represents Fν .

One can next define the object

PZ(k) :=
⊕
ν∈X∨

Z∩Tν ̸=∅

PZ(ν, k)

(where the direct sum is finite). Lemma 1.4.2 and Corollary 1.3.6 imply that PZ(k)
represents the restriction of F to PervGO (Z,k), and from Proposition 1.3.4 we deduce
that PZ(k) is a projective generator of the category PervGO (Z,k).

If Y is another closed finite union of GO-orbits such that Z ⊂ Y , then it is not diffi-
cult to check that there exists a canonical surjection PY (k) ↠ PZ(k), see [BR, Propo-
sition 1.12.2]. Then, a careful study of the objects J!(λ, k) and J∗(λ, k) from §1.3.1
(see [BR, §1.11]) leads to the following result (see [BR, Proposition 1.12.3]).

Proposition 1.4.3. — Let Z ⊂ GrG be a closed finite union of GO-orbits.

1. The object PZ(k) admits a filtration in the abelian category PervGO (Z,k)
parametrized by {λ ∈ X∨

+ | GrλG ⊂ Z} (endowed with any total order refining
the order given by closure inclusions) and with subquotients isomorphic to

F(J∗(λ,k))⊗k J!(λ, k).
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2. For any ring homomorphism k→ k′ there exists a canonical isomorphism

PZ(k′) ∼= k′
L
⊗k PZ(k).

(In particular, the right-hand side is a perverse sheaf.)
3. The k-module F(PZ(k)) is finite free, and for any ring homomorphism k → k′

we have

F(PZ(k′)) = k′ ⊗k F(PZ(k)).

1.4.4. Construction of the group scheme. — For any closed finite union of
GO-orbits Z ⊂ GrG, we now consider the (unital) k-algebra

AZ(k) := EndPervGO
(Z,k)(PZ(k))op.

Since PZ(k) represents the functor F, as k-modules we have AZ(k) ∼= F(PZ(k)),
so that AZ(k) is free of finite rank by Proposition 1.4.3(3). By abstract nonsense
(see [BR, §1.13.1]), since PZ(k) is a projective generator of PervGO (Z,k) the functor
Hom(PZ(k),−) induces an equivalence of abelian categories

PervGO (Z,k)
∼−→ MofAZ(k)

where the right-hand side denotes the category of finitely generated left AZ(k)-
modules. Moreover, under this equivalence the functor F : PervGO (Z,k) → Mofk
corresponds to the natural forgetful functor MofAZ(k) → Mofk.

We next set

BZ(k) := Homk(AZ(k),k).
The (unital) algebra structure on AZ(k) induces a (counital) coalgebra structure on
BZ(k), and we have a natural identification

MofAZ(k)
∼−→ ComofBZ(k),

where the right-hand side denotes the category of finitely generated (over k) right
BZ(k)-comodules.

If Y ⊂ GrG is another closed finite union of GO-orbits such that Z ⊂ Y , then
from the surjection PY (k) ↠ PZ(k) (see §1.4.3) one gets a surjective algebra map
AY (k) ↠ AZ(k), and then an injective coalgebra morphism BZ(k) ↪→ BY (k). We
can therefore define the coalgebra

B(k) := colimZBZ(k),

where the colimit runs over finite closed unions of GO-orbits in GrG (ordered by
inclusion).

The following properties are easily derived from this construction.

Proposition 1.4.4. — 1. The coalgebra B(k) is free (though not of finite rank)
over k, and for any ring homomorphism k→ k′ we have a canonical identifica-
tion

B(k′) = k′ ⊗k B(k).
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2. There exists a canonical equivalence of categories

PervGO (GrG,k)
∼−→ ComofB(k)

under which the functor F : PervGO (GrG,k)→ Mofk corresponds to the forgetful
functor ComofB(k) → Mofk.

The construction so far has not used the convolution product ⋆GO
0 on the cate-

gory PervGO (GrG,k). Now is the time when this product enters the game. Namely,
via the equivalence of Proposition 1.4.4(2), the associative, commutative monoidal
structure on PervGO (GrG,k) defines an associative, commutative monoidal structure
on ComofB(k). By abstract nonsense (see [SR, Chap. II, §2.5]) there exists a unique
associative, commutative algebra structure on B(k) which makes it a bialgebra and
such that this monoidal structure corresponds to the natural B(k)-comodule structure
on a tensor product of B(k)-comodules. In other words, the equivalence of Propo-
sition 1.4.4(2) now becomes an equivalence of monoidal categories, compatible with
the commutativity constraints. There exists also a unit for this structure, given by
the canonical map k = BGr0G

(k)→ B(k).
If we denote by G̃k the spectrum of the commutative k-algebra B(k), then the

coassociative coproduct (resp. the counit) on B(k) provides an associative product

(resp. a unit) on G̃k (in the category of affine k-schemes), which make this scheme a
monoid scheme over k. Moreover, by definition the category ComofB(k) identifies with

the category of representations of G̃k which are of finite type as k-modules. Using

essentially the same argument as for fields (see §1.4.1) one can check that in fact G̃k
is a group scheme, see [BR, Proposition 1.13.4].

We have finally reached the first step towards the proof of Theorem 1.3.11: we have

constructed an affine k-group scheme G̃k and an equivalence of monoidal categories

PervGO (GrG,k)
∼−→ Rep(G̃k)

intertwining the commutativity constraint σCom (see §1.3.3) with the obvious com-

mutativity constraint on Rep(G̃k), and under which the functor F corresponds to
ForG̃k

. Moreover, Proposition 1.4.4(1) implies that we have an identification (1.3.8)

for any ring homomorphism k → k′. Since we know from §1.4.2 that G̃C is con-
nected reductive with root datum (X∨,X,R∨,R), the remaining step for the proof

of Theorem 1.3.11 is proving that G̃Z is a split reductive group scheme.
Before doing that, we remark that the same considerations as in the characteristic-

0 setting allow us to construct a canonical closed embedding T∨
k ↪→ G̃k, where T

∨
k is

the unique split k-torus whose character lattice is X∨.

1.4.5. Identification of the group scheme. — In order to show that G̃Z is reduc-
tive, we will use two results due to Prasad–Yu. The first one (see [PY, Theorem 1.5])
gives a criterion to show that a (flat, affine) Z-group scheme is reductive in terms of
the geometric fibers of the group.
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Theorem 1.4.5. — If H is a flat affine group scheme over Spec(Z) such that for
any algebraically closed field k the fiber Spec(k) ×Spec(Z) H is a connected reductive
group, whose dimension is independent of k, then H is a reductive group scheme.

In our setting we already know that the affine Z-group scheme G̃Z is flat (see
Proposition 1.4.4(1)). Therefore, given this theorem (and the definition of maximal
tori), to conclude it only remains to prove that for any algebraically closed field k of

characteristic p > 0, the k-group scheme G̃k (which can be easily checked to coincide
with the group denoted Hk in §1.4.1) is connected reductive, with maximal torus T∨

k
and root datum (X∨,X,R∨,R). (Here we use the obvious observation that the root
datum determines the dimension.)

So, from now on we fix a prime number p > 0, and assume that k is an algebraic
closure of Fp. The second result of Prasad–Yu that we require (see [PY, Theorem 1.2])
is the following.

Theorem 1.4.6. — Let H be a flat affine group scheme over Spec(Zp). Assume
that the following two conditions hold:

1. the generic fiber Spec(Qp)×Spec(Zp) H is a connected reductive group over Qp;
2. the reduced geometric special fiber

(
Spec(k) ×Spec(Zp) H

)
red

is of finite type,
and its identity component is a reductive group with the same root datum as
Spec(Qp)×Spec(Zp) H (where Qp is an algebraic closure of Qp).

Then H is a reductive group scheme. (In particular, Spec(k) ×Spec(Zp) H is already
reduced and connected.)

Given this theorem, to conclude we now only need to show that
(
G̃k
)
red

is connected

reductive, with maximal torus T∨
k and root datum (X∨,X,R∨,R).

For this, we fix a finite type(20) quotient G̃∗
k of G̃k such that all irreducible G̃k-

modules factor through G̃∗
k-modules. (Such a quotient exists because, as can easily be

seen by comparing with PervGO (GrG,k), there exists a finite subset X of the set of iso-

morphism classes of simple representations such that every simple G̃k-representation
appears as a subquotient of a tensor product of modules in X.) Then it is not dif-

ficult to check that G̃∗
k is connected and of dimension at most dim(G). Moreover,

since T∨
k is reduced, the composition T∨

k ↪→ G̃k ↠ G̃∗
k factors through a morphism

T∨
k →

(
G̃∗

k
)
red

.

One next denotes byH the reductive quotient of
(
G̃∗

k
)
red

, and checks (using slightly

upgraded versions of the corresponding arguments for characteristic-0 coefficients)
that the composition

T∨
k →

(
G̃∗

k
)
red

↠ H

(20)As explained in §1.4.1, one can in fact prove directly that G̃k is of finite type, and thereby simplify

this step a little bit. However this proof (given in [BR, Lemma 1.14.2]) uses results which were not
available at the time when [MV2] was written. Note also that some arguments involving this finite

type quotient G̃∗
k were not clear enough in [MV2]; details were given later in [MV3].
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identifies T∨
k with a maximal torus of H, and that the root datum of H with re-

spect to T∨
k is (X∨,X,R∨,R). In particular, this implies that dim(H) = dim(G) ≥

dim((G̃∗
k)red), so that necessarily H =

(
G̃∗

k
)
red

. Using the fact that the group scheme(
G̃∗

k
)
red

does not depend on the choice of G̃∗
k, one shows that in fact

(
G̃∗

k
)
red

=
(
G̃k
)
red

,

so that finally
(
G̃k
)
red

is connected reductive with the appropriate root datum.

1.5. Some complements

In Chapters 6 and 8 below we will need detailed information on the images under
S of the perverse sheaves J∗(λ,k) and of certain morphisms relating these perverse
sheaves, which we review here. (The description of the objects S(J∗(λ,k)) is given
in [MV2], although the argument we give here is slightly different; the description of
the maps is stated, in the case of characteristic-0 coefficients, in [AB].)

1.5.1. Standard and costandard spherical perverse sheaves. — Recall the
perverse sheaves J∗(λ, k) and J!(λ,k) defined in §1.3.1. Our goal in this subsection
is to describe how the functor S behaves on these perverse sheaves. Each λ ∈ X∨ de-
fines a free rank-1 T∨

k -module, which extends uniquely to a B∨
k -module; the resulting

module will be denoted kB∨
k
(λ). We can then consider the induced (or “co-Weyl”)

module

Nk(λ) := Ind
G∨

k
B∨

k
(kB∨

k
(λ)).

In more concrete terms, the k-module underlying Nk(λ) is the space of functions
f ∈ O(G∨

k ) which satisfy f(gb) = λ(b)−1f(g) for all g ∈ G∨
k and b ∈ B∨

k . In these
terms, the G∨

k -action is given by (g · f)(h) = f(g−1h).
In case λ ∈ X∨

+, it is known that Nk(λ) is free (of finite type) over k, and moreover
that for any ring homomorphism k→ k′ (where k′ satisfies our running assumptions
on rings of coefficients) we have a canonical isomorphism of G∨

k′ -modules

(1.5.1) k′ ⊗k Nk(λ)
∼−→ Nk′(λ),

see [J1, §II.8.8]. Frobenius reciprocity provides a morphism of B∨
k -modules

fλ : Nk(λ)→ kB∨
k
(λ)

which identifies with the projection from Nk(λ) to its weight-λ subspace with respect
to its weight space decomposition. (In terms of the “concrete” description of Nk(λ)
given above, we have fλ(f) = f(1).)

Remark 1.5.1. — In case k is a field of characteristic 0, it is well known that Nk(λ)
is simple, see [J1, Corollary II.5.6].

In preparation for the next statement, we recall (see [BR, Proposition 1.11.1])
that for any µ ∈ X∨ the weight space S(J∗(λ,k))µ is free of finite rank over k,
with a canonical basis parametrized by the irreducible components of the intersection
GrλG∩Tµ. (Such irreducible components are usually called “Mirković–Vilonen cycles.”)
In particular, this weight space vanishes unless the dominant Wf -translate µ

+ of µ
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satisfies λ − µ+ ∈ Z≥0R
∨
+, and in case µ = λ, the intersection GrλG ∩ Tλ is {Lλ}, so

that this weight space identifies canonically with k.

Lemma 1.5.2. — For any λ ∈ X∨
+ there exists a canonical isomorphism

S(J∗(λ,k)) ∼= Nk(λ).

Moreover, under this isomorphism the map fλ sends the canonical basis element in
S(J∗(λ, k))λ to 1.

Proof. — As recalled above, we know that λ is a highest weight in S(J∗(λ,k)), and
that moreover S(J∗(λ,k))λ is free of rank 1, with a canonical basis element. By
Frobenius reciprocity we obtain a canonical map of G∨

k -modules

(1.5.2) S(J∗(λ,k))→ Nk(λ)

whose composition with fλ sends the canonical basis element to 1. It remains to
show that this map is an isomorphism. By compatibility of all our constructions
with extensions of scalars (see (1.5.1) and [BR, Proposition 1.11.3]), it suffices to
do so when k = Z. And then, since both sides are free of finite rank it suffices
to prove this claim when k is a field. In this case, J∗(λ,k) has a simple socle
(namely, J!∗(λ, k)), and hence so does S(J∗(λ,k)). The map of λ-weight spaces
S(J!∗(λ,k))λ → S(J∗(λ,k))λ is an isomorphism, as it can be identified (via (1.4.2))
with Fλ(J!∗(λ,k))→ Fλ(J∗(λ,k)). Therefore, the map (1.5.2) remains nonzero when
restricted to the socle S(J!∗(λ,k)) ⊂ S(J∗(λ,k)).

It follows that (1.5.2) is injective. To conclude, it then suffices to prove that both
sides have the same dimension. These dimensions are independent of the field of
coefficients, so we may as well assume that k has characteristic 0. In this setting,
Nk(λ) is simple (see Remark 1.5.1) so that (1.5.2) is automatically an isomorphism,
proving the desired equality of dimensions.

Remark 1.5.3. — 1. For λ ∈ X∨
+, one can also consider the standard (or

“Weyl”) module Mk(λ), defined as

Mk(λ) := Homk(Nk(−w◦λ),k),

where w◦ is the longest element in Wf . Using [BR, Proposition 1.11.1] again,
we have a canonical morphism of B∨

k -modules kB∨
k
(w◦λ) → S(J!(λ, k)); using

Frobenius reciprocity and duality we deduce a canonical morphism

Mk(λ)→ S(J!(λ,k)).

Arguments similar to those in the proof of Lemma 1.5.2 show that this morphism
is an isomorphism as well.

2. See [MV2, Proposition 13.1] for a slightly different proof of Lemma 1.5.2.

Example 1.5.4. — Consider the setting of Examples 1.2.3 and 1.3.1(2). It is well
known that in this setting the group G∨

k is a general linear group, and that its standard
representation is Nk(ε

∨
1 ). As a k-module we have

S(J∗(ε∨1 ,k)) = H•(Pn;k),
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and therefore we obtain a canonical identification of G∨
k with the group of k-

automorphisms of this free k-module.

1.5.2. More on costandard spherical perverse sheaves. — Consider now two
dominant coweights λ1, λ2 ∈ X∨

+. It is easily seen from the definitions that the
perverse sheaf

J∗(λ1,k) ⋆GO
0 J∗(λ2,k)

is supported on Grλ1+λ2

G , and that its restriction to Grλ1+λ2

G is canonically isomorphic

to k
Gr

λ1+λ2
G

[dim(Grλ1+λ2

G )]. Therefore, there exists a canonical morphism

aλ1,λ2
: J∗(λ1,k) ⋆GO

0 J∗(λ2,k)→ J∗(λ1 + λ2,k)
in PervGO (GrG,k).

On the other hand, using Frobenius reciprocity there exists a unique morphism of
G∨

k -modules
aλ1,λ2

: Nk(λ1)⊗k Nk(λ2)→ Nk(λ1 + λ2)

such that the following diagram commutes:

Nk(λ1)⊗k Nk(λ2) Nk(λ1 + λ2)

kB∨
k
(λ1)⊗ kB∨

k
(λ2) kB∨

k
(λ1 + λ2).

aλ1,λ2

fλ1
⊗fλ2

fλ1+λ2

Lemma 1.5.5. — Under the isomorphisms

S(J∗(λi,k)) ∼= Nk(λi) and S(J∗(λ1,k) ⋆GO
0 J∗(λ2,k)) ∼= Nk(λ1)⊗k Nk(λ2)

provided by Lemma 1.5.2 and the monoidal structure on S, we have

S(aλ1,λ2) = aλ1,λ2 .

Proof. — By construction of the morphism aλ1,λ2
(in terms of Frobenius reciprocity),

what we have to prove is that

fλ1+λ2 ◦ S(aλ1,λ2) = fλ1 ⊗ fλ2 .

Of course, both maps here vanish on all the T∨
k -weight spaces of weight ̸= λ1 +λ2, so

it suffices to consider the restrictions of our maps to the weight space

S
(
J∗(λ1,k) ⋆GO

0 J∗(λ2,k)
)
λ1+λ2

= Fλ1+λ2

(
J∗(λ1,k) ⋆GO

0 J∗(λ2,k)
)

= H
⟨λ1+λ2,2ρ⟩
Tλ1+λ2

(
GrG,J∗(λ1,k) ⋆GO

0 J∗(λ2,k)
)
.

The perverse sheaf J∗(λ1,k) ⋆GO
0 J∗(λ2,k) is supported on Grλ1+λ2

G , and the only

GO-orbit contained in Grλ1+λ2

G and intersecting Tλ1+λ2
is the open orbit Grλ1+λ2

G .
We therefore have

H
⟨λ1+λ2,2ρ⟩
Tλ1+λ2

(
GrG,J∗(λ1,k) ⋆GO

0 J∗(λ2,k)
)

= H
⟨λ1+λ2,2ρ⟩
Tλ1+λ2

∩Gr
λ1+λ2
G

(
Grλ1+λ2

G ,J∗(λ1,k) ⋆GO
0 J∗(λ2,k)|Gr

λ1+λ2
G

)
.
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In particular, since the restriction of aλ1,λ2
to Grλ1+λ2

G is an isomorphism, this shows
that the restriction of S(aλ1,λ2) to the weight space of weight λ1 + λ2 is an isomor-
phism. More precisely, we have

Tλ1+λ2 ∩Grλ1+λ2

G = {Lλ1+λ2},

and the morphism fλ1+λ2
◦ S(aλ1,λ2

) sends the canonical class in

H
⟨λ1+λ2,2ρ⟩
Tλ1+λ2

∩Gr
λ1+λ2
G

(
Grλ1+λ2

G ,k
Gr

λ1+λ2
G

[dimGrλ1+λ2

G ]
)

to 1 ∈ k.
On the other hand, the monoidal structure on F provides a canonical isomorphism

(1.5.3) Fλ1+λ2

(
J∗(λ1,k) ⋆GO

0 J∗(λ2,k)
) ∼= Fλ1

(J∗(λ1,k))⊗k Fλ2
(J∗(λ2,k)),

and by construction the morphism fλ1 ⊗ fλ2 sends the tensor product of the canonical
classes in

Fλi(J∗(λi,k)) ∼= H
⟨λi,2ρ⟩
Tλi

∩Gr
λi
G

(
Grλi

G ,kGr
λi
G

[dimGrλi

G ]
)

(i = 1, 2) to 1. (Here, as above we have Tλi
∩ Grλi

G = {Lλi
}.) Thus, to finish the

proof, we have to show that the isomorphism (1.5.3) identifies the canonical class on
the left-hand side with the tensor product of the canonical classes on the right-hand
side.

To do this, we revisit the construction of the monoidal structure on F from §1.3.4
(see also [BR, §1.8.3]). From the perverse sheaves Fi = J∗(λi,k) on GrG we obtain
a perverse sheaf

F̃ := j!∗(
pH 0(F1

L

⊠k F2)
L

⊠k kC2∖∆C [2])

on FusG whose restriction to the fiber over a point on, resp. away from, the diagonal
in C2 is F1⋆

GO
0 F2[2], resp.

pH 0(F1⊠Lk F2)[2]. We have the locally closed subscheme

Tλ1+λ2,C2 ⊂ FusG,

see Remark 1.3.8, with inclusion map denoted t̃λ1+λ2
, and the isomorphism (1.5.3) is

obtained by comparing the stalks of the constant sheaf

H ⟨λ1+λ2,2ρ⟩+2
(
(f t̃λ1+λ2)∗(t̃λ1+λ2)

!F̃
)

on and away from the diagonal respectively. In our present setting the intersection of

the support of F̃ with Tλ1+λ2,C2 is a closed subschemeXλ1,λ2
such that the restriction

of f t̃λ1+λ2 to Xλ1,λ2 is an isomorphism to C2. (In fact, the fiber of Xλ1,λ2 over a point
on, resp. away from, the diagonal is {Lλ1+λ2}, resp. {(Lλ1 , Lλ2)}.) Moreover, the

complex (t̃λ1+λ2
)!F̃ is just (canonically) the shifted constant sheaf on this subscheme.

Hence (1.5.3) indeed is the obvious isomorphism, which identifies the canonical class
in the left-hand side with the tensor product of the canonical classes in the right-hand
side.

Remark 1.5.6. — 1. The claim considered in the proof above about the isomor-
phism (1.5.3) is in fact a special case of a general result comparing canonical
bases in tensor products defined in terms of generalized Mirković–Vilonen cycles
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(see [GS]) and tensor products of canonical basis given by “ordinary” Mirković–
Vilonen cycles (as considered in [BR, Proposition 1.11.1]); see [BGL] for details.

2. One can show that for any λ1, λ2 ∈ X∨
+ the morphisms aλ1,λ2 and aλ1,λ2 are

surjective. (By Lemma 1.5.5, these two surjectivity claims are equivalent.) By
a change-of-scalars argument using [MV2, Proposition 8.1] or [BR, Proposi-
tion 1.11.3], our claim can be reduced to the case where k = Z, and then to the
case where k is a field. In the field case, if k has characteristic 0 this follows
from simplicity of Nk(λ1+λ2), see [J1, Corollary II.5.6]. For general fields, this
follows e.g. from the fact that Nk(λ1) ⊗ Nk(λ2) has a good filtration (see [J1,
Proposition II.4.21]) and that λ1 + λ2 is maximal among the highest weights of
the induced modules appearing in a good filtration of this module, using [J1,
Remark (4) in §II.4.16].

Corollary 1.5.7. — The following diagram commutes:

J∗(λ1,k) ⋆GO
0 J∗(λ2,k) J∗(λ2,k) ⋆GO

0 J∗(λ1,k)

J∗(λ1 + λ2,k).

σCom
J∗(λ1,k),J∗(λ2,k)

aλ1,λ2
aλ2,λ1

Proof. — It suffices to prove the commutativity after application of S. Then, in view
of Lemma 1.5.5, the claim transforms into the commutativity of the diagram

Nk(λ1)⊗k Nk(λ2) Nk(λ2)⊗k Nk(λ1)

Nk(λ1 + λ2),

σλ1,λ2

aλ1,λ2
aλ2,λ1

where the upper horizontal arrow is the obvious commutativity isomorphism. By
Frobenius reciprocity, to prove the commutativity of this diagram it suffices to prove
that

fλ1+λ2 ◦ aλ1,λ2 = fλ1+λ2 ◦ aλ2,λ1 ◦ σλ1,λ2 .

And for this it suffices to consider the restrictions of these maps to the T∨
k -weight

spaces of weight λ1 + λ2. Then the equality is clear, since aλi,λj
sends the tensor

product of the canonical vectors in Nk(λi) and Nk(λj) to 1 (for (i, j) ∈ {(1, 2), (2, 1)})
and σλ1,λ2 intertwines these tensor products of canonical vectors.





CHAPTER 2

CENTRAL SHEAVES

In Chapter 1, we have introduced the affine Grassmannian GrG and studied GO-
equivariant objects on it. In this chapter, we will consider another closely related
space, the affine flag variety, denoted by FlG, along with an action of a subgroup
I ⊂ GO , called an Iwahori subgroup. One goal of this chapter is to define a certain
t-exact (for the perverse t-structures) functor

Z : Db
GO

(GrG,k)→ Db
I (FlG,k).

A central sheaf is defined to be a perverse sheaf on FlG of the form Z(F ), where
F ∈ PervGO (GrG,k). (The use of the term “central” will be explained in Chapter 3.)

The definition of Z will involve a family of ind-schemes over C ∼= A1
C that exhibits

FlG as a degeneration of GrG. The definition of this family (which will be denoted by

GrCen
G ), and then of Z, could easily have been given in a couple pages. Unfortunately,

the ind-scheme GrCen
G alone is inadequate for the study of the fundamental properties

of Z in Chapter 3 and beyond.
Anticipating the needs of later chapters, we devote the bulk of this chapter to

developing a framework for constructing many different families of ind-schemes over
C, whose fibers may be ordinary or twisted products of copies of FlG or GrG in various
configurations. The spaces arising in this framework are called iterated global affine
Grassmannians, and include GrCen

G as a special case. Along the way, we define several
different families of (ind-)affine group ind-schemes over C that act on iterated global
affine Grassmannians, and we study principal bundles for these group schemes.

2.1. Preliminaries on torsors and quotients

This section contains background material on notions such as torsors and principal
bundles, including a review of some “basic” results on these objects which are some-
times difficult to absorb for non-experts (such as the authors, for instance). A reader
used to working with such concepts might want to skip this section.
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2.1.1. Schemes as sheaves. — Consider a base scheme S, and let SchS be the
category of S-schemes, i.e. pairs (X, f) consisting of a scheme X and a morphism
f : X → S. (As usual, the morphism f will usually be omitted from the notation.)
We begin by reviewing the basics on some “standard” Grothendieck topologies on the
category SchS .

Recall that the fppf topology, resp. étale topology, resp. Zariski topology on this cat-
egory is the Grothendieck topology for which coverings of an object U are collections
(Ui → U)i∈I where each morphism Ui → U is flat and locally of finite presentation,
resp. étale, resp. an open immersion, and the map⊔

i∈I
Ui → U

is surjective (see [Ol, Examples 2.1.6, 2.1.13 & 2.1.14] or [SP, Tag 021M, Tag 0215
& Tag 020O]). Similarly, the fpqc topology is the Grothendieck topology for which
coverings of an object U are collections (Ui → U)i∈I where each morphism Ui → U is
flat and for any affine open subscheme V ⊂ U there exists a map a : {1, . . . , n} → I
and affine open subschemes Vj ⊂ Ua(j) such that the map

n⊔
j=1

Vj → V

is surjective, see [SP, Tag 022B]. (Of course, this condition implies that the morphism⊔
i∈I Ui → U is surjective, as for the other topologies considered above.)
For each such topology, a sheaf on SchS is a presheaf F (i.e. a functor from (SchS)

op

to the category Sets) such that for any U in SchS and any covering (Ui → U)i∈I , the
natural map

F (U)→
∏
i∈I

F (Ui)

identifies the left-hand side with the equalizer of the two natural maps∏
i∈I

F (Ui)→
∏
i,j∈I

F (Ui ×U Uj)

(see [Ol, Definition 2.2.2]). It is clear that a Zariski covering is also an étale covering
(see [SP, Tag 0216]), and that an étale covering is also an fppf covering (see [SP, Tag
021N]). It is also true that an fppf covering is also an fpqc covering (see [SP, Tag
022C]). Therefore:

– a presheaf which is a sheaf for the fpqc topology is also a sheaf for the fppf
topology;

– a presheaf which is a sheaf for the fppf topology is also a sheaf for the étale
topology;

– a presheaf which is a sheaf for the étale topology is also a sheaf for the Zariski
topology.

For any of the Grothendieck topologies on SchS considered above (and in fact,
for any site), the functor of inclusion of the category of sheaves into the category
of presheaves admits a left adjoint, called the sheafification functor, see [SP, Tag

https://stacks.math.columbia.edu/tag/021M
https://stacks.math.columbia.edu/tag/0215
https://stacks.math.columbia.edu/tag/020O
https://stacks.math.columbia.edu/tag/022B
https://stacks.math.columbia.edu/tag/0216
https://stacks.math.columbia.edu/tag/021N
https://stacks.math.columbia.edu/tag/021N
https://stacks.math.columbia.edu/tag/022C
https://stacks.math.columbia.edu/tag/022C
https://stacks.math.columbia.edu/tag/00WH
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00WH] or [Ol, Theorem 2.2.4]. This construction requires some care in dealing with
set-theoretic issues; for the Zariski, étale and fppf topologies these subtleties can be
safely ignored (see [SP, Tag 03YY] for one possible precise formulation of this idea),
but things are more subtle for the fpqc topology (see [Wa]); for this reason it is
preferable to avoid considering sheafification for this topology.

In particular, any object X in SchS defines a presheaf on this category via the
Yoneda functor; more precisely, to X we associate the presheaf hX sending a scheme
Y over S to the set HomSchS (Y,X) of morphisms of S-schemes from Y to X. Such a
presheaf will be called representable. It is known that a representable presheaf is a
sheaf for the fpqc topology (and hence also for the fppf, étale and Zariski topologies),
see [SP, Tag 023Q] or [Ol, Theorem 4.1.2 and Remark 4.1.4]. The Yoneda lemma
ensures that the assignment X 7→ hX is fully faithful; we can (and will) therefore
identify SchS with a full subcategory of the category of sheaves on SchS (for one of
the topologies considered above), and will sometimes write X for hX . More generally,
the Yoneda lemma says that

(2.1.1) Hom(hX , F ) = F (X)

for any presheaf F and any scheme X. Note also that one can form products of
sheaves in the obvious way, and that for X,Y ∈ SchS we have

hX × hY = hX×SY .

Remark 2.1.1. — Any sheaf for the Zariski topology is determined by its values
on affine schemes; see [SP, Tag 020W] or [GW, Exercise 8.1] for precise formulations
of this idea. For this reason, as mentioned in Remark 1.2.1, one can study schemes
(or more general sheaves) as functors on the category of affine schemes over S rather
than on all schemes. (See [SP, Tag 021E], resp. [SP, Tag 021V], for the special case
of étale, resp. fppf, sheaves.) This is convenient when considering ind-schemes as
in §1.1.1, but less interesting in the present discussion of torsors.

2.1.2. Torsors and principal bundles. — As in §2.1.1, we consider a base scheme
S, the category SchS of S-schemes, and one of the “standard” Grothendieck topologies
on this category. Let G be a sheaf of groups for this topology. Then a G -torsor is a
sheaf P for the same topology endowed with a right action of G (i.e. a morphism P×
G →P satisfying the obvious axioms) and which satisfies the following conditions:

1. for any X in SchS there exists a covering (Xi → X)i∈I such that P(Xi) ̸= ∅
for all i ∈ I;

2. the map
P × G →P ×P

defined by (x, g) 7→ (x, xg) is an isomorphism of sheaves;

see [Ol, §4.5.1]. Here, the second condition can be restated as saying that whenever
P(X) ̸= ∅, the action of G (X) on P(X) is simply transitive. In particular, a torsor
P satisfies P(S) ̸= ∅ iff it is isomorphic to G with its standard right action. Such
a torsor is called trivial.

In practice, the sheaves of groups we will consider will always be representable. In
other words, we start with an S-group scheme G, and set G = hG. In this setting,

https://stacks.math.columbia.edu/tag/00WH
https://stacks.math.columbia.edu/tag/00WH
https://stacks.math.columbia.edu/tag/00WH
https://stacks.math.columbia.edu/tag/03YY
https://stacks.math.columbia.edu/tag/023Q
https://stacks.math.columbia.edu/tag/020W
https://stacks.math.columbia.edu/tag/021E
https://stacks.math.columbia.edu/tag/021V
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a principal G-bundle is a scheme X endowed with a right action of G (over S) such
that

1. the morphism of schemes

X ×S G→ X ×S X

defined by (x, g) 7→ (x, xg) is an isomorphism;
2. there exists an fpqc covering (Si → S)i∈I such that each X ×S Si → Si is

isomorphic (as a G-scheme) to G×S Si → Si (i.e. admits a section),

see [SP, Tag 049A]. We will say that this principal G-bundle is fppf locally trivial,
resp. étale locally trivial, resp. Zariski locally trivial, if the covering in condition (2)
can be chosen to be an fppf, resp. étale, resp. Zariski, covering. We will say that X
is trivial if it is isomorphic to G as a G-scheme, or in other words if the covering can

be chosen to be S
idS−−→ S.

Remark 2.1.2. — 1. Suppose we are given a scheme X endowed with a right
action of G (over S) such that the morphism of schemes

X ×S G→ X ×S X

defined by (x, g) 7→ (x, xg) is an isomorphism. Then in particular the projection
X ×S X → X admits a section. Hence, if the morphism X → S is surjective,
flat and locally finitely presented (in other words, an fppf covering) then X is
automatically an fppf locally trivial principal G-bundle.

2. The property of being locally finitely presented is fpqc on the base (see [SP, Tag
02KY]), and so is the property of being flat (see [SP, Tag 02L2]), quasi-compact
(see [SP, Tag 02KQ]), affine (see [SP, Tag 02L5]), of finite type (see [SP, Tag
02KZ]), or smooth (see [SP, Tag 02VL]). Thus, if G is locally finitely presented,
flat, quasi-compact, affine, of finite type, or smooth, then so is any principal
G-bundle.

3. Combining (1) and (2) (and the fact that surjectivity is also fpqc local on the
base, see [SP, Tag 02KV]), we obtain that if G is flat and locally finitely pre-
sented, then a principal G-bundle is automatically fppf locally trivial.

4. Similarly, in case G is smooth, then any principal G-bundle is smooth over S.
Since surjective smooth morphisms admit sections étale locally (see [EGA4.4,
Corollaire 17.16.3(ii)] or [SP, Tag 055U] or [Ol, Corollary 1.3.10]), it follows
that any principal G-bundle is étale locally trivial.

5. In case G = GL(n)S , it is known that any principal G-bundle is in fact Zariski
locally trivial. (This is one possible formulation of Hilbert’s Theorem 90.)

If X is a scheme, then by full faithfulness of the assignment X 7→ hX , the datum
of a right hG-action on hX is equivalent to the datum of a right G-action on X.
Moreover, given such data, X is a principal G-bundle, resp. an fppf locally trivial
principal G-bundle, resp. an étale locally trivial principal G-bundle, resp. a Zariski
locally trivial principal G-bundle, iff hX is an hG-torsor in the fpqc topology, resp. in
the fppf topology, resp. in the étale topology, resp. in the Zariski topology, see [SP,
Tag 049B].

https://stacks.math.columbia.edu/tag/049A
https://stacks.math.columbia.edu/tag/02KY
https://stacks.math.columbia.edu/tag/02KY
https://stacks.math.columbia.edu/tag/02L2
https://stacks.math.columbia.edu/tag/02KQ
https://stacks.math.columbia.edu/tag/02L5
https://stacks.math.columbia.edu/tag/02KZ
https://stacks.math.columbia.edu/tag/02KZ
https://stacks.math.columbia.edu/tag/02VL
https://stacks.math.columbia.edu/tag/02KV
https://stacks.math.columbia.edu/tag/055U
https://stacks.math.columbia.edu/tag/049B
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It is in general a delicate question to determine if all hG-torsors are representable,
i.e. are the sheaves associated with principal G-bundles. However, in case G is affine,
any hG-torsor in the fpqc, fppf or étale topology is representable by a principal G-
bundle, see [Ol, Proposition 4.5.6] or [Mi1, Chap. III, Theorem 4.3]. Here the repre-
senting scheme is constructed by (affine) descent. Namely, if P is an hG-bundle (in
one of the topologies above), and if (Si → S)i∈I is a covering (for the corresponding
topology) over which P is trivial, then the restriction of P to each Si is representable
by a scheme Pi (non canonically isomorphic to G×S Si). Each Pi is then affine over
Si by our assumption on G, and these schemes are naturally endowed with a descent
datum relative to the covering (Si → S)i∈I in the sense of [SP, Tag 023W]. By affine
descent (see [SP, Tag 0245]) this datum is automatically effective, which provides the
scheme X representing P.

In conclusion we obtain that if G is a smooth affine group scheme over S, the
following notions all coincide:

– hG-torsors for the fpqc topology;
– hG-torsors for the fppf topology;
– hG-torsors for the étale topology;
– principal G-bundles;
– fppf locally trivial principal G-bundles;
– étale locally trivial principal G-bundles.

In a minor abuse of language, if G is an S-group scheme and X is an S-scheme, we
will say principal G-bundle over X to mean a principal G×S X-bundle (in SchX).

Remark 2.1.3. — Assume that G is flat and quasi-compact over S. Let X̄ and Y be
S-schemes, let X be a principal G-bundle over X̄, and let f : X → Y be a morphism
of S-schemes that is G-invariant (i.e. whose compositions with the projection and the
action maps X ×S G → X coincide). Then f factors through a unique morphism of
S-schemes X̄ → Y : this follows from the fact that hY is an fpqc sheaf, applied to the
fpqc cover X → X̄ (see Remark 2.1.2(2)).

2.1.3. Trivializations over certain base schemes. — Fix a ring R, and let I ⊂
R[x] be an ideal such that R[x]/I is finitely generated as an R-module, i.e., such that
Spec(R[x]/I) is finite over Spec(R). For any integer k ≥ 1, let Sk = Spec(R[x]/Ik),
and let

S = lim−→
k

Sk = Spec(R̂[x]I),

where R̂[x]I = lim←−k R[x]/I
k is the completion of R[x] with respect to I. (Note,

however, that S is considered as an ordinary scheme, not a formal scheme.) Some
typical examples of this situation are listed below, using the notation of §1.3.3:

I Sk S

(x) Spec(R[x]/(xk)) Γ̂0 = Spec(R[[x]])

(x− y), y ∈ R Spec(R[x]/((x− y)k)) Γ̂y = Spec([[x− y]])
(x) ∩ (x− y), y ∈ R Spec(R[x]/((x) ∩ (x− y))k) Γ̂0 ∪ Γy

https://stacks.math.columbia.edu/tag/023W
https://stacks.math.columbia.edu/tag/0245
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Now let G be a smooth, affine group scheme over S. We have explained in the
preceding subsection that any principal G-bundle X → S is étale locally trivial, i.e.,
becomes trivial over some étale cover (Vj → S)j∈J . The following proposition gives
a refinement of this fact: it says that X → S becomes trivial over an étale cover of S
obtained by base change of an étale cover of Spec(R).

Proposition 2.1.4. — Let R and S be as above. Let G be a smooth, affine group
scheme over S, and let X → S be a principal G-bundle. Then Spec(R) admits an
étale cover (Ui → Spec(R))i∈I such that for all i ∈ I,

X ×Spec(R) Ui → S ×Spec(R) Ui

is a trivial principal G×Spec(R) Ui-bundle.

Of course, the étale maps Ui → Spec(R) may be assumed to be affine, so the
proposition can be rephrased as follows: for each point p ∈ Spec(R), there is an étale
ring map R→ R′ such that p lies in the image of Spec(R′)→ Spec(R), and such that
X ×Spec(R) Spec(R

′)→ S ×Spec(R) Spec(R
′) admits a section.

Proof. — Let p be a point in Spec(R). Let Rp be the localization of R at p, and choose
a separable closure κ of the residue field Rp/pRp. Let R

sh
p be the strict Henselization

of Rp whose residue field is κ. Recall that this can written as a limit

(2.1.2) Rsh
p = lim−→

factorizations R → R′ → κ
of R → κ, with R → R′ étale

R′.

Let Ishp = I ·Rsh
p [x]. Since R[x]/I is a finite R-algebra, the ring

Rsh
p [x]/Ishp

∼= (R[x]/I)⊗R[x] R
sh
p
∼= lim−→R′[x]/IR′[x]

(where the indexing set of the direct limit is as above) is a finite Rsh
p -algebra, and

therefore a finite direct product of Henselian local rings, see [SP, Tag 04GH]. More-
over, the residue fields of these local rings are finite extensions of κ, and are hence
also separably closed. In other words, Rsh

p [x]/Ishp is in fact a finite product of strictly
Henselian local rings.

Let Ssh
p = Spec(Rsh

p [x]/Ishp ), and let Xsh
p = X ×S Ssh

p . The map Xsh
p → Ssh

p is
smooth and affine, as it is obtained by base change from X → S, which is smooth
and affine by Remark 2.1.2. Any smooth morphism over a strictly Henselian local
ring admits a section (see [BLR, Corollary 13 on p. 42, Proposition 14 on p. 43, and
Proposition 4 on p. 46]), so there is a section s as shown below:

Xsh
p X ×S S1

Ssh
p S1

s or

O(X)/IO(X)⊗R[x] lim−→R′[x] O(X)/IO(X)

lim−→R′[x]/IR′[x] R[x]/I

s

Now, O(X)/IO(X) is finitely generated over R[x]/I (because O(X) is finitely gener-
ated over R[x]), so the composition

O(X)/IO(X)→ O(X)/IO(X)⊗R[x] lim−→R′[x]→ lim−→R′[x]/IR′[x]

https://stacks.math.columbia.edu/tag/04GH
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must factor through some term R′[x]/IR′[x] in the limit. Let s̄ : O(X)/IO(X)⊗R[x]

R′[x]→ R′[x]/IR′[x] be the induced map.
Let S′ = S ×Spec(R) Spec(R

′), X ′ = X ×Spec(R) Spec(R
′), and S′

1 = S1 ×Spec(R)

Spec(R′). The map s̄ defined above is a section of the principal G ×S S′
1-bundle

X ′ ×S′ S′
1 → S′

1. By Lemma 2.1.5 below (applied with R′ and S′ in place of R and
S), the G×S S′-bundle X ′ → S′ also admits a section, as desired.

Lemma 2.1.5. — In the setting of Proposition 2.1.4, we have that X → S is a trivial
G-bundle if and only if for some k ≥ 1, X ×S Sk → Sk is a trivial (G×S Sk)-bundle.

Proof. — The “only if” direction is obvious; we need only prove the “if” direction.
Recall from Remark 2.1.2 that X → S is affine and smooth, and hence also formally
smooth (see [SP, Tag 00TN]). If for some n ≥ 1 there is a section sn : Sn →
X ×S Sn, then by formal smoothness, we can find a map t making the following
diagram commute:

O(X) O(X)/InO(X) R[x]/(In)

R̂[x]I R[x]/(In+1).

t

sn

The map t clearly factors uniquely through a map sn+1 : O(X)/In+1O(X) →
R[x]/(In+1). In other words, if we have a section sn : Sn → X ×S Sn, it can be
extended to a section sn+1 : Sn+1 → X ×S Sn+1.

Now let sk : Sk → X ×S Sk be a section. By induction, the previous paragraph
gives us sections sn : Sn → X ×S Sn for all n ≥ k. Passing to the limit, we obtain
the desired section S → X.

We conclude this subsection with a lemma about the case I = (x)∩ (x−y) ⊂ R[x],
where y is some element of R. This lemma will make use of the following explicit

description of the completion R̂[x](x)∩(x−y). It is easy to check that

((x) ∩ (x− y))2 ⊂ (x2 − xy) ⊂ (x) ∩ (x− y),

so R̂[x](x)∩(x−y) is canonically identified with R̂[x](x2−xy). Next, R[x] is isomorphic to

R[x, u]/(x2−xy−u), where u is another indeterminate, and under this isomorphism,
the ideal (x2−xy) ⊂ R[x] is identified with (u) ⊂ R[x, u]/(x2−xy−u). We conclude
that

(2.1.3) R̂[x](x)∩(x−y)
∼= R[[u]][x]/(x2 − xy − u).

Lemma 2.1.6. — Suppose that 2 is invertible in R and that y ∈ R is invertible. Let

S = Spec(R̂[x](x)∩(x−y)), and let G be a smooth, affine group scheme over S.

1. There exists a canonical isomorphism S ∼= Spec(R[[x]]) ⊔ Spec(R[[x − y]]) as
schemes over Spec(R[x]).

2. The datum of a principal G-bundle X → S is equivalent to the datum of a pair
of principal G-bundles X ′ → Spec(R[[x]]), X ′′ → Spec(R[[x− y]]).

https://stacks.math.columbia.edu/tag/00TN
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Proof. — Both parts of the lemma follow from the observation that there is a canon-
ical (continuous) isomorphism of R[x]-algebras

(2.1.4) R̂[x](x)∩(x−y)
∼= R[[x]]×R[[x− y]].

To see this, we first note that 1 + 4u has a unique square root ϕ(u) in C[[u]] whose
constant term is 1. Its first few terms are 1+2u−2u2+4u3−· · · . Since y is invertible,
it makes sense to consider the element ϕ(y−2u) ∈ R[[u]]. Then we have

x2 − xy − u =
(
x− 1

2y(1 + ϕ(y−2u))
) (
x− 1

2y(1− ϕ(y
−2u))

)
.

It follows easily that there is an isomorphism

R[[u]][x]/(x2 − xy − u) ∼= R[[u]]×R[[u]]
given by f 7→ (f|x= 1

2y(1−ϕ(y−2u)), f|x= 1
2y(1+ϕ(y

−2u))). In view of (2.1.3), this

yields (2.1.4).

2.1.4. Descent and associated bundles. —

2.1.4.1. Descent for schemes. — Let G be a group scheme over a base scheme S.
Let Z be an S-scheme, and let f : X → Z be a principal G-bundle over Z. Finally,
let Y be another S-scheme with a left G-action. Informally, the idea of an “associated
bundle” is to replace the fibers of f : X → Z (which are copies of G) with copies of
Y .

Here is a more precise definition. Equip X×SY with a right G-action by (x, y)·g =

(xg, g−1y). Suppose there exists an S-scheme P along with a map f̃ : X ×S Y → P
that makes X ×S Y into a principal G-bundle over P . Such a scheme is unique up to
unique isomorphism if it exists. We typically denote it by

X ×GS Y,
and call it the bundle associated to X with fiber Y . If this scheme exists, it fits into
a cartesian square

X ×S Y X ×GS Y

X Z

pr1

f̃

f

where the top horizontal arrow is a projection map, and the right vertical arrow is a
“locally trivial fibration with fibers isomorphic to Y .”

If X → Z is Zariski locally trivial,(1) then it is easy to construct X ×GS Y , but the
existence of X ×GS Y in general is a delicate problem. The following proposition gives
a criterion for this.

Proposition 2.1.7. — Let G be a group scheme over S; let X → Z be a principal
G-bundle over Z; and let Y be another S-scheme with a left G-action. Assume the
following conditions hold:

(1)In the larger setting of algebraic spaces, the same comment applies to étale locally trivially bun-

dles [KM]. In this book, however, we stay in the world of schemes.
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1. The group scheme G is flat and quasi-compact (e.g. affine) over S.
2. The scheme Y admits a G-equivariant line bundle L that is relatively ample

for the structure map Y → S.

Then the associated bundle X×GS Y exists and admits a line bundle L̃ that is relatively
ample for X ×GS Y → Z.

The existence of L implies (by definition, see [SP, Tag 01VH]) that Y → S is
quasi-compact. A statement very close to this, but with all schemes assumed to be
of finite type over S, can be found in [MFK, Proposition 7.1]. However, the proof
goes through under the weaker assumptions above: the following argument is copied
almost verbatim from [MFK].

Proof. — Our assumptions imply that X → Z is faithfully flat and quasi-compact.
The main idea is to construct the desired scheme (which will be denoted by P in this
proof) by fpqc descent along X → Z. First, we must equip X ×S Y with a descent
datum, i.e., an isomorphism

φ : (X ×S Y )×Z X
∼−→ X ×Z (X ×S Y )

satisfying a certain cocycle condition. Since X → Z is a principal G-bundle, we have
an identification X ×S G

∼−→ X ×Z X given by (x, g) 7→ (x, xg). Writing S-points of
X ×Z X in the form (x, xg), we define φ by φ(x, y, xg) = (x, xg, g−1y).

Next, our assumption on L implies that the line bundle OX ⊠S L is relatively
ample for the projection map X×S Y → X (see [SP, Tag 0893]). Moreover, OX⊠SL
is G-equivariant; and as explained in the proof of [MFK, Proposition 7.1], the G-
equivariant structure is the same as a descent datum for OX ⊠S L with respect to
X → Z.

According to [SGA1, Exp. VIII, Proposition 7.8], the preceding paragraph implies
that φ is effective, i.e., that there exists an S-scheme P together with maps making
the square

X ×S Y P

X Z

pr1

f

cartesian, as well as a line bundle L̃ on P induced by OX ⊠S L that is relatively
ample for P → Z.

It remains to check that the morphism X×S Y → P above is a principal G-bundle
over P . This map is certainly faithfully flat and quasi-compact (since X → Z is), and

hence an fpqc covering. From the isomorphism X ×S G
∼−→ X ×Z X we obtain that

the analogous map (X ×S Y )×S G
∼−→ (X ×S Y )×P (X ×S Y ) is an isomorphism. As

in Remark 2.1.2(1), this implies the desired claim.

Remark 2.1.8. — 1. In the setting of Proposition 2.1.7, if the morphism Y → S
is quasi-affine then OY is relatively ample for this morphism, see [SP, Tag 0891].
Since this line bundle is obviously G-equivariant, the proposition applies in this
case.

https://stacks.math.columbia.edu/tag/01VH
https://stacks.math.columbia.edu/tag/0893
https://stacks.math.columbia.edu/tag/0891
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2. Assume that S = Spec(k) with k an algebraically closed field, and that G
is a k-algebraic group (i.e. G is affine and of finite type). If X is a reduced
quasi-projective irreducible normal k-scheme endowed with an action of G, then
the existence of a G-equivariant ample line bundle is automatic. Indeed, by
definition of quasi-projectivity X admits an ample line bundle. Then a power
of this line bundle admits a G-equivariant structure by [Bri2, Theorem 5.2.1].

2.1.4.2. The case of ind-schemes. — In practice, we will need a version of Propo-
sition 2.1.7 that applies when Z and Y are ind-schemes, rather than just ordinary
schemes. Suppose we have an ind-scheme Y with a presentation

(2.1.5) Y = colimi∈IYi,

where each Yi is an ordinary S-scheme. Denote by ϕij : Yi → Yj the transition maps
in this limit. (These morphisms are closed immersions.) Recall that a line bundle on
Y is a collection L = ((Li)i∈I , (θij)ij), where each Li is a line bundle on Yi, and the
θij ’s are isomorphisms

θij : ϕ
∗
ijLj

∼−→ Li

satisfying the obvious compatibility condition θik = θij ◦ ϕ∗ijθjk whenever i, j, and
k are such that this equation makes sense. We say that L is relatively ample with
respect to Y → S if each Li is relatively ample with respect to Yi → S.

Suppose now that Y is equipped with a left G-action that is compatible with the
limit (2.1.5): that is, each Yi has a left G-action, and the transition maps ϕij are G-
equivariant. A G-equivariant line bundle on Y is a collection L = ((Li)i∈I , (θij)ij)
as above in which each Li is G-equivariant, and the θij ’s are isomorphisms of G-
equivariant line bundles.

Finally, if Z is an ind-scheme over S, we define a principal G-bundle over Z to be
an ind-scheme X equipped with a right action of G (over S) and a morphism X → Z
such that for any scheme Z ′ and any morphism Z ′ → Z the fiber product X×ZZ ′ is a
principal G-bundle over Z ′ (in particular, is a scheme). In this case, if Z = colimi∈IZi
is a presentation of Z, then we have a presentation of X given by

X = colimi∈IX ×Z Zi,

and each X ×Z Zi is a principal G-bundle over Zi. We will say that this principal G-
bundle is étale, resp. fppf, locally trivial if for any Z ′ as above the principal G-bundle
X ×Z Z ′ is étale, resp. fppf, locally trivial.

Proposition 2.1.9. — Let G be a group scheme over S. Let Z and Y be ind-schemes
over S obtained as limits over the same indexing set: say

(2.1.6) Z = colimi∈IZi and Y = colimi∈IYi.

Let X be a principal G-bundle over Z, and suppose Y has a left G-action that is
compatible with the limit above. Assume also that the following conditions hold:

1. The group scheme G is flat and quasi-compact over S.
2. The ind-scheme Y admits a G-equivariant line bundle L that is relatively ample

for the structure map Y → S.
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Then there is an ind-scheme

(2.1.7) X ×GS Y = colimi∈I(X ×Z Zi)×GS Yi

along with a map X ×S Y → X ×GS Y that is a principal G-bundle.

Proof. — Let Xi = X ×Z Zi. Then Xi → Zi is a principal G-bundle, and Proposi-
tion 2.1.7 gives us the existence of the scheme Xi ×GS Yi. Let us now show that each
transition map Xi ×GS Yi → Xj ×GS Yj is a closed immersion. For that, we write this
map as the bottom row of the following diagram:

Xi ×S Yi Xj ×S Yi Xj ×S Yj

Xi ×GS Yi Xj ×GS Yi Xj ×GS Yj .

Here, each vertical map is flat, quasi-compact, and surjective (and hence an fpqc
covering); the squares are cartesian; and the top horizontal arrows are closed immer-
sions. Since the property of being a closed immersion is fpqc local [SP, Tag 02L6],
the bottom arrows are closed immersions as well.

Once this property is established, passing to the colimit, we obtain the principal
G-bundle X ×S Y → X ×GS Y .

Remark 2.1.10. — 1. From the proof of Proposition 2.1.9 we see that this
proposition still holds if one replaces assumption (2) by the following slightly
weaker variant: for any i ∈ I there is a G-equivariant line bundle Li on Yi
which is relatively ample for the structure map Yi → S. (In other words, we do
not need any compatibility property between these line bundles.)

2. Continuing the theme of the preceding proof, the properties of being separated,
of finite type, or proper are all fpqc local on the base: see [SP, Tag 02KU, Tag
02KZ, Tag 02L1]. As a consequence, if Y → S (and hence X ×S Y → X) is
separated, or of (ind-)finite type, or (ind-)proper, then X ×GS Y → Z has that
property as well. (Note that, by contrast, the property of being projective is
not fpqc local on the base, see [SP, Tag 02YJ].)

2.1.4.3. Compatibility with products. — One nice feature of this construction is its
compatibility with fiber products. Namely, consider a cartesian square of G-schemes
over S

Y ′ Z ′

Y Z,

https://stacks.math.columbia.edu/tag/02L6
https://stacks.math.columbia.edu/tag/02KU
https://stacks.math.columbia.edu/tag/02KZ
https://stacks.math.columbia.edu/tag/02KZ
https://stacks.math.columbia.edu/tag/02L1
https://stacks.math.columbia.edu/tag/02YJ
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and assume that all schemes in this diagram admit relatively (to S) ample G-
equivariant line bundles. Then the induced diagram

X ×GS Y ′ X ×GS Z ′

X ×GS Y X ×GS Z

is also cartesian. In fact, by [We, Lemma 2.5], for this it suffices to check that the
diagram becomes cartesian after pullback along the fpqc cover X ×S Z → X ×GS Z.
(This is an application of the fact that representable presheaves are fpqc sheaves.)
However, our diagram then becomes the product of X with our original cartesian
diagram, so it is indeed cartesian.

2.2. Global affine Grassmannians

In this section we fix a complex connected reductive group G, with a fixed choice
of Borel subgroup B.

2.2.1. The affine Grassmannian and the affine flag variety. — Recall
from §1.2.1.1 that the affine Grassmannian GrG associated with G is the (ind-scheme
representing the) fppf sheafification of the functor sending a C-algebra R to the
quotient GK (R)/GO(R). We then have a canonical morphism GK → GrG, which is
known to be a Zariski locally trivial principal GO-bundle. (See e.g. [Rc4, §§2.1–2.2]
for an explicit study of this property in the case of general linear groups.)

There is an obvious morphism of C-group schemes GO → G: in terms of R-points
for a C-algebra R, it is the map G(R[[x]]) → G(R) induced by the quotient map
R[[x]] → R[[x]]/(x) = R. The Iwahori subgroup I ⊂ GO associated with B is the
subgroup scheme defined as the preimage of B under this map GO → G. One can
then define the affine flag variety

FlG

as the fppf sheafification of the functor sending a C-algebra R to GK (R)/I(R). Again,
this sheaf is represented by an ind-projective ind-scheme of ind-finite type. There is
an obvious natural map

(2.2.1) π : FlG → GrG,

which is a locally trivial fibration (for the Zariski topology) with fiber G/B.

Example 2.2.1. — Consider the setting of Example 1.2.3. In this case, the subgroup
I ⊂ GO consists of the matrices g ∈ GL(n,O) whose image in GL(n,C) stabilizes the
standard flag

Cn ⊃ {0} × Cn−1 ⊃ {0}2 × Cn−2 ⊃ · · · ⊃ {0}n−1 × C ⊃ {0}.

Therefore, I ⊂ GL(n,K ) is the stabilizer of the collection of lattices

On ⊃ (xO)× On−1 ⊃ (xO)2 × On−2 ⊃ · · · ⊃ (xO)n−1 × O ⊃ x · On.
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Concretely, I consists of matrices of the form
a11 xa12 xa13 · · · xa1n
a21 a22 xa23 · · · xa2n
a31 a32 a33 · · · xa3n
...

...
...

. . .
...

an1 an2 an3 · · · ann


with aij ∈ O. The space FlG can be identified with the set of collections (Λi : i =
1, . . . , n) of O-lattices in K n such that

Λ1 ⊃ Λ2 ⊃ · · · ⊃ Λn ⊃ xΛ1

and dim(Λi/Λi+1) = 1 for i = 1, . . . , n−1. In this interpretation (and that of §1.2.1.3),
the map π : FlG → GrG sends (Λ1, . . . ,Λn) to Λ1.

For k a noetherian commutative ring of finite global dimension, we will denote by
Db
I (FlG,k) the constructible I-equivariant derived category of k-sheaves on FlG in the

sense of Bernstein–Lunts [BL]. (As for Db
GO

(GrG,k), some technical difficulties arise
when defining this category; see §1.3.1 for a discussion and references.) A construction
similar to that explained in §1.3.1 using the natural morphism

(2.2.2) m′ : GK ×I FlG → FlG

allows us to define a convolution product ⋆I on Db
I (FlG,k).

2.2.2. Moduli interpretation. —

2.2.2.1. The case of GrG. — We will now recall the description of the affine Grass-
mannian as a certain moduli space of G-bundles on a formal disc. Explicitly, let GrG
be the functor from C-algebras to sets given by
(2.2.3)

GrG(R) =

{
(E , β)

∣∣∣∣ E a principal G-bundle over Spec(R[[x]]),

β : E| Spec(R((x)))
∼−→ G× Spec(R((x))) a trivialization

}
.

(Here and below, we implicitly consider equivalence classes of geometric data, for the
obvious equivalence relation.)

Proposition 2.2.2. — There exists a canonical isomorphism GrG
∼−→ GrG.

In view of this proposition, below we will not make any distinction between GrG
and GrG. For a discussion of the proof of Proposition 2.2.2, see [BR, §1.7.1]; see
also [Zh4, Proposition 1.3.6] or [Rc4, Proposition 3.18] for more details. One im-
portant point in the proof is showing that if R is a C-algebra and E is a principal
G-bundle over Spec(R[[x]]), there exists an étale cover R→ R′ such that the pullback
Spec(R′[[x]])×Spec(R[[x]]) E is trivial, which follows from Proposition 2.1.4 (applied to
the constant group scheme G× Spec(R[[x]]) over Spec(R[[x]])).

Remark 2.2.3. — In [Rc4, Theorem 3.4] it is proved directly that the functor
GrG is representable (in a much more general setting, in fact), and later it is deduced
(again in a general setting, though additional conditions have to be imposed) that this
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scheme represents the étale sheafification of the functor sending R to GK (R)/GO(R).
In this way one sees that the latter étale sheafification is already an fppf (in fact, even
fpqc) sheaf, and therefore that it coincides with the fppf sheafification of this functor,
which was our original definition for GrG.

In the course of the proof of Proposition 2.2.2 one also establishes the following
moduli interpretations of the groups GK and GO .

Lemma 2.2.4. — The group ind-scheme GK represents the functor

R 7→

(E , β, γ)

∣∣∣∣∣∣
E a principal G-bundle over Spec(R[[x]]),

β : E| Spec(R((x)))
∼−→ G× Spec(R((x))) a trivialization,

and γ : E ∼−→ G× Spec(R[[x]]) a trivialization

 ,

and the group scheme GO represents the functor

R 7→

(E , β, γ)

∣∣∣∣∣∣
E a principal G-bundle over Spec(R[[x]]),

β : E ∼−→ G× Spec(R[[x]]) a trivialization,

and γ : E ∼−→ G× Spec(R[[x]]) a trivialization

 .

In this language, the group operations for GK and GO are given by
(2.2.4)

(E , β, γ) · (E ′, β′, γ′) =

{
(E ′, β ◦ γ−1

| Spec(R((x))) ◦ β
′, γ′) in GK ,

(E ′, β ◦ γ′−1 ◦ β′, γ′) = (E , β, γ′ ◦ (β′)−1 ◦ γ) in GO .

2.2.2.2. The case of FlG. — To give an analogous description of the affine flag
variety, one needs to introduce the Iwahori group scheme I, a smooth (noncon-
stant!) affine group scheme over Spec(O) whose restriction to Spec(K ) isG×Spec(K )
and whose O-points are I as defined in §2.2.1. (In fact, as explained in [PR, §2.a.1],
these properties characterize I uniquely.) The construction of this group scheme uses
Bruhat–Tits theory; see [Zh4, Example 1.2.9(2)] and [McN, §6.2] for more details.
Define FlG to be the functor from C-algebras to sets given by
(2.2.5)

FlG(R) =

{
(E , β)

∣∣∣∣ E a principal I-bundle,
β : E| Spec(R((x)))

∼−→ G× Spec(R((x))) a trivialization

}
.

The analogues of Proposition 2.2.2 and Lemma 2.2.4 for the nonconstant group
scheme I → Spec(O) replacing the constant group scheme G × Spec(O) → Spec(O)
are as follows.

Proposition 2.2.5. — There is a canonical isomorphism FlG
∼−→ FlG.

Lemma 2.2.6. — The group scheme I represents the functor

R 7→

(E , β, γ)

∣∣∣∣∣∣
E a principal I-bundle,

β : E ∼−→ I ×Spec(O) Spec(R[[x]]) a trivialization,

and γ : E ∼−→ I ×Spec(O) Spec(R[[x]]) a trivialization

 .

A proof of Proposition 2.2.5 can be found in [Zh4, Proposition 1.3.6]; see also [He,
Proposition 4]. Once again, an essential step in the proof is the observation that
any I-bundle on Spec(R[[x]]) can be trivialized on Spec(R′[[x]]) for some étale cover
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R→ R′, which follows from Proposition 2.1.4 (applied to the group scheme I×Spec(O)

Spec(R[[x]]) this time).

Remark 2.2.7. — 1. The setting considered in [Rc4] also covers the construc-
tion of FlG and FlG. Thus, as in Remark 2.2.3, one obtains in this way that the
étale sheafification of the functor sending R to GK (R)/I(R) is already an fpqc
sheaf, and hence that it coincides with FlG as defined in §2.2.1.

2. The descriptions of GrG and FlG given in Propositions 2.2.2 and 2.2.5 are in
terms of bundles on a formal disc. These ind-schemes can also be described in
terms of bundles on a curve, as follows. Let C be a reduced connected complex
curve, and let 0 denote a smooth closed marked point on C. (The example we
have in mind is when C = A1

C, with 0 the origin; this explains our choice of
notation.) Let C◦ := C ∖ {0}. For R a C-algebra, we will denote by CR and
C◦
R the products of C and C◦ respectively with Spec(R). It is a consequence of

the Beauville–Laszlo theorem [BLa] that GrG represents the functor

R 7→
{
(E , β)

∣∣∣∣ E a principal G-bundle over CR,

β : E|C◦
R

∼−→ G× C◦
R a trivialization

}
.

See [BR, §1.7.1] for a brief discussion, and [Zh4, §1.4] or [Rc4, §3.2] for more
details. A similar description of FlG (also treated in [Zh4]) can be given using
the group scheme G defined in §2.2.3 below.

Example 2.2.8. — Consider once again the setting of Example 1.2.3. In this case
the group scheme I admits a concrete description: it represents the functor sending an
O-algebra R to the group of n-tuples (g1, . . . , gn) ∈ GL(n,R)n such that the following
diagram commutes:

Rn Rn · · · Rn Rn

Rn Rn · · · Rn Rn.

g1

ε∨n(x)

g2

ε∨n−1(x) ε∨2 (x)

gn

ε∨1 (x)

g1

ε∨n(x) ε∨n−1(x) ε∨2 (x) ε∨1 (x)

The canonical morphism I → G× Spec(O) sends an n-tuple (g1, . . . , gn) to g1.
In case x is invertible in R the datum of the n-tuple (g1, . . . , gn) is equivalent to

the datum of g1, illustrating the fact that the morphism I → G×Spec(O) restricts to
an isomorphism over Spec(K ). On the other hand, the restriction of this morphism
to {0} ⊂ Spec(O) is far from an isomorphism. For instance, when n = 2, the fiber of
I over {0} consists of pairs of invertible matrices (A,B) ∈ GL(2,C)2 satisfying(

1 0
0 0

)
·A = B ·

(
1 0
0 0

)
and

(
0 0
0 1

)
·B = A ·

(
0 0
0 1

)
.

In other words, this fiber is identified with the closed subgroup of GL(2,C)2 consisting
of pairs of matrices of the form((

α 0
γ δ

)
,

(
α β
0 δ

))
with α, δ in C× and β, γ ∈ C.
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Here is another description of I in this case, reminiscent of Example 2.2.1. Let Sn

be the symmetric group on {1, . . . , n}. For a permutation σ ∈ Sn, let a(σ) = |{i ∈
{1, . . . , n} | i < σ(i)}|. For a matrix A = (aij)1≤i,j≤n ∈ Rn

2

, we define the deformed
determinant by

detx(A) =
∑
σ∈Sn

sgn(σ)xa(σ)a1,σ(1)a2,σ(2) · · · an,σ(n).

We also define deformed matrix multiplication as follows: for matrices A,B ∈ Rn2

,
we define A ·x B by

(A ·x B)ij =

{∑
1 ≤ k < j or i < k ≤ n xaikbkj +

∑
j≤k≤i aikbkj if i ≥ j,∑

1 ≤ k ≤ i or j ≤ k ≤ n aikbkj +
∑
i<k<j xaikbkj if i < j.

As a mnemonic, the deformed determinant of A is the ordinary determinant of the
matrix

γ1(A) :=


a11 xa12 xa13 · · · xa1n
a21 a22 xa23 · · · xa2n
a31 a32 a33 · · · xa3n
...

. . .
...

an1 an2 an3 · · · ann

 ,

and deformed multiplication corresponds under γ1 to the usual matrix multiplication;
that is, we have γ1(A ·x B) = γ1(A)γ1(B).

The map γ1 can be generalized as follows. Let ρ ∈ Sn be the permutation given
by ρ(i) = i+ 1 for 1 ≤ i ≤ n− 1, and ρ(n) = 1. For 1 ≤ k ≤ n, define γk(A) by

γk(A)ij =

{
xaij if ρk−1(i) < ρk−1(j),

aij otherwise.

One can show that detx(A) = det γk(A) for all 1 ≤ k ≤ n, and that γk(A ·x B) =
γk(A)γk(B). Moreover, we have

ε∨n+1−k(x)γk(A) = γk+1(A)ε
∨
n+1−k(x).

In fact, the map A 7→ (γ1(A), . . . , γk(A)) defines a bijection

{A ∈ Rn
2

| detx(A) ∈ R×} ∼= I(R).

2.2.3. Global group schemes and global affine Grassmannians. — In §2.2.2
we have explained how to describe the ind-schemes GrG and FlG in terms of bundles
on a formal disc. To go further we will need to discuss several “global” analogues
of these ind-schemes, which involve bundles on a curve. The first example of such a
construction (which is the main ingredient in the definition of the central functor) is
explained in the present subsection.
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2.2.3.1. Global loop and arc groups. — From now on, as in §1.3.3 we let C = A1
C,

with “marked” point 0, and set C◦ := C ∖ {0}. Recall that for y an R-point of C we

have the schemes Γy ⊂ CR, Γ̂y and Γ̂◦
y := Γ̂y ∖ Γy.

We will consider the group scheme G over C obtained by gluing the Iwahori group
scheme I over Spec(O) to the constant group scheme G × C◦ using fpqc descent.
This group scheme is endowed with a canonical morphism G → G× C (which is not
a closed embedding). One may consider principal G-bundles on (base changes of) C,
as explained in §2.1.2. From now on, for any scheme X → C, we let

E0X := the trivial G-bundle over X.

Remark 2.2.9. — Following [MRR], the group scheme G admits an alternative
construction, as the Néron blowup of G×A1 in B along the divisor {0} ⊂ A1; see in
particular [MRR, Example 3.3].

We define two associated “loop” and “arc” groups as the following functors from
C-algebras to sets:

LG : R 7→ {(y, γ) | y ∈ C(R) and γ ∈ G(Γ̂◦
y)},

L+G : R 7→ {(y, γ) | y ∈ C(R) and γ ∈ G(Γ̂y)}.

Remark 2.2.10. — By definition, LG and L+G admit canonical maps to C. Hence
they can can also be described as functors from Γ(C,OC)-algebras to sets. In these
terms, L+G sends a C[x]-algebra R to the set of points of G ×C over the completion
of (C×C)×C Spec(R) = C×Spec(R) at the diagonal (∆C)×C Spec(R). The functor
LG admits a similar description. See [He, Example (2) on p. 504] or [HR1, §3.1] for
this point of view.

For the proof of Lemma 2.2.12 below, we will need a family of “finite-type” variants

of L+G, defined as follows. For any integer m ≥ 1 and any y ∈ C(R), let Γ(m)
y denote

the m-th nilpotent thickening of the closed subscheme Γy ⊂ CR. We then denote by
L+
mG the functor from C-algebras to sets defined by

L+
mG : R 7→

{
(y, γ) | y ∈ C(R) and γ ∈ G(Γ(m)

y )
}
.

Lemma 2.2.11. — The functor L+
mG is represented by a smooth affine group scheme

of finite type over C. Moreover, if m ≥ l, the natural homomorphism L+
mG → L+

l G
is smooth and surjective, and the fiber of its kernel over any closed point x ∈ C is
unipotent.

Proof. — As in Remark 2.2.10, one can also describe L+
mG as the functor from C[x]-

algebras to sets sending R to the set of points of G × C over the m-th nilpotent
thickening in C × Spec(R) of the closed subscheme (∆C) ×C Spec(R). Then, as
explained in [HR1, Proof of Lemma 3.2], if we denote by D(m) the m-th nilpotent
thickening of ∆C in C×C, it is not difficult to check that L+

mG is the Weil restriction
of scalars of (G × C) ×C×C D

(m) along the map D(m) → C induced by the second
projection. By [BLR, §7.6, Theorem 4], this functor is represented by an affine
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scheme, and by [BLR, §7.6, Proposition 5], this scheme is smooth (and in particular
of finite type).

Now we fix m ≥ l, and consider the natural map L+
mG → L+

l G. This map is
surjective by the infinitesimal lifting criterion for smoothness (see [SP, Tag 02H6]),
since G is smooth. It is also of finite type since L+

mG is of finite type. Hence, by the
same lifting criterion, to prove that this morphism is smooth it suffices to prove that
for any C[x]-algebra R and any nilpotent ideal I ⊂ R, any R/I-point of L+

l G can be

lifted to an R-point of L+
mG. However, an R/I-point of L+

l G consists of a pair (y, γ)

with y ∈ C(R/I) = R/I and γ ∈ G((R/I)[x]/(x−y)l). Of course we can lift y to some
z ∈ C(R) = R, and γ can then be lifted to some δ ∈ G(R[x]/(x− z)m) by smoothness
of G, since the ideal of R[x]/(x− z)m generated by I and (x− z)l is nilpotent.

Finally, to check that each fiber of the surjection L+
mG → L+

l G is unipotent one can
use an appropriate embedding of G as a closed subscheme of some GLn,C . (The exis-
tence of such an embedding follows e.g. from the general result discussed in §10.1.3.)
This reduces the proof to the case of GLn,C , which is well known and easy.

Lemma 2.2.12. — The functor LG is represented by an ind-affine group ind-scheme
over C, and the functor L+G is represented by a flat affine group scheme over C.
Moreover, LG is canonically identified with the functor from C-algebras to sets defined
by

R 7→

{
(y, E , β, γ)

∣∣∣∣∣ y ∈ C(R), E a principal G-bundle over Γ̂y,

β : E|Γ̂◦
y

∼−→ E0
Γ̂◦
y

and γ : E ∼−→ E0
Γ̂y

trivializations

}
,

and L+G is canonically identified with the functor from C-algebras to sets defined by

R 7→

{
(y, E , β, γ)

∣∣∣∣∣ y ∈ C(R), E a principal G-bundle over Γ̂y,

β : E ∼−→ E0
Γ̂y

and γ : E ∼−→ E0
Γ̂y

trivializations

}
.

The group operation is given by formulas similar to those in (2.2.4).

Proof. — For the fact that LG and L+G are represented by (ind-)schemes, see [He,
Proposition 2], [PZ, §6.2.4], or [HR1, Lemma 3.2]. The claim that L+G is flat over
C is also found in [HR1, Lemma 3.2]: it follows from the observation that

L+G ∼= lim←−
m

L+
mG,

along with the fact from Lemma 2.2.11 that each L+
mG is flat.

The moduli descriptions of LG and L+G given in the statement are routine, fol-
lowing the pattern of Lemma 2.2.4.

Example 2.2.13. — In the spirit of Examples 2.2.1 and 2.2.8, let us describe the
C-points of LG and L+G explicitly in the case where G = GL(n). Given a complex
number y ∈ C, let Oy := C[[x− y]] be the completion of the local ring of O(C) at y,
and let Ky := C((x−y)) be its fraction field. A C-point of LG is a tuple (y, g1, . . . , gn)

https://stacks.math.columbia.edu/tag/02H6
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with y ∈ C and g1, . . . , gn ∈ GL(n,Ky) such that the following diagram commutes:

K n
y K n

y · · · K n
y K n

y

K n
y K n

y · · · K n
y K n

y .

g1

ε∨n(x)

g2

ε∨n−1(x) ε∨2 (x)

gn

ε∨1 (x)

g1

ε∨n(x) ε∨n−1(x) ε∨2 (x) ε∨1 (x)

Of course, since x is invertible in Ky, g1 alone determines the other maps. We see
explicitly that LG ∼= GL(n,K )× C.

Similarly, a C-point of L+G is a tuple (y, g1, . . . , gn) with y ∈ C and g1, . . . , gn ∈
GL(n,Oy) such that a diagram similar to the one above (with Ky replaced by Oy)
commutes. If y ̸= 0, then x is invertible in Oy, and g1 alone determines the other
maps. Thus, the fiber of L+G → C over any point y ̸= 0 can be identified with
GL(n,O). On the other hand, its fiber over 0 ∈ C is identified with the group I from
Example 2.2.1.

The observations in the preceding example can be generalized to arbitrary G. First,
we have

LG ∼= GK × C.
Next, with respect to the structure map L+G → C, denote by

(L+G)0, resp. (L+G)|C◦ ,

the preimage of {0}, resp. C◦. We then have canonical isomorphisms

(L+G)0 ∼= I, (L+G)|C◦ ∼= GO × C◦.

2.2.3.2. Central affine Grassmannian. — We define the central affine Grassmannian
(attached to G) as the functor from C-algebras to sets defined by:

(2.2.6) GrCen
G (R) =

{
(y, E , β)

∣∣∣∣∣ y ∈ C(R), E a principal G-bundle over Γ̂y,

β : E|Γ̂◦
y

∼−→ E0
Γ̂◦
y

a trivialization

}
.

Remark 2.2.14. — As in Remark 2.2.7, let us note that the definition of GrCen
G

considered above involves a G-bundle on Γ̂y. However, the Beauville–Laszlo descent

theorem (in the form stated e.g. in [Zh4, Theorem 1.4.3]) implies that GrCen
G (R) also

classifies data (y, E ′, β′) where y ∈ C(R), E ′ is a G-bundle on CR, and β′ : E ′|CR∖Γy

∼−→
E0CR∖Γy

is a trivialization.

The analogue of Proposition 2.2.2 in this setting is then the following claim.

Proposition 2.2.15. — The functor GrCen
G is represented by an ind-projective ind-

scheme over C. The obvious morphism

LG → GrCen
G

is an étale locally trivial principal L+G-bundle (in the sense spelled out in §2.1.4.2);
in particular it factors through an isomorphism

(LG/L+G)fppf
∼−→ GrCen

G .
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In this statement (LG/L+G)fppf is the fppf sheafification of the presheaf sending
a C-algebra R to LG(R)/L+G(R). As in Remark 2.2.3, Proposition 2.2.15 shows
that (LG/L+G)fppf is also the étale sheafification of the presheaf above, and that this
functor is in fact an fpqc sheaf.

Proof. — By Proposition 10.1.9, there exists a vector bundle E over C and a closed
immersion of group schemes G ↪→ GL(E) such that the quotient GL(E)/G is quasi-
affine over C. Here, since C = A1, this vector bundle must be trivial. One can
therefore apply [HR1, Corollary 3.11] to obtain the representability of GrCen

G . (See
Remark 2.2.14 for the comparison between our conventions and those of [HR1]. See
also [He, Proposition 2], [Rc2, Lemma 2.8] and [PZ, Proposition 6.5] for earlier refer-
ences for this claim.) The fact that this ind-scheme is ind-projective is an application
of [Rc2, Theorem 2.19]. For the second sentence, see [He, Proposition 4] or [HR1,
Lemma 3.4(ii)]. (Once again, the key point here is to show that given y ∈ C(R),

for any G-bundle E on Γ̂y there exists an étale cover R → R′ such that the pull-

back of E to Γ̂y′ is trivial, where y′ ∈ C(R′) is the image of y. This follows from
Proposition 2.1.4.)

As above, we denote by

(GrCen
G )0, resp. (GrCen

G )|C◦ ,

the preimage of {0}, resp. of C◦, with respect to the structure map GrCen
G → C.

By construction, we have G| Spec(O)
∼= I, so a principal G-bundle over Γ̂0 is the

same as a principal I-bundle. In view of this observation, and comparing (2.2.6)
with (2.2.5), we obtain a canonical identification

(2.2.7) (GrCen
G )0 ∼= FlG.

On the other hand, if y ∈ C◦, then G|Γ̂y

∼= G × Γ̂y. Using the (additive) group

structure of C ∼= A1, we see that for any y ∈ C(R), there is a canonical automorphism
of CR (as an R-scheme) transforming y into {0} × Spec(R). Via this automorphism,

we can identify Γ̂y with Spec(R[[x]]). Then any principal G-bundle over Γ̂y can be
regarded as a principal G-bundle over Spec(R[[x]]). Combining these observations, we
obtain a canonical isomorphism

(2.2.8) (GrCen
G )|C◦ ∼= GrG × C◦.

Example 2.2.16. — Let us describe GrCen
G explicitly in the case of G = GL(n). Let

y ∈ C be a complex number, and let Oy and Ky be as in Example 2.2.13. A y-lattice
is a torsion-free finitely generated Oy-submodule Λ of K n

y such that Ky · Λ = K n
y .

A y-lattice chain Λ is a sequence of y-lattices

Λ = (Λ1 ⊃ Λ2 ⊃ · · · ⊃ Λn ⊃ xΛ1)

with the following property: there should exist some Ky-basis (f1, . . . , fn) of K n
y

such that for 1 ≤ k ≤ n, Λk is given by

Λk = the Oy-span of {f1, f2, . . . , fn+1−k, xfn+2−k, xfn+3−k, . . . , xfn}.
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Of course, when y ̸= 0, x is invertible in Oy, and this definition implies that Λ1 =
Λ2 = · · · = Λn. When y = 0, on the other hand, our condition is equivalent to
requiring that dim(Λi/Λi+1) = 1, as in Example 2.2.1.

The group (LG)y acts transitively on the set of y-lattice chains, and the group
(L+G)y is the stabilizer of the y-lattice chain

On
y ⊃ (xOy)× On−1

y ⊃ (xOy)
2 × On−2

y ⊃ · · · ⊃ (xOy)
n−1 × Oy ⊃ (xOy)

n.

We can thus identify GrCen
G with the set of pairs (y,Λ) where y ∈ C and Λ is a

y-lattice chain.

2.2.4. Example: the first fundamental coweight for GL(n). — In view of the
constructions studied in the rest of this book, it is an important problem to understand
the “global Schubert varieties,” defined as the closures of the locally closed subvarieties

GrλG × C◦ ⊂ GrG × C◦
(2.2.8)∼= (GrCen

G )|C◦ ⊂ GrCen
G

for λ ∈ X∨
+. Unfortunately, in practice, describing these global Schubert varieties

explicitly turns out to be difficult, even in the case when the stratum GrλG ⊂ GrG is
“simple” (e.g. when it is closed).

One case when such a description is possible, however, is the setting considered in
Example 1.2.3, i.e. the case of the dominant coweight ε∨1 for GL(n). We rely on the

description of GrCen
G for GL(n) from Example 2.2.16 as the set of pairs (y,Λ), where

y ∈ C and Λ is a y-lattice chain. Let X be the closed subset given by

X = {(y,Λ1 ⊃ Λ2 ⊃ · · · ⊃ Λn ⊃ xΛ1) ∈ GrCen
G | for each k,

(x(x− y)Oy)k−1 × ((x− y)Oy)n−k+1 ⊂ Λk ⊂ (xOy)
k−1 × On−k+1

y

and dim(((xOy)
k−1 × On−k+1

y )/Λk) = 1}.

Comparing this with the description of Gr
ε∨1
GL(n) from Example 1.2.3, we see that

X|C◦ = Gr
ε∨1
GL(n) × C

◦.

We will see below that X is irreducible, so in fact X = Gr
ε∨1
GL(n) × C◦.

For an alternative description of X, consider the canonical identification

(2.2.9) ((xOy)
k−1 × On−k+1

y )/((x(x− y)Oy)k−1 × ((x− y)Oy)n−k+1) ∼= Cn.

Under this identification, the inclusion map (xOy)k × On−k
y ↪→ (xOy)k−1 × On−k+1

y

induces a map of quotient spaces

(xOy)k × On−k
y

(x(x− y)Oy)k × ((x− y)Oy)n−k
→

(xOy)k−1 × On−k+1
y

(x(x− y)Oy)k−1 × ((x− y)Oy)n−k+1

which is identified under (2.2.9) with

ε∨k (y) : Cn → Cn.
Now consider a point (y,Λ1 ⊃ Λ2 ⊃ · · · ⊃ Λn ⊃ xΛ1) of X. Each lattice Λk ⊂
(xOy)k−1 × On−k+1

y corresponds under (2.2.9) to a hyperplane Hk ⊂ Cn, and the
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condition Λk ⊃ Λk+1 is equivalent to the condition that Hk ⊃ ε∨k (y)(Hk+1). To
summarize, we have identified

(2.2.10) X ∼= {(y,H1, . . . ,Hn) ∈ C × (Pn−1)n |
ε∨1 (y)(H2) ⊂ H1, . . . , ε

∨
n−1(y)(Hn) ⊂ Hn−1, ε

∨
n(y)(H1) ⊂ Hn},

where Pn−1 is the projective space of hyperplanes in Cn, with the natural action of
GL(n). (See [ARi, §8.1] for additional discussion and references).

Let f : X → C be the restriction of the structure map GrCen
G → C. In terms

of (2.2.10), the set f−1(0) corresponds to

(2.2.11) {(H1, . . . ,Hn) ∈ (Pn−1)n |
ε∨1 (0)(H2) ⊂ H1, . . . , ε

∨
n−1(0)(Hn) ⊂ Hn−1, ε

∨
n(0)(H1) ⊂ Hn}.

On the other hand, f−1(0) is also identified with an I-stable subset of (GrCen
G )0 =

FlGL(n). Let us describe the I-action on f−1(0) in terms of (2.2.11). For any i ∈
{1, . . . , n}, consider the group homomorphism

ϱi : I → B

sending a matrix g = (gi,j)i,j=1,...,n to the matrix

g1,1 0 0 · · · 0
0 g2,2 0 · · · 0
...

. . .
... 0

... gi−2,i−2 0
0 · · · 0 gi−1,i−1

gi,i 0 0 · · · 0
gi+1,i gi+1,i+1 0 · · · 0

0
...

. . .
...

... gn−1,n−1 0
gn,i · · · gn,n−1 gn,n



,

where for P in O we write P for the image of P in O/xO = C. We have a natural
action of Bn of (Pn−1)n. Under (2.2.10), the action of an element g ∈ I on f−1(0)
corresponds to the action of (ϱ1(g), . . . , ϱn(g)) ∈ Bn on (2.2.11).

This description shows that f−1(0) contains the unique 0-dimensional I-orbit in

the connected component of FlGL(n) containing x
ε∨1 I. In terms of (2.2.11), this orbit

corresponds to the point

(2.2.12) (ker(e∗1), . . . , ker(e
∗
n)) ∈ (Pn−1)n,

where (e1, . . . , en) is the natural basis of Cn and (e∗1, . . . , e
∗
n) is the dual basis.

To obtain a better understanding of the geometry of X around the special fiber
f−1(0), one can introduce the morphism

u : An → X
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defined as follows. Given x = (x1, . . . , xn) ∈ An and i ∈ {1, . . . , n}, we define the
hyperplane

Hi(x) = {(z1, . . . , zn) ∈ Cn | (xi · · ·xn)z1 + (xi · · ·xnx1)z2 + · · ·
+ (xi · · ·xnx1 · · ·xi−2)zi−1 + zi + xizi+1 + · · ·+ (xi · · ·xn−1)zn = 0}.

(In this equation, the first terms are omitted if i = 1, and the last terms are omitted
if i = n.) Then we set

u(x1, . . . , xn) =

(
n∏
i=1

xi, H1(x1, . . . , xn), . . . ,Hn(x1, . . . , xn)

)
.

One can check that u is an open embedding, see [ARi, Lemma 8.1]. Moreover, since
its image contains the I-fixed point (2.2.12) (in fact this point is u(0)), which lies in
the closure of all the I-orbits in its connected component of FlG, this image must meet
all the I-orbits in f−1(0). In particular, since the singular locus and the irreducible
components of X are I-stable, it follows that X is smooth and irreducible, see [ARi,
Corollary 8.2].

2.3. Iterated global affine Grassmannians

2.3.1. Overview. — The next tool that we need to introduce, and which will play
an important role in Chapter 3, is an ind-scheme known as the Bĕılinson–Drinfeld
affine Grassmannian. This space, denoted by GrBD

G , satisfies

(GrBD
G )|C◦ ∼= GrG × FlG × C◦, (GrBD

G )0 ∼= FlG,

where we use the same notational conventions as in §2.2.3. (The definition will be
given below, as an instance of a more general construction. The idea of this construc-
tion goes back to Bĕılinson–Drinfeld [BD], but will be developed here for nonconstant
group schemes over C.)

Unfortunately, we immediately run into a technical obstacle involving group ac-
tions. Convolution on GrG or on FlG typically involves equivariance for the groups
GO and I. The global analogues of these groups are GO × C and L+G, respectively.
Unfortunately, neither GO × C nor L+G acts on GrBD

G !

Below, we introduce a new group scheme, denoted by L+GBD, that acts on both
GrCen

G and GrBD
G , as well as on further generalizations (called iterated global affine

Grassmannians). This group scheme lets us define global twisted products and global
convolution in great generality.

2.3.2. Bĕılinson–Drinfeld group schemes. — For y an R-point of C, we may

consider the closed subscheme Γ0 ∪ Γy ⊂ CR. Let Γ̂0 ∪ Γy denote the completion of
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CR along this subscheme, and set (Γ̂0 ∪ Γy)
◦ := Γ̂0 ∪ Γy ∖ (Γ0 ∪ Γy). The Bĕılinson–

Drinfeld loop and arc groups are the functors from C-algebras to sets given by

LGBD(R) =
{
(y, γ)

∣∣∣y ∈ C(R) and γ ∈ G((Γ̂0 ∪ Γy)
◦)} ,

L+GBD(R) =
{
(y, γ)

∣∣∣y ∈ C(R) and γ ∈ G(Γ̂0 ∪ Γy
)}

.

Lemma 2.3.1. — The functor LGBD is represented by an ind-affine group ind-
scheme over C, and the functor L+GBD is represented by a flat affine group scheme
over C. Moreover, LGBD is canonically identified with the functor

R 7→

{
(y, E , β, γ)

∣∣∣∣∣ y ∈ C(R), E a principal G-bundle over Γ̂0 ∪ Γy,

β : E|(Γ̂0∪Γy)◦
∼−→ E0

(Γ̂0∪Γy)◦
, γ : E ∼−→ E0

Γ̂0∪Γy

trivializations

}
,

and L+GBD is canonically identified with the functor

R 7→

{
(y, E , β, γ)

∣∣∣∣∣ y ∈ C(R), E a principal G-bundle over Γ̂0 ∪ Γy,

β : E ∼−→ E0
Γ̂0∪Γy

and γ : E ∼−→ E0
Γ̂0∪Γy

trivializations

}
.

The group operation is given by formulas similar to those in (2.2.4). The proof is
essentially identical to that of Lemma 2.2.12, and will be omitted. We remark that
the proof of flatness for L+GBD involves writing it as an inverse limit of smooth (and
hence finite type) group schemes over C. Specifically, for any integer m ≥ 1, one can
define a functor from C-algebras to sets by

L+
mGBD(R) =

{
(y, γ) | y ∈ C(R) and γ ∈ G

(
(Γ0 ∪ Γy)

(m)
)}
,

where (Γ0∪Γy)(m) is the m-th nilpotent thickening of the closed subscheme Γ0∪Γy ⊂
CR. These functors satisfy the following analogue of Lemma 2.2.11, whose proof we
omit.

Lemma 2.3.2. — The functor L+
mGBD is represented by a smooth group scheme of

finite type over C. Moreover, if m ≥ l, the natural homomorphism L+
mGBD → L+

l GBD

is smooth and surjective, and the fiber of its kernel over any closed point x ∈ C is
unipotent.

The flatness of L+GBD then follows from the observation that

L+GBD ∼= lim←−
m

L+
mGBD.

From the moduli descriptions in Lemma 2.3.1, we see that there are obvious C-
group scheme homomorphisms

L+GBD → I × C,(2.3.1)

L+GBD → L+G(2.3.2)

given by restricting the bundle and its trivializations to Γ̂0 and to Γ̂y, respectively.
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2.3.3. Bĕılinson–Drinfeld affine Grassmannian. — As for GrCen
G (see (2.2.6)),

one can now define the Bĕılinson–Drinfeld affine Grassmannian (attached to G) as
the functor from C-algebras to sets given by

(2.3.3) GrBD
G (R) =

{
(y, E , β)

∣∣∣∣∣ y ∈ C(R), E a principal G-bundle on Γ̂0 ∪ Γy,

β : E|Γ̂0∪Γy
◦

∼−→ E0
Γ̂0∪Γy

◦ a trivialization

}
.

Remark 2.3.3. — As in Remarks 2.2.7 and 2.2.14, we may again invoke the
Beauville–Laszlo descent theorem to describe the functor GrBD

G in terms of principal

G-bundles over curves rather than formal neighborhoods. Specifically, GrBD
G (R) also

classifies data (y, E ′, β′) where y ∈ C(R), E ′ is a principal G-bundle over CR, and

β′ : E ′|CR∖(Γ0∪Γy)

∼−→ E0CR∖(Γ0∪Γy)
is a trivialization.

The next statement is the counterpart of Proposition 2.2.15 in our present setting.

Proposition 2.3.4. — The functor GrBD
G is represented by an ind-scheme over C.

The obvious morphism

LGBD → GrBD
G

is an étale locally trivial principal L+GBD-bundle; in particular, it factors through an
isomorphism

(LGBD/L+GBD)fppf
∼−→ GrBD

G .

Proof. — The proof is similar to that of Proposition 2.2.15. In view of Remark 2.3.3,
the representability is proved in an application of [HR1, Corollary 3.10] (applied to
the noetherian ring O = C[x], the O-curve X = C×C, and the divisor (∆C)∪ ({0}×
C)). See also [PZ, p. 231]. For the second sentence, see [HR1, Lemma 3.4(ii)]. (As
always, the key point is to show that given y ∈ C(R), any principal G-bundle over

Γ̂0 ∪ Γy can be trivialized on ̂Γ0 ∪ Γy′ for some étale cover R → R′, which follows
from Proposition 2.1.4.)

The following statement is claimed in various sources, but we were not able to locate
a reference where it is actually proved. The argument below was kindly explained to
us by T. Richarz.

Proposition 2.3.5. — The ind-scheme GrBD
G is ind-proper over C.

Proof. — Consider the functor GrBD
GC

which is defined as for GrBD
G , but replacing the

group scheme G by the constant group scheme GC . (This functor, along with several
variants, will be studied more thoroughly in Section 2.5 below.) This functor is
representable by an ind-projective ind-scheme by [HR1, Corollary 3.11]. The natural
morphism G → GC induces a morphism of ind-schemes

GrBD
G → GrBD

GC
.

We claim that this morphism is an étale locally trivial fibration with fiber the pro-
jective scheme G/B. This will conclude the proof, since properness is fpqc local on
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the base (see Remark 2.1.10(2)). By Proposition 2.2.15 and Proposition 2.3.4 this
morphism is étale locally isomorphic to the projection

(L+GBD
C /L+GBD)fppf ×C GrBD

GC
→ GrBD

GC
,

where L+GBD
C is the counterpart of L+G for the group scheme GC . Next, using (2.3.1)

and the analogous map L+GBD
C → GO × C, it is easy to see that

(L+GBD
C /L+GBD)fppf ∼= GO/I × C ∼= G/B × C,

which shows the desired claim.

We will see later (see Lemma 2.3.10) that this ind-scheme is in fact ind-projective
over C.

2.3.4. Iterated global affine Grassmannians. — We will now define a family of
“iterated” generalizations of GrCen

G and GrBD
G that depend on some labels S1, . . . , Sn.

Each label Si is allowed to be one of the following four symbols:

∅, 0, y, y∪0.
Let R be a C-algebra, and let y ∈ C(R). If S is one of the four symbols above, we

define Γ̂◦
S as follows:

Γ̂◦
S =


Γ̂0 ∪ Γy if S = ∅,

Γ̂0 ∪ Γy ∖ Γ0 if S = 0,

Γ̂0 ∪ Γy ∖ Γy if S = y,

Γ̂0 ∪ Γy ∖ (Γ0 ∪ Γy) if S = y∪0.

Given a sequence of labels S = (S1, . . . , Sn), we define GrG(S) to be the functor
from C-algebras to sets given by

(2.3.4) GrG(S)(R) = {(y, E1, . . . , En, β1, . . . , βn) |

y ∈ C(R), E1, . . . , En are principal G-bundles over Γ̂0 ∪ Γy,

and for 1 ≤ i ≤ n, βi : E i|Γ̂◦
Si

∼−→ E i−1

|Γ̂◦
Si

is an isomorphism

}
.

(When i = 1, in the last condition one should interpret E0
|Γ̂◦

S1

as E0
Γ̂◦
S1

; in other words

β1 is a trivialization of E1
|Γ̂◦

S1

.) There is an action map

L+GBD ×C GrG(S)→ GrG(S)

given on R-points by the formula

(2.3.5) (y, E ′, β′, γ′) · (y, E1, . . . , En, β1, . . . , βn)
= (y, E1, . . . , En, β′

|Γ̂◦
S1

◦ (γ′)−1

|Γ̂◦
S1

◦ β1, β2, . . . , βn),

where we use the identification from Lemma 2.3.1. We will see below (see Proposi-
tion 2.3.11) that the functor GrG(S) is represented by an ind-proper ind-scheme of
ind-finite type.

For n = 1, the functors (2.3.4) are described by the following lemma.
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Lemma 2.3.6. — We have

GrG(∅) ∼= C, GrG(0) ∼= FlG × C, GrG(y) ∼= GrCen
G , GrG(y∪0) ∼= GrBD

G .

In particular, these functors are represented by ind-proper ind-schemes over C.

Proof. — An R-point of GrG(∅) consists of an R-point y of C, a principal G-bundle
over Γ̂0 ∪ Γy, and a trivialization of this G-bundle. Up to isomorphism, for a fixed y
there is only one such datum; so the first isomorphism is clear.

Next, there is an obvious map GrG(0)→ FlG × C given by

(2.3.6) (y, E , β) 7→
(
(E|Γ̂0

, β|Γ̂◦
0
), y
)
.

To show that this is an isomorphism, we must describe the inverse map. Given
(E , β) ∈ FlG(R) and y ∈ C(R), using the Beauville–Laszlo descent theorem (see [Zh4,

Theorem 1.4.3]) one can obtain a principal G-bundle E by gluing E (on Γ̂0) with the

trivial principal bundle on C◦
R using β; then the restriction Ẽ of E to Γ̂0 ∪ Γy comes

with an isomorphism β̃ : Ẽ|Γ̂0∪Γy∖Γ0

∼−→ E0
Γ̂0∪Γy∖Γ0

. It is easily checked that the map

((E , β), y) 7→ (y, Ẽ , β̃)
is inverse to (2.3.6).

The proof that GrG(y) ∼= GrCen
G is very similar and will be omitted. Finally, the

isomorphism GrG(y∪0) ∼= GrBD
G is clear from the definition.

The same reasoning as for the first isomorphism in Lemma 2.3.6 shows that if
Si = ∅, then there is a canonical isomorphism

(2.3.7) GrG(S1, . . . , Si−1,∅, Si+1, . . . , Sn) ∼= GrG(S1, . . . , Si−1, Si+1, . . . , Sn).

Remark 2.3.7. — The second isomorphism in Lemma 2.3.6 shows that the L+GBD-
action on GrG(0) factors through the map L+GBD → I × C from (2.3.1). Similarly,
the L+GBD-action on GrG(y) factors through the map L+GBD → L+G of (2.3.2).

There is an obvious “union” operation on the set of symbols ∅, 0, y, y∪0. For
1 ≤ i ≤ j ≤ n, we define the convolution map to be the map

(2.3.8) µi,j : GrG(S1, . . . , Sn)→ GrG(S1, . . . , Si−1, Si ∪ · · · ∪ Sj , Sj+1, . . . , Sn)

that sends (y, E1, . . . , En, β1, . . . , βn) to the point

(y, E1, . . . , Ei−1, Ej , Ej+1, . . . En, β1, . . . , βi−1, β
′
j , βj+1, . . . , βn)

where β′
j is given by the following formula (in which we set S′ = Si ∪ · · · ∪ Sj):

β′
j = βj|Γ̂◦

S′
◦ βj−1|Γ̂◦

S′
◦ · · · ◦ βi|Γ̂◦

S′
.

Remark 2.3.8. — There are closely related functors Gr′G(S1, . . . , Sn) that are de-

fined similarly, except that every mention of Γ̂0 ∪ Γy is replaced by CR. For instance,
we have

Gr′G(y)(R) =

{
(y, E , β)

∣∣∣∣ y ∈ C(R), E a principal G-bundle over CR,

β : E|CR∖Γy

∼−→ E0CR∖Γy
a trivialization

}
.
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(It is left to the reader to write down the definition of Gr′G(S1, . . . , Sn) carefully in
general.)

For any S = (S1, . . . , Sn), there is an isomorphism of functors

Gr′G(S)
∼−→ GrG(S).

In fact, there is an obvious map Gr′G(S)→ GrG(S) given by restricting all G-bundles
and maps from CR to Γ̂0 ∪ Γy. To construct a map in the opposite direction, suppose
we have (y, E1, . . . , En, β1, . . . , βn) ∈ GrG(S)(R). Then each E i is equipped with a

trivialization over (Γ̂0 ∪ Γy)
◦ given by

β
1|(Γ̂0∪Γy)◦

◦ · · · ◦ β
i|(Γ̂0∪Γy)◦

: E i
|(Γ̂0∪Γy)◦

→ E0
(Γ̂0∪Γy)◦

.

Let Ẽ i be the principal G-bundle on CR obtained by gluing E i to the trivial bundle

on CR ∖ (Γ0 ∪ Γy) along (Γ̂0 ∪ Γy)
◦. (Once again, this gluing is possible thanks to

the Beauville–Laszlo descent theorem [Zh4, Theorem 1.4.3].) Similarly, let β̃i be the

map obtained by gluing βi to the identity map of the trivial bundle along (Γ̂0 ∪ Γy)
◦.

Then (y, Ẽ1, . . . , Ẽn, β̃1, . . . , β̃n) is an R-point of Gr′G(S), and our construction defines
a map GrG(S)→ Gr′G(S) that is inverse to the map mentioned above.

It might seem more appealing to work with the functors Gr′G(S1, . . . , Sn) rather
than GrG(S1, . . . , Sn). However, in the present book there is a compelling reason to
stick to GrG(S1, . . . , Sn): see Remark 2.3.15 below for details.

2.3.5. Principal bundles and representability. — The goal of this subsection
is to prove that GrG(S) is represented by an ind-scheme. As a tool for the proof, we

introduce a functor Gr
(∞)
G (S1, . . . , Sn), defined as follows (here S1, . . . , Sn are labels

as in §2.3.4):

Gr
(∞)
G (S1, . . . , Sn)(R) = {(y, E1, . . . , En, β1, . . . , βn, γ) |

y ∈ C(R), E1, . . . , En principal G-bundles over Γ̂0 ∪ Γy;

for 1 ≤ i ≤ n, βi : E i|Γ̂◦
Si

∼−→ E i−1

|Γ̂◦
Si

an isomorphism;

γ : En ∼−→ E0
Γ̂0∪Γy

a trivialization

 .

(Here again, for i = 1, β1 is understood to be a trivialization.) There is a right action

of L+GBD on Gr
(∞)
G (S1, . . . , Sn) given by

(2.3.9) (y, E1, . . . , En, β1, . . . , βn, γ) · (y, E ′, β′, γ′)

= (y, E1, . . . , En, β1, . . . , βn, γ′ ◦ (β′)−1 ◦ γ),

where (y, E ′, β′, γ′) ∈ L+GBD(R) as in the description in Lemma 2.3.1. There is also

a left action of L+GBD on Gr
(∞)
G (S1, . . . , Sn) given by a formula similar to (2.3.5).

There is an obvious map

(2.3.10) p : Gr
(∞)
G (S1, . . . , Sn)→ GrG(S1, . . . , Sn)



2.3. ITERATED GLOBAL AFFINE GRASSMANNIANS 93

which is given an R-points by forgetting γ. This map can be seen as a special case of
a more general map

(2.3.11) pi : Gr
(∞)
G (S1, . . . , Si)×C GrG(Si+1, . . . , Sn)→ GrG(S1, . . . , Sn),

that is given by the following formula on R-points:(
(y, E1, . . . , E i, β1, . . . , βi, γ), (y, E i+1, . . . , En, βi+1, . . . , βn)

)
7→ (y, E1, . . . , En, β1, . . . , βi, γ−1

|Γ̂◦
Si+1

◦ βi+1, βi+2, . . . , βn).

We equip the domain of (2.3.11) with a right L+GBD-action by combining the right
action from (2.3.9) with the inverse of the left action from (2.3.5). That is, we set

(u, v) · g = (xg, g−1y),

{
u ∈ Gr

(∞)
G (S1, . . . , Si)(R), v ∈ GrG(Si+1, . . . , Sn)(R),

g ∈ L+GBD(R).

The map pi in (2.3.11) is then L+GBD-invariant, i.e., it intertwines this action with
the trivial L+GBD-action on GrG(S1, . . . , Sn).

Lemma 2.3.9. — The map p from (2.3.10), resp. the map pi from (2.3.11), is an
étale locally trivial torsor for the sheaf of groups L+GBD ×C GrG(S1, . . . , Sn).

Proof. — We will prove the claim for (2.3.11). The proof for (2.3.10) is essentially
identical. Let S′ = (S1, . . . , Si) and S

′′ = (Si+1, . . . , Sn), and let S = (S1, . . . , Sn). It
is straightforward to check that the obvious map

Gr
(∞)
G (S′)×C L+GBD ×C GrG(S

′′)→(
Gr

(∞)
G (S′)×C GrG(S

′′)
)
×GrG(S)

(
Gr

(∞)
G (S′)×C GrG(S

′′)
)

is an isomorphism of functors, so what we must show is that pi admits sections étale
locally. Let (y, E1, . . . , En, β1, . . . , βn) be an R-point of GrG(S1, . . . , Sn). For any ring
homomorphism R → R′, let (yR′ , E1R′ , . . . EnR′ , β1,R′ , . . . , βn,R′) be the corresponding
R′-point. By Proposition 2.1.4, we may choose R → R′ so that it is an étale cover,
and so that E iR′ is trivial. That is, there exists an isomorphism

γ : E iR′
∼−→ E0 ̂Γ0∪Γy

R′
.

Let

β′
i+1,R := γ|Γ̂◦

Si+1

◦ βi+1,R′ : E i+1

|Γ̂◦
Si+1

∼−→ E0
Γ̂◦
Si

.

Then the point(
(yR′ , E1R′ , . . . E iR′ , β1,R′ , . . . , βi,R′ , γ), (yR′ , E i+1

R′ , . . . EnR′ , β′
i+1,R′ , βi+2,R′ , . . . , βn,R′)

)
∈ (Gr

(∞)
G (S1, . . . , Si)×C GrG(Si+1, . . . , Sn))(R)

gives us the desired section of p.
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In the case of Gr
(∞)
G (y∪0), the right action of L+GBD extends to an action of

LGBD: indeed, Lemma 2.3.1 implies that

(2.3.12) Gr(∞)(y∪0) ∼= LGBD.

Lemma 2.3.10. — For any S ∈ {∅, 0, y, y∪0}, the ind-scheme GrG(S) admits a
presentation

GrG(S) = colimmGrG(S)m

indexed by Z≥0 such that the L+GBD-action stabilizes each GrG(S)m, and each of
these schemes is projective and admits an L+GBD-equivariant line bundle which is
relatively ample for the structure morphism GrG(S)m → C.

Proof. — As in the proof of Proposition 2.2.15 there exists a closed immersion G →
GLn,C for some n ≥ 0 such that the quotient GLn,C/G is quasi-affine, hence a mor-
phism of ind-schemes GrG(S) → GrGLn,C

(S) which is representable by a locally
closed immersion. Here GrGLn,C

(S) is defined as for GrG(S), but with the group
scheme G replaced by GLn,C . This ind-scheme is studied in [HR1, Lemma 3.8]; the
construction explained there shows that it admits a presentation

GrGLn,C
(S) = colimmGrGLn,C

(S)m

where each scheme GrGLn,C
(S)m is a Quot scheme, and in particular admits a canoni-

cal closed immersion into a Grassmannian scheme. Pulling back the natural relatively
ample line bundle on this Grassmannian scheme we obtain a relatively ample line bun-
dle on GrGLn,C

(S)m. We then have a presentation

GrG(S) = colimmGrG(S)m where GrG(S)m := GrG(S)×GrGLn,C
(S) GrGLn,C

(S)m.

SinceGrG(S) is ind-proper over C (see Lemma 2.3.6), each schemeGrG(S)m is proper
over C, which implies that the locally closed immersion

GrG(S)m → GrGLn,C
(S)m

is proper by [SP, Tag 01W6], hence a closed immersion by [SP, Tag 04XV].
Hence GrG(S)m is projective, and restricting the relatively ample line bundle on
GrGLn,C

(S)m considered above we obtain the desired relatively ample L+GBD-
equivariant line bundle on GrG(S)m.

Proposition 2.3.11. — The functor GrG(S) is represented by an ind-proper ind-
scheme over C. More precisely, it admits a presentation

GrG(S) = colimmGrG(S)m

indexed by integers m ≥ 0, where each GrG(S)m is an L+GBD-stable closed subscheme
that is proper (in particular, of finite type) over C. Moreover, for any m the (left)
L+GBD-action on GrG(S)m factors through an action of the smooth group scheme of
finite type L+

jm
GBD for some jm ≥ 1.

Proof. — Write S = (S1, . . . , Sn). We proceed by induction on n.
Suppose first that n = 1. The functors to consider are those listed in Lemma 2.3.6.

If S1 = ∅, then the claims about GrG(∅) ∼= C are obvious. For the remaining
cases, representability holds by Propositions 2.2.5, 2.2.15, and 2.3.4. The rest of the

https://stacks.math.columbia.edu/tag/01W6
https://stacks.math.columbia.edu/tag/04XV
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proposition just records some observations that can be made in the course of proving
representability: see the references to [HR1, He, PZ] given in those proofs for further
details.

Suppose now that n > 1, and assume that GrG(S1, . . . , Sn−1) is known to be
represented by an ind-scheme. As explained in §2.1.2, the torsor (see Lemma 2.3.9)

(2.3.13) Gr
(∞)
G (S1, . . . , Sn−1)→ GrG(S1, . . . , Sn−1)

is automatically an étale locally trivial principal L+GBD-bundle; in particular,

Gr
(∞)
G (S1, . . . , Sn−1) is represented by an ind-scheme.

Recall from Lemma 2.3.1 that L+GBD is flat and affine (and hence quasi-compact)
over C. Combining this with Lemma 2.3.10, we see that the assumptions of Re-
mark 2.1.10(1) are satisfied; so by Proposition 2.1.9 the associated bundle

Gr
(∞)
G (S1, . . . , Sn−1)×L+GBD

C GrG(Sn)

exists as an ind-scheme. On the other hand, by another instance of Lemma 2.3.9, we

have already identified the quotient of Gr
(∞)
G (S1, . . . , Sn−1)×CGrG(Sn) by the right

L+GBD-action: it is GrG(S1, . . . , Sn). We conclude that

GrG(S1, . . . , Sn) ∼= Gr
(∞)
G (S1, . . . , Sn−1)×L+GBD

C GrG(Sn).

In particular, GrG(S1, . . . , Sn) is represented by an ind-scheme. More precisely, let

Gr
(∞)
G (S1, . . . , Sn−1)m be the preimage of GrG(S1, . . . , Sn−1)m under (2.3.13), and

then set

GrG(S1, . . . , Sn)m := Gr
(∞)
G (S1, . . . , Sn−1)m ×L+GBD

C GrG(Sn)m.

Proposition 2.1.9 tells us that GrG(S1, . . . , Sn) is the colimit of the schemes
GrG(S1, . . . , Sn)m with closed immersions as transition maps. Since the schemes
GrG(S1, . . . , Sn−1)m and GrG(Sn)m are each proper over C, the same holds for
GrG(S1, . . . , Sn)m by Remark 2.1.10(2).

Remark 2.3.12. — Note that a morphism between ind-proper ind-schemes is auto-
matically ind-proper by [SP, Tag 01W6]. In particular, the morphism µi,j of (2.3.8)
is ind-proper.

In the course of the preceding proof, we have also established the following claim:

Proposition 2.3.13. — The functor Gr
(∞)
G (S) is represented by an ind-scheme, and

the map p : Gr
(∞)
G (S) → GrG(S) makes Gr

(∞)
G (S) into a principal L+GBD-bundle

over GrG(S).

Finally, since the domain and codomain of (2.3.11) are now both known to be
representable, we have the following immediate consequence of Lemma 2.3.9.

Corollary 2.3.14. — Let S = (S1, . . . , Sn). For any i ∈ {1, . . . , n − 1}, the asso-

ciated bundle Gr
(∞)
G (S1, . . . , Si)×L+GBD

C GrG(Si+1, . . . , Sn) exists as an ind-scheme,
and we have

GrG(S1, . . . , Sn) ∼= Gr
(∞)
G (S1, . . . , Si)×L+GBD

C GrG(Si+1, . . . , Sn).

https://stacks.math.columbia.edu/tag/01W6
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Remark 2.3.15. — One can write down a similar functor Gr
(∞)′
G (S1, . . . , Sn) start-

ing from the functor Gr′G(S1, . . . , Sn) mentioned in Remark 2.3.8. An R-point of this
functor would include the datum of a trivialization γ : En → E0CR

. It is tempting to

guess that this functor is a principal bundle for the group L+
CG given by

R 7→
{
(y, E , β, γ)

∣∣∣∣ y ∈ C(R), E a principal G-bundle over CR,

β : E ∼−→ E0CR
and γ : E ∼−→ E0CR

trivializations

}
.

Unfortunately, L+
CG is only a group ind-scheme, and not a group scheme, over C.

The literature does not seem to treat torsors and associated bundles for such objects,
and thus it is unclear (at least to us) whether a version of Lemma 2.3.9 holds for
Gr′G(S1, . . . , Sn). Since this lemma is essential to all the results in this subsection,
we do not know how to proceed with the study of Gr′G(S1, . . . , Sn). In this book, we
avoid this problem by working exclusively with GrG(S1, . . . , Sn).

2.3.6. More principal bundles over GrG(S1, . . . , Sn). — Occasionally, we will

need variants of Gr
(∞)
G (S), denoted by

Gr
(∞)
G,0 (S) Gr

(∞)
G,y (S).

We define Gr
(∞)
G,0 (S1, . . . , Sn)(R) to be the set of tuples (y, E1, . . . , En, β1, . . . , βn, γ)

where (y, E1, . . . , En, β1, . . . , βn) ∈ GrG(S1, . . . , Sn)(R), and

γ : En|Γ̂0

∼−→ E0
Γ̂0

is a trivialization. The definition of Gr
(∞)
G,y (S1, . . . , Sn)(R) is the same, except that γ

should be a trivialization

γ : En|Γ̂y

∼−→ E0
Γ̂y
.

Again, there are obvious right actions of I×C on Gr
(∞)
G,0 (S) and of L+G on Gr

(∞)
G,y (S),

and projection maps

p0 : Gr
(∞)
G,0 (S)→ GrG(S),

py : Gr
(∞)
G,y (S)→ GrG(S).

By Lemmas 2.2.4 and 2.2.12, we have the following special cases, in the spirit of
Lemma 2.3.6 and (2.3.12):

(2.3.14) Gr
(∞)
G,0 (0) ∼= GK × C, Gr

(∞)
G,y (y) ∼= LG.

The proof of the next statement closely follows the pattern of Proposition 2.3.13,
and will be omitted.

Proposition 2.3.16. — 1. The functor Gr
(∞)
G,0 (S) is represented by an ind-

scheme over C, and the map p0 : Gr
(∞)
G,0 (S) → GrG(S) is a principal

I × C-bundle over GrG(S).
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2. The functor Gr
(∞)
G,y (S) is represented by an ind-scheme over C, and the map

py : Gr
(∞)
G,y (S)→ GrG(S) is a principal L+G-bundle over GrG(S).

Example 2.3.17. — Consider the morphism Gr
(∞)
G,0 (y)→ GrG(y). It is easily seen

that the restriction of this morphism to C◦ identifies with the projection GrG × I ×
C◦ → GrG × C◦, while its restriction to 0 identifies with the map GK → FlG.

2.3.7. Special and generic fibers. — In the preceding subsections, we have intro-
duced a number of ind-schemes Y equipped with maps Y → C, including LG, L+G,
GrG(S), Gr

(∞)
G (S), etc. Following the conventions introduced in §2.2.3, for each such

ind-scheme Y , we denote by

Y0, resp. Y|C◦ ,

the preimage of {0}, resp. C◦, in Y . Our goal in this subsection is to determine the
schemes Y0 (called “special fibers”) and Y|C◦ (called “generic fibers”). The results
are summarized in Table 2.3.1. (Note that the first column of these table relies on
identifications from Lemma 2.3.6 and from (2.3.12) and (2.3.14).)

Many of the entries in this table have been discussed in earlier sections. Specifically,
the special and generic fibers for LG, L+G, and GrCen

G were described in §2.2.3. The
special and generic fibers for Gr

(∞)
G (0) ∼= GK × C and for GrG(0) ∼= FlG × C are

obvious.
Next, consider the ind-schemes LGBD, L+GBD, and GrBD

G . It is immediate from
Lemma 2.3.1 and from (2.3.3) that their special fibers are identified with those

of LG, L+G, and GrCen
G , respectively. To describe their generic fibers, we use

Lemma 2.1.6(2). This lemma implies that the generic fiber of, say, L+GBD is the
product of the generic and special fibers of L+G. Similar reasoning applies to LGBD

and GrBD
G .

It remains to describe the special and generic fibers of GrG(S) in general. The
special fibers are given by the following lemma.

Lemma 2.3.18. — There is a canonical isomorphism of ind-schemes

GrG(S1, . . . , Sn)0 ∼= G(K )×I · · · ×I G(K )×I FlG︸ ︷︷ ︸
m factors

,

where m is the number of labels Si with Si ̸= ∅. Moreover, via this isomorphism, the
convolution map

(µi,j)0 : GrG(S1, . . . , Sn)0 → GrG(S1, . . . , Si−1, Si ∪ · · · ∪ Sj , Sj+1, . . . , Sn)0

is identified with the usual convolution map for twisted products of FlG.

Proof. — In view of (2.3.7), we may assume that none of the Si’s are ∅, so that
m = n. And since we are taking the fiber at 0, we may as well further assume that
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Ind-scheme Y Special fiber Y0 Generic fiber Y|C◦

Gr
(∞)
G,0 (0) ∼= GK × C GK GK × C◦

Gr
(∞)
G,y (y) ∼= LG GK GK × C◦

L+G I GO × C◦

Gr
(∞)
G (y∪0) ∼= LGBD GK GK ×GK × C◦

L+GBD I L+G|C◦ ×
C◦

I ∼= GO × I × C◦

GrG(0) ∼= FlG × C FlG FlG × C◦

GrG(y) ∼= GrCen
G FlG GrG × C◦

GrG(y∪0) ∼= GrBD
G FlG GrG × FlG × C◦

GrG(0, . . . , 0) GK

I
× · · ·

I
×GK

I
× FlG GK

I
× · · ·

I
×GK

I
× FlG × C◦

GrG(y, . . . , y) GK

I
× · · ·

I
×GK

I
× FlG GK

GO
× · · ·

GO
× GK

GO
× GrG × C◦

GrG(S) GK

I
× · · ·

I
×GK

I
× FlG GrG(y ∩ S)|C◦ ×

C◦
GrG(0 ∩ S)|C◦

Table 2.3.1. Special and generic fibers

S1 = · · · = Sn = 0. From Lemma 2.2.4 and Proposition 2.2.5, the right-hand side
represents the functor

R 7→ {(E1, . . . , En, β1, . . . , βn) |
E1, . . . , En are principal I-bundles, and

for 1 ≤ i ≤ n, βi : E i| Spec(R((x)))

∼−→ E i−1
| Spec(R((x))) is an isomorphism

}
,

where, as usual, β1 should be understood to be a trivialization. Since the restriction
of G to Spec(O) is I, this scheme coincides with GrG(S1, . . . , Sn)×C {0}.

The final assertion is easy, and left to the reader.

Before studying the remaining generic fibers, we need some new notation. Note
that there is an obvious “intersection” operation on the set of symbols ∅, 0, y, y∪0. If
S = (S1, . . . , Sn), we write

y ∩ S = (y ∩ S0, . . . , y ∩ Sn) and 0 ∩ S = (0 ∩ S0, . . . , 0 ∩ Sn).

Proposition 2.3.19. — Let S = (S1, . . . , Sn) be a sequence of symbols among
∅, 0, y, y∪0.

1. There is a canonical isomorphism

ν : GrG(y ∩ S)|C◦ ×C◦ GrG(0 ∩ S)|C◦
∼−→ GrG(S)|C◦ .

Moreover, this isomorphism is compatible with convolution; that is, if we let S′ =
(S1, . . . , Si−1, Si ∪ · · · ∪Sj , Sj+1, . . . , Sn), then the following diagram commutes:

(2.3.15)

GrG(y ∩ S)|C◦ ×C◦ GrG(0 ∩ S)|C◦ GrG(S)|C◦

GrG(y ∩ S′)|C◦ ×C◦ GrG(0 ∩ S′)|C◦ GrG(S
′)|C◦ .

ν

µi,j µi,j

ν



2.3. ITERATED GLOBAL AFFINE GRASSMANNIANS 99

2. There is a canonical isomorphism

ν̃ : Gr
(∞)
G,y (y ∩ S)|C◦ ×C◦ Gr

(∞)
G,0 (0 ∩ S)|C◦

∼−→ Gr
(∞)
G (S)|C◦ .

Moreover, this isomorphism is compatible with the actions of L+GBD
|C◦

∼=
L+G|C◦ × I on both sides.

Proof. — We establish the isomorphisms ν and ν̃ simultaneously by induction on n.
If n = 1, these claims are contained in the part of Table 2.3.1 that has already been es-
tablished. Suppose now that n > 1, and set S′ = (S1, . . . , Sn−1). By Corollary 2.3.14
and induction, we have

GrG(S)|C◦ ∼= Gr
(∞)
G (S′)|C◦ ×

L+GBD
|C◦

C◦ GrG(Sn)|C◦

∼=
(
Gr

(∞)
G,y (y ∩ S′)|C◦ ×L+G|C◦

C◦ GrG(y ∩ Sn)|C◦

)
×C◦

(
Gr

(∞)
G,0 (0 ∩ S′)|C◦ ×I×C

◦

C◦ GrG(0 ∩ Sn)|C◦

)
∼= GrG(y ∩ S)|C◦ ×C◦ GrG(0 ∩ S)|C◦ .

This is the desired isomorphism ν. The inductive step for ν̃ is similar. The proof of
compatibility with µ is routine and will be omitted.

In view of Proposition 2.3.19 and (2.3.7), to finish the description of the generic
fiber GrG(S)|C◦ , we need only consider the case where S consists only of 0’s, or only
of y’s. These cases are treated in the following lemma.

Lemma 2.3.20. — 1. There is a canonical isomorphism of ind-schemes over C◦

GrG(0, . . . , 0)|C◦ ∼=
(
GK ×I · · · ×I GK ×I FlG

)
× C◦,

where the number of factors in parentheses in the right-hand side is the number
of symbols 0 in the left-hand side.

2. There is a canonical isomorphism of ind-schemes over C◦

GrG(y, . . . , y)|C◦ ∼=
(
GK ×GO · · · ×GO GK ×GO GrG

)
× C◦,

where the number of factors in parentheses in the right-hand side is the number
of symbols y in the left-hand side.

Proof. — In each case, the proof is by induction on the number of factors, the base
case being provided by previously established entries in Table 2.3.1.

Finally, combining Proposition 2.3.19 and Lemma 2.3.20, for any S we obtain a
canonical isomorphism

(2.3.16) GrG(S)|C◦ ∼=
(
GK ×GO · · · ×GO GrG︸ ︷︷ ︸

m factors

)
×
(
GK ×I · · · ×I FlG︸ ︷︷ ︸

n factors

)
× C◦

where m is the number of symbols belonging to {y, y∪0}, and n is the number of
symbols belonging to {0, y∪0}. In subsequent sections, this isomorphism will typically
be denoted by ν.
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2.4. Nearby cycles on iterated global affine Grassmannians

2.4.1. Equivariant derived categories. — Given a sequence S and an integer
m ≥ 1, let jm be such that the action of L+GBD onGrG(S)m factors through L+

jm
GBD,

in the notation of Proposition 2.3.11. Then the theory in Chapter 10 lets us define
the equivariant derived category

Db
L+

jm
GBD(GrG(S)m,k).

This category is independent of the choice of jm (up to canonical equivalence); indeed,
for any k ≥ 0, because the kernel of L+

jm+k
GBD → L+

jm
GBD is smooth with unipotent

fibers (see Lemma 2.3.2), there is a canonical equivalence of categories

Db
L+

jm+kGBD(GrG(S)m,k)
∼−→ Db

L+
jm

GBD(GrG(S)m,k),

see Proposition 10.2.8. This justifies defining the “L+GBD-equivariant derived cate-
gory” by

Db
L+GBD(GrG(S)m,k) := Db

L+
jm

GBD(GrG(S)m,k) for any sufficiently large jm,

even though L+GBD-equivariance is not explicitly treated by the theory of Chapter 10.
Next, the closed embedding GrG(S)m ↪→ GrG(S)m+1 gives rise to a fully faithful

functor

Db
L+GBD(GrG(S)m,k)→ Db

L+GBD(GrG(S)m+1,k).
Using these transition functors, we define

Db
L+GBD(GrG(S),k) := lim−→

m

Db
L+GBD(GrG(S)m,k).

In particular, by definition, any object of Db
L+GBD(GrG(S),k) is supported on some

finite-type subscheme GrG(S)m.

In the special case of GrG(y) = GrCen
G , the reasoning above can be carried out

using L+G instead of L+GBD. One then obtains the equivariant derived category

Db
L+G(GrCen

G ,k).

2.4.2. Gm-actions. — Consider the natural action of Gm on C = A1
C. According

to [Zh1, Lemma 5.4], there is an action

(2.4.1) Gm × G → G

such that the structure map G → C is Gm-equivariant. Over C◦, Gm acts on G|C◦ ∼=
G × C◦ by the natural action on the second factor. Thus, most of the work in
constructing (2.4.1) goes into showing that the Iwahori group scheme I admits a
suitable Gm-action, using Bruhat–Tits theory.

This action can also be constructed using the formalism of Néron blowups (see
Remark 2.2.9) as follows. By compatibility of Néron blowups with base change
(see [MRR, Theorem 3.2(6)]), the fiber product

G ×A1 (Gm × A1),
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where the morphism Gm × A1 → A1 is the action morphism, is the Néron blowup of
(G×A1)×A1 (Gm×A1) in B× (Gm×{0}) along Gm×{0}. Now using the Gm-action
on A1 we obtain an identification of (G × A1) ×A1 (Gm × A1) with the similar fiber
product where the morphism Gm×A1 → A1 is the projection. Again by compatibility
of Néron blowups with base change, we deduce an isomorphism

G ×A1 (Gm × A1)
∼−→ Gm × G

as schemes over Gm × A1. Composing the inverse isomorphism with the natural
projection on G defines the desired action.

The action (2.4.1) gives rise to an action

Gm × L+GBD → L+GBD.

Let us write this action down explicitly in the language of Lemma 2.3.1. Given
r ∈ Gm(R) = R×, let ρr : CR → CR be the map given by multiplication by r. We
also write ρr for the induced map on closed subschemes of CR. If E is a G-bundle
on Γ̂0 ∪ Γy, then the pullback ρ∗rE is a ρ∗rG-bundle on ̂Γ0 ∪ Γry. But the action
map (2.4.1) gives rise to a canonical isomorphism ρ∗rG ∼= G, so ρ∗rE can be regarded
as a G-bundle. The pullback along ρr of the trivial bundle is canonically identified
with the trivial bundle, so the pullback of a trivialization is again a trivialization. To
summarize, the action map Gm(R)× L+GBD(R)→ L+GBD(R) is given by

r · (y, E , β, γ) = (ry, ρ∗rE , ρ∗rβ, ρ∗rγ).
By construction, the structure map L+GBD → C is Gm-equivariant.

The same construction gives rise to Gm-actions on many other (ind-)schemes over
C, including L+G, LGBD, LG, and GrG(S) for any sequence S. It can also be applied
to the finite-type group schemes L+

mGBD and L+
mG, and to the finite-type schemes

GrG(S)m.
Let m and jm be such that the action of L+GBD on GrG(S)m factors through

L+
jm
GBD. Then Chapter 10 explains how to define the equivariant derived category

Db
Gm⋉L+

jm
GBD

(GrG(S)m,k). The procedure from §2.4.1 can be repeated with this

additional Gm-action to define the category

Db
Gm⋉L+GBD(GrG(S),k).

In the special case of GrG(y) = GrCen
G , we similarly obtain the category

Db
Gm⋉L+G(GrCen

G ,k).

Taking the fiber at 0 ∈ C, one obtains an action of Gm ⋉ I on GrG(S)0, or
in the case where S = (y), an action of Gm ⋉ I on FlG. The Gm-action in this
case is commonly known as the “loop rotation” action. Following the discussion in
Section 9.3, one may consider the categories of Gm-monodromic or unipotent Gm-
monodromic I-equivariant complexes on FlG. In fact, it turns out that every I-
equivariant complex is unipotent Gm-monodromic.

Lemma 2.4.1. — Let Gm act on FlG by loop rotation. For this action, we have

Db
I (FlG( Gm,k) = Db

I,Gm-mon(FlG,k) = Db
I (FlG,k).
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Proof. — By definition, Db
I (FlG( Gm,k) is a full triangulated subcategory of

Db
I,Gm-mon(FlG,k), which is in turn a full triangulated subcategory of Db

I (FlG,k).
To prove the lemma, it is enough to show that Db

I (FlG,k) is generated by objects
in Db

I (FlG( Gm,k). Every I-equivariant perverse sheaf admits a filtration whose
subquotients are intersection cohomology complexes associated to a constant sheaf
on some I-orbit in Fl. Every such orbit is stable under the loop rotation Gm-action,
so such intersection cohomology complexes are Gm-equivariant. We conclude that
every I-equivariant perverse sheaf lies in Db

I (FlG( Gm,k), as desired.

2.4.3. Twisted products and convolution. — Suppose S = (S1, . . . , Sn), and
let S′ = (S1, . . . , Si) and S

′′ = (Si+1, . . . , Sn). Let

F ∈ Db
c (GrG(S

′),k) and G ∈ Db
L+GBD(GrG(S

′′),k).

We define

F
L

⊠C G := p∗1F
L
⊗ p∗2G [−1] ∈ Db

c (GrG(S
′)×C GrG(S

′′),k),

where

p1 : GrG(S
′)×C GrG(S

′′)→ GrG(S
′),

p2 : GrG(S
′)×C GrG(S

′′)→ GrG(S
′′)

are the projection maps.

Next, we wish to define an object F ⊠̃C G in Db
c (GrG(S),k), called their twisted

external tensor product. The definition involves the following diagram, where p and
q are the obvious maps:

(2.4.2) GrG(S
′)×C GrG(S

′′)
p←− Gr

(∞)
G (S′)×C GrG(S

′′)

q−→ Gr
(∞)
G (S′)×L+GBD

C GrG(S
′′)

Cor. 2.3.14−−−−−−−→
∼

GrG(S).

Identify the last two spaces in this diagram. Informally, we would like to define

F ⊠̃C G to be the object uniquely characterized by the property that there is an
isomorphism

(2.4.3) p∗(F
L

⊠C G ) ∼= q∗(F ⊠̃C G )

of L+GBD ×C L+GBD-equivariant complexes on Gr
(∞)
G (S′) ×C GrG(S

′′). Unfortu-
nately, this does not quite make sense: the latter scheme is not of finite type over C,
so Chapter 10 does not treat equivariant sheaves on it.

The solution to this difficulty is to approximateGr
(∞)
G (S′)×CGrG(S

′′) by a scheme
of finite type. (The same difficulty and the same solution implicitly arose in §1.3.1.)
Choose an integer m ≥ 0 such that F is supported on GrG(S

′)m and G is supported
on GrG(S

′′)m, and then choose an integer jm ≥ 1 such that the L+GBD-action on

GrG(S
′′)m factors through L+

jm
GBD. Define a functor Gr

(jm)
G (S′) by copying the

definition of Gr
(∞)
G (S′) from §2.3.5, but requiring γ instead to be a trivialization of
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En over the jm-th nilpotent thickening (Γ0 ∪ Γy)
(jm) of Γ0 ∪ Γy, rather than over its

completion. It follows easily by the methods of §2.3.5 that

Gr
(jm)
G (S′)→ GrG(S

′)

is a principal L+
jm
GBD-bundle. Let Gr

(jm)
G (S′)m be the preimage of GrG(S

′)m under

this map. Then Gr
(jm)
G (S′)m → GrG(S

′)m is also a principal L+
jm
GBD-bundle; in

particular, Gr
(jm)
G (S′)m is a scheme of finite type over C. We can now consider the

diagram

(2.4.4) GrG(S
′)m ×C GrG(S

′′)m
p←− Gr

(jm)
G (S′)m ×C GrG(S

′′)m

q−→ Gr
(jm)
G (S′)m ×

L+
jm

GBD

C GrG(S
′′)m

∼−→ GrG(S)m.

(Here, the last isomorphism holds by the same reasoning as in Corollary 2.3.14.) Ac-
cording to Proposition 10.2.6, the functor q∗ gives rise to an equivalence of categories

q∗ : Db
c

(
Gr

(jm)
G (S′)m ×L+

jm
GBD

GrG(S
′′)m,k

)
∼−→ Db

L+
jm

GBD

(
Gr

(jm)
G (S′)m ×C GrG(S

′′)m,k
)
.

We now define F ⊠̃C G ∈ Db
c (GrG(S),k) to be the unique object that is supported

on GrG(S)m and satisfying (2.4.3), but with p and q as in (2.4.4) rather than (2.4.2).
A routine argument shows that this object is independent of the choice of m and jm.

If F lives in Db
L+GBD(GrG(S

′),k) instead, the same construction gives us

F ⊠̃C G ∈ Db
L+GBD(GrG(S),k).

Now suppose that i = 1 and n = 2, i.e., that S′ and S′′ each consist of a single
symbol, say S′ = (S′) and S′′ = (S′′). Then we have a convolution map

µ = µ1,2 : GrG(S
′, S′′)|C◦ → GrG(S

′ ∪ S′′)|C◦ .

For F and G as above, we define their convolution product to be the object F ⋆C G ∈
Db
c (GrG(S

′ ∪ S′′),k) given by

F ⋆C G = µ∗(F ⊠̃C G ).

As above, if F happens to belong to the L+GBD-equivariant derived category, then
F ⋆C G does as well.

If now S′′′ = (S′′′) is a third symbol, and if H ∈ Db
L+GBD(Gr(S′′′),k), then there

is a natural associativity isomorphism

α = αF ,G ,H : (F ⋆C G ) ⋆C H
∼−→ F ⋆C (G ⋆C H ).
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This associativity map satisfies an appropriate version of the “pentagon axiom.” Ex-
plicitly, α is constructed using the commutativity of the diagram

(2.4.5)

GrG(S
′, S′′, S′′′)

GrG(S
′ ∪ S′′, S′′′) GrG(S

′, S′′ ∪ S′′′)

GrG(S
′ ∪ S′′ ∪ S′′′).

µ1,2

µ1,3

µ2,3

µ1,2 µ1,2

Finally, we remark that there are a few straightforward variants of the construction
above that will be useful:

– one can work with Gm ⋉L+GBD-equivariant complexes instead of just L+GBD-
equivariant complexes;

– one can carry out these constructions over C◦ instead of C.

We will use obvious notations for these variants.

2.4.4. Nearby cycles. — Let S = (S1, . . . , Sn), and consider the structure map
GrG(S)→ C . Using Lemma 2.3.18, we have a nearby cycles functor

Ψ = ΨS : Db
c (GrG(S)|C◦ ,k)→ Db

c (GK ×I · · · ×I GK ×I FlG,k),

where the number of factors on the right-hand side is as in Lemma 2.3.18. For any
F ∈ Db

c (GrG(S)|C◦ ,k), the object ΨS(F ) is equipped with a natural “monodromy
automorphism” (see §9.1.3):

mF : ΨS(F )→ ΨS(F ).

As explained in Section 10.3, this functor can be “upgraded” to the level of equiv-
ariant derived categories: since (L+GBD)0 ∼= I, we have functors

ΨS : Db
(L+GBD)|C◦ (GrG(S)|C◦ ,k)→ Db

I (GK ×I · · · ×I FlG,k),

ΨS : Db
Gm⋉(L+GBD)|C◦ (GrG(S)|C◦ ,k)→ Db

I,Gm-mon(GK ×I · · · ×I FlG,k),

and mF can be considered as a morphism in the appropriate equivariant derived
category. (In the second case, we use the notation from Section 9.3 for the Gm-
action by loop rotation.) To simplify notation we will use the same notation for the
equivariant and nonequivariant versions of these functors; it should always be clear
which version is used.

Since nearby cycles commute with proper push-forward (see Proposition 9.1.4(1)),
in view of Remark 2.3.12 we have a canonical isomorphism

(2.4.6) (µi,j)0∗ ◦Ψ(S1,...,Sn)
∼= Ψ(S1,...,Si−1,Si∪···∪Sj ,Sj+1,...,Sn) ◦ (µi,j |C◦)∗.

Moreover, the monodromy automorphisms on the left- and right-hand sides are iden-
tified via this isomorphism:

(2.4.7) (µi,j)0∗mF = m(µi,j |C◦ )∗F .

We will use these observations repeatedly in the sequel.
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Lemma 2.4.2. — Let S′ = (S1, . . . , Si) and S
′′ = (Si+1, . . . , Sn). Let

F ∈ Db
c (GrG(S

′)|C◦ ,k) resp. Db
(L+GBD)|C◦ (GrG(S

′)|C◦ ,k)

and

G ∈ Db
(L+GBD)|C◦ (GrG(S

′′)|C◦ ,k).

Then, setting S = (S1, . . . , Sn), there is a natural isomorphism

ΨS(F ⊠̃C◦ G ) ∼= ΨS′(F ) ⊠̃ΨS′′(G )

in Db
c (GrG(S)0), resp. in D

b
I (GrG(S)0). Moreover, via this isomorphism, we have

m
F⊠̃C◦G

= mF ⊠̃mG .

Proof. — Letm ≥ 0 and jm ≥ 1 be integers such that F ⊠̃C◦G can be computed using
(the restriction to C◦ of) the diagram (2.4.4). Since the nearby cycles construction
commutes with external tensor product (see Proposition 9.1.6(3)), we have a natural
isomorphism

Ψ
Gr

(jm)
G (S′)m×CGrG(S′′)m

(
F̃

L

⊠k G
) ∼= Ψ

Gr
(jm)
G (S′)m

(F̃ )
L

⊠k ΨS′′(G ),

where F̃ is the pullback of F to Gr
(jm)
G (S′)m|C◦ . Moreover, the monodromy au-

tomorphism of the left-hand side is the external tensor product of the monodromy
automorphisms on the right-hand side. The result then follows from compatibility
of the nearby cycles functor with smooth pullback (see Proposition 9.1.4(2)) and the
fact that the maps p and q in (2.4.4) are smooth since they are principal bundles
under smooth groups.

Combining Lemma 2.4.2 with (2.4.6) and (2.4.7), we obtain the following result.

Corollary 2.4.3. — If

F ∈ Db
c (GrG(S1)|C◦ ,k) resp. Db

(L+GBD)|C◦ (GrG(S1)|C◦ ,k)

and

G ∈ Db
(L+GBD)|C◦ (GrG(S2)|C◦ ,k),

there is a natural isomorphism

Ψ(S1∪S2)(F ⋆C◦ G ) ∼= ΨS1
(F ) ⋆I ΨS2

(G )

in Db
c (GrG(S1 ∪S2)0), resp. in D

b
I (GrG(S1 ∪S2)0). Moreover, via this isomorphism,

we have

mF⋆C◦G = mF ⋆I mG .
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2.4.5. The functor Z. — Consider the special case of the construction from §2.4.4
when S = y. In this case, since the action of L+GBD factors through an action of

L+G, one can also consider Ψy as a functor

Ψy : D
b
L+G|C◦ (GrG(y)|C◦ ,k)→ Db

I (GrG(y)0,k),

or in other words (using the identifications (2.2.7) and (2.2.8), together with
Lemma 2.3.6), as a functor

Ψy : D
b
GO

(GrG × C◦,k)→ Db
I (FlG,k).

We can now define the main player of this book, namely the functor

Z : Db
GO

(GrG,k)→ Db
I (FlG,k)

defined by setting

Z(A ) = Ψy(A
L
⊠k kC◦ [1]).

The functor Z is called the central sheaf functor. Perverse sheaves of the form Z(A ),
where A ∈ PervGO (GrG,k), are called central sheaves. This terminology will be
justified in Chapter 3.

Remark 2.4.4. — 1. The idea of constructing “central sheaves” on FlG using
nearby cycles seems to be due to Bĕılinson (inspired by a similar construction
in the framework of Shimura varieties suggested by Haines and Kottwitz), and
was first realized concretely by Gaitsgory, see [G1]. However, the ind-scheme
used by Gaitsgory is not the same as the one considered above: specifically,
over a point of C◦, the fiber of Gaitsgory’s ind-scheme is GrG × G/B, while

the fiber of GrCen
G is just GrG (see (2.2.8)). The idea of using a nonconstant

group scheme over C in this construction is suggested in [He, Remark 3], and

used concretely in [PZ] and [Zh1]. It seems reasonable to expect that GrCen
G is

isomorphic to the closure of GrG × C◦ in Gaitsgory’s ind-scheme, but no proof
of this claim appears in the literature, as far as we know.

See Remark 3.2.4 below for an explanation of why we prefer working with
GrCen

G rather than with Gaitsgory’s ind-scheme.
2. Of course, it is not necessary to consider equivariant derived categories when

defining Z: in the nonequivariant setting, the same construction yields a functor

(2.4.8) Z : Db
c (GrG,k)→ Db

c (FlG,k).

(Once again, for simplicity we will not distinguish the equivariant and nonequiv-
ariant versions in the notation.) Indeed, the papers [G1, Zh1] do not mention
the equivariant version. This is not so problematic for these authors, since
they are mainly interested in perverse sheaves, and one can still prove without
considering L+G-equivariant categories that Z sends GO-equivariant perverse
sheaves to I-equivariant perverse sheaves: see [G1, Proposition 4] and [Zh1,
Lemma 7.2]. However this creates some technical complications in some proofs,
which we want to avoid. Considering the equivariant version will also allow us
to state (and prove) properties of the complexes Z(A ) similar to those obtained
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in [G1, Zh1], but now for any A in Db
GO

(GrG,k), and not only for perverse
sheaves.

Lemma 2.4.5. — The functor Z is t-exact for the perverse t-structures.

Proof. — The functor F 7→ F ⊠Lk kC◦ [1] is t-exact (as a pullback under a smooth
morphism), as is the functor ΨGrCen

G
(see Theorem 9.1.3(2)). Therefore their compo-

sition, namely Z, is t-exact.

As in §2.4.4, we have a monodromy operator

mA : Z(A )→ Z(A )

for any A in Db
GO

(GrG,k). The proof of the following claim is based on some con-
structions recalled in Section 9.3.

Proposition 2.4.6. — 1. For any A in Db
GO

(GrG,k), the automorphism mA is
unipotent.

2. For any A ,B in Db
GO

(GrG,k) and any f ∈ HomDb
I (FlG,k)(Z(A ),Z(B)) we have

f ◦mA = mB ◦ f .

Proof. — By Proposition 10.3.1 the complex Z(A ) is monodromic, and moreover
we have mA = µZ(A )(−1). Now by Lemma 2.4.1 the automorphism µZ(A )(−1) is
unipotent, and (1) follows. Statement (2) follows from similar considerations, using
the fact that monodromy in the sense of Section 9.3 commutes with all morphisms,
see Proposition 9.3.2.

Remark 2.4.7. — 1. An alternative proof of Proposition 2.4.6(1), based on dif-
ferent considerations, will be given in §4.6.2 below.

2. Using the notation of §9.2.1, Proposition 2.4.6(1) says in particular that for A
in PervGO (GrG,k) we have Ψy(A ⊠Lk kC◦ [1]) = Ψun

y (A ⊠Lk kC◦ [1]).

3. In this statement it is important to restrict to GO-equivariant complexes. We
do not know if these properties hold for the functor (2.4.8).

2.5. Global affine Grassmannians and nearby cycles for GC

All the work carried out in Sections 2.2, 2.3, and 2.4 can be repeated with the
group scheme G replaced by the constant group scheme

GC := G× C.

Roughly, this has the effect of making the fiber at 0 look like all other fibers. In the
present section we explain more precisely how this affects the previous constructions.
The proofs of all the statements we make are similar to (and in general simpler than)
their counterparts for G, and will therefore be omitted.
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2.5.1. Global group scheme and global affine Grassmannian. — First, as
in §2.2.3, one can define global loop and arc groups LGC and L+GC associated with
GC . In this case, using the additive structure on C = A1 and the fact that our group
scheme is constant we see that we have canonical identifications

LGC ∼= GK × C, L+GC ∼= GO × C.

Then we have a central affine Grassmannian GrCen
GC

, which identifies with the fppf
sheafification of the quotient LGC/L+GC , and an identification

(2.5.1) GrCen
GC
∼= GrG × C.

There is a natural proper morphism

(2.5.2) ϖ : GrCen
G → GrCen

GC

which sends a triple (y, E , β) to the triple (y, Ẽ , β̃) where Ẽ is the GC-bundle induced

from E via the canonical morphism G → GC , and β̃ is the trivialization of Ẽ|C◦ induced
by β. Here the induced map

ϖ|C◦ : (GrCen
G )|C◦ → (GrCen

GC
)|C◦

is an isomorphism (in fact, the identity map under the identifications (2.2.8)
and (2.5.1)). On the other hand,

ϖ0 : (GrCen
G )0 → (GrCen

GC
)0

can be identified with the map π : FlG → GrG from (2.2.1).

2.5.2. Bĕılinson–Drinfeld group schemes and affine Grassmannian. —
Next, as in §2.3.2 we have Bĕılinson–Drinfeld group ind-schemes LGBD

C and L+GBD
C

over C, and two natural morphisms

L+GBD
C ⇒ GO × C

defined as in (2.3.1) and (2.3.2). We also have

(L+GBD
C )0 ∼= GO , (L+GBD

C )|C◦ ∼= GO ×GO × C◦.

As in §2.3.3 we have an ind-scheme GrBD
GC

over C, which identifies with the fpqc

sheafification of the quotient LGBD
C /L+GBD

C , and a canonical morphism

ϖ : GrBD
G → GrBD

GC
.

In fact, GrBD
GC

is the restriction to {0} × C of the ind-scheme FusG from §1.3.3. We
have canonical identifications

(2.5.3) (GrBD
GC

)|C◦ ∼= GrG ×GrG × C◦, (GrBD
GC

)0 ∼= GrG

(compare with (1.3.3) or [BR, (1.7.3)]).
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2.5.3. Iterated global affine Grassmannians. — Next, one can define iterated
global affine Grassmannians GrGC

(S1, . . . , Sn) associated with the group scheme GC .
In this setting we have

GrGC
(∅) ∼= C, GrGC

(0) ∼= GrG × C,

GrGC
(y) ∼= GrCen

GC
∼= GrG × C, GrGC

(y∪0) ∼= GrBD
GC
,

and there is a natural morphism of functors

(2.5.4) ϖ = ϖS : GrG(S1, . . . , Sn)→ GrGC
(S1, . . . , Sn).

Variants of these spaces have already appeared in the “global version of the convolu-
tion diagram” from [BR, §1.7.4]; for instance, GrGC

(0, y) is the restriction to {0}×C
of the ind-scheme on the top of [BR, p. 64]. Using appropriate principal bundles, as
in §2.3.5 one shows that the functors GrGC

(S1, . . . , Sn) are represented by ind-proper
ind-schemes.

As in Lemma 2.3.18 we have

GrGC
(S1, . . . , Sn)0 ∼= GK ×GO · · · ×GO GK ×GO GrG︸ ︷︷ ︸

m factors

,

where m is the number of labels Si with Si ̸= ∅. And the analogue of (2.3.16) states
that we have a canonical isomorphism

GrGC
(S)|C◦ ∼=

(
GK ×GO · · · ×GO GrG︸ ︷︷ ︸

n factors

)
×
(
GK ×GO · · · ×GO GrG︸ ︷︷ ︸

n′ factors

)
× C◦

where n is the number of symbols belonging to {y, y∪0}, and n′ is the number of
symbols belonging to {0, y∪0}.

2.5.4. Nearby cycles. — The constructions and results from Section 2.4 also make
sense (and hold true) when G is replaced by GC , except that all mentions of I-
equivariance should be replaced by GO-equivariance. The counterpart in this setting
of the functor ΨS will be denoted ΨS . In particular, as an analogue of Corollary 2.4.3,
we have that for

F ∈ Db
c (GrGC

(S1)|C◦ ,k) and G ∈ Db
(L+GBD

C )|C◦ (GrGC
(S2)|C◦ ,k),

there is a natural isomorphism

Ψ(S1,S2)(F ⋆C◦ G ) ∼= ΨS1(F ) ⋆GO ΨS2(G ).

In analogy with Z, we can define the functor

Zsph : Db
GO

(GrG,k)→ Db
GO

(GrG,k) by Zsph(A ) := Ψy(A
L
⊠k kC◦),

where we implicitly use the analogue of (2.2.8) for the group scheme GC . This may
appear to be a somewhat silly definition to make: by (2.5.1) we have a canonical
isomorphism

(2.5.5) Zsph(A ) ∼= A .
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Nevertheless, this is useful because it lets us highlight parallels with the situation
considered in the preceding sections. Here again we also have a nonequivariant version

Zsph : Db
c (GrG,k)→ Db

c (GrG,k),
and (2.5.5) also holds for this version. For A in Db

GO
(GrG,k) or Db

c (GrG,k), the
monodromy automorphism of Zsph(A ) (see §9.1.3) will be denoted

msph
A : Zsph(A )→ Zsph(A ).

In fact, the reasoning for (2.5.5) also shows that msph
A is the identity morphism of

Zsph(A ).
Recall the proper map

ϖ = ϖS : GrG(S)→ GrGC
(S)

from (2.5.4). Using the fact that nearby cycles commute with push-forward along a
proper map (see Proposition 9.1.4(1)), we obtain a natural isomorphism

(ϖ0)∗ΨS(F ) ∼= ΨS((ϖ|C◦)∗F )

in Db
I (GrG,k) for any F ∈ Db

(L+GBD)|C◦
(GrG(S)|C◦ ,k), or in Db

c (GrG,k) for any

F ∈ Db
c (GrG(S)|C◦ ,k). In the special case S = (y), in view of (2.5.5) we deduce the

following claim.

Lemma 2.5.1. — For any A in Db
GO

(GrG,k), resp. for any A in Db
c (GrG,k),

there are canonical isomorphisms

π∗Z(A ) ∼= Zsph(A ) ∼= A

in Db
I (GrG,k), resp. in Db

c (GrG,k). Moreover, under these identifications we have

π∗mA = msph
A .

In particular, Lemma 2.5.1 implies that for any A in Db
c (GrG,k) we have a canon-

ical isomorphism

(2.5.6) H•(FlG,Z(A )) ∼= H•(GrG,A ).

(This isomorphism can also be obtained directly from compatibility of nearby cycles
with proper pushforward—see Proposition 9.1.4(1)—applied to the structure mor-

phism GrCen
G → C.)



CHAPTER 3

BRAIDING COMPATIBILITIES

In Chapter 2 we have explained the definition of the functor

Z : Db
GO

(GrG,k)→ Db
I (FlG,k).

Both the domain and the codomain come with monoidal structures (given by convo-
lution), and our goal in this chapter is to prove that this functor is compatible with
these monoidal structures in various ways.

Recall in particular from Chapter 1 that when k is a field, the convolution product
on Db

GO
(GrG,k) is t-exact for the perverse t-structure, and the resulting monoidal

structure on the abelian category PervGO (GrG,k) is symmetric. Perhaps the most
significant result in this chapter is a description of how the commutativity constraint
on PervGO (GrG,k) interacts with the monoidal structure of Db

I (GrG,k) under the
restricted functor

Z : PervGO (GrG,k)→ Db
I (FlG,k).

A precise statement will be given in Section 3.1, along with a discussion of what one
can say when k is not a field. Along the way, we will see that general properties
of nearby cycles functors yield additional properties of Z (in particular in terms of
exactness of convolution and of total cohomology), which we record in this chapter
for later use in Chapter 4.

The most important tool used in the proofs in this chapter is the theory of iterated
global affine Grassmannians associated to the group scheme G (see Section 2.3). In
Section 2.5, we saw a variant of this theory in which G is replaced by the constant
group scheme GC , and one can ask what happens when one carries out the arguments
of this chapter using these GC-versions instead. It turns out that this idea leads to
new perspectives or alternative approaches to certain aspects of the Satake category
that were discussed in Section 1.3: see Section 3.3 and §3.5.1 for details.

3.1. Overvew of central functors

To explain the kinds of compatibilities we are interested in, we recall the notion of
a central functor from [Be2, Definition 1]. Consider a monoidal category (A,⊗A),
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and a symmetric monoidal category (B,⊗B). Then a central functor from B to A is
a monoidal functor

F : B→ A

together with an isomorphism

(3.1.1) σ : F (−)⊗A (−) ∼−→ (−)⊗A F (−)
of functors from B×A to A, which satisfy the following conditions:

1. For X,X ′ in B, the isomorphism σX,F (X′) coincides with the composition

F (X)⊗A F (X ′)
∼−→ F (X ⊗B X ′)

∼−→ F (X ′ ⊗B X)
∼−→ F (X ′)⊗A F (X)

where the middle isomorphism is the image under F of the commutativity con-
straint of B (applied to (X,X ′)), and the first and third isomorphisms are
induced by the monoidal structure on F .

2. For Y1, Y2 in A and X in B, the composition

F (X)⊗A Y1 ⊗A Y2
σX,Y1

⊗idY2−−−−−−−→
∼

Y1 ⊗A F (X)⊗A Y2
idY1

⊗σX,Y2−−−−−−−→
∼

Y1 ⊗A Y2 ⊗A F (X)

coincides with σX,Y1⊗AY2
(where we omit the associativity constraint of A).

3. For Y in A and X1, X2 in B, the composition

F (X1⊗BX2)⊗AY
∼−→ F (X1)⊗AF (X2)⊗AY

idF (X1)⊗σX2,Y−−−−−−−−−−→
∼

F (X1)⊗AY ⊗AF (X2)

σX1,Y ⊗idF (X2)−−−−−−−−−−→
∼

Y ⊗A F (X1)⊗A F (X2)
∼−→ Y ⊗A F (X1 ⊗B X2)

(where the first and last isomorphisms are provided by the monoidal structure
on F ) coincides with σX1⊗BX2,Y .

As explained in [Be2, Remark 1], these conditions have natural interpretations in
terms of the Drinfeld center Z(A) of A:

– the datum of a functor F : B → A together with an isomorphism (3.1.1)

satisfying (2) is equivalent to the datum of a functor F̃ from B to Z(A);
– the datum of a monoidal structure on F satisfying (3) is equivalent to the datum

of a monoidal structure on F̃ ;

– condition (1) means that F̃ (with its monoidal structure considered above) in-
tertwines the commutativity constraint of B with the natural braiding on Z(A).

The main results of the present chapter can be compactly stated as follows. (This
statement combines parts of Theorems 3.2.3, 3.4.1 and 3.5.1 below.)

Theorem 3.1.1. — 1. Assume that k is a field. Then the functor

Z : (PervGO (GrG,k), ⋆GO )→ (Db
I (FlG,k), ⋆I)

admits a natural structure of central functor. That is, this functor fac-
tors through a monoidal functor from PervGO (GrG,k) to the Drinfeld center
Z(Db

I (FlG,k)) that intertwines the commutativity constraint on PervGO (GrG,k)
with the braiding on Z(Db

I (FlG,k)).
2. For a general k, the functor Z factors through a monoidal functor from

(Db
GO

(GrG,k), ⋆GO ) to Z(Db
I (FlG,k)).
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This result was initially proved by Gaitsgory in the setting of étale Qℓ-sheaves
in [G1] (where the “centrality” and “monoidality” isomorphisms were constructed)
and [G2] (where the relevant compatibilities are checked). Our proofs essentially
follow those of Gaitsgory, although there are some new features here: notably, the
systematic use of iterated global affine Grassmannians, and of equivariance with re-
spect to global group schemes such as L+G or L+GBD. (These features help clarify
the details of some arguments from [G2].)

Theorem 3.1.1(1) appears to suffer from two deficits: it requires k to be a field, and
it restricts the domain of Z to just perverse sheaves. Part (2) drops these restrictions
but has a weaker conclusion. Let us briefly discuss why Theorem 3.1.1 has this form.

First, when k is not a field, the monoidal structure ⋆GO on Db
GO

(Gr,k) need not be
t-exact, so part (1) would not make sense as stated. Of course, by passing to perverse

cohomology, we do obtain a monoidal structure ⋆GO
0 on PervGO (Gr,k) for general

k, and one could ask whether a version of Theorem 3.1.1(1) holds in this setting.

We will see later that Z does indeed intertwine ⋆GO
0 with a certain bifunctor ⋆I0 on

PervI(FlG,k), and prove a version of property (1) above in this generality (see Theo-
rem 3.5.1); however, the latter bifunctor does not make PervI(FlG,k) into a monoidal
category (in particular, it does not seem to admit an associativity constraint).

Second, we will see in Theorem 3.3.2 that the commutativity constraint on
(PervGO (GrG,k), ⋆GO

0 ) can indeed be extended to a commutativity constraint for
(Db

GO
(GrG,k), ⋆GO ), raising the possibility that Z might define a central functor

from (Db
GO

(GrG,k), ⋆GO ) to (Db
I (GrG,k), ⋆I). Unfortunately, there is a technical

obstacle to this: our proof of this property in the context of Theorem 3.1.1(1) uses
the theory of “nearby cycles over a 2-dimensional base” (reviewed in Section 9.4),
but this theory is only available (at least, from the point of view adopted here) for
perverse sheaves.

3.2. Centrality isomorphism

In this section, we will construct the “centrality” isomorphism (3.1.1) for the func-
tor Z, and prove that this isomorphism satisfies property (2) from the definition of
a central functor. (As in §1.3.3, we will later need to adjust this isomorphism by a
sign.)

3.2.1. Convolution with central sheaves. —

3.2.1.1. Notation. — Throughout this section, we will make frequent (and silent)
use of various identifications from Table 2.3.1, especially to regard external tensor
products (“⊠”) of sheaves as objects living on some GrG(S)|C◦ . In addition, for clar-

ity, we will explicitly mention the associativity constraint in the category Db
I (FlG,k),

denoted by

αF ,G ,H : (F ⋆I G ) ⋆I H
∼−→ F ⋆I (G ⋆I H ).
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In the proof, it will be convenient to make use of the functors

τ0 : Db
I (FlG,k)→ Db

(L+GBD)|C◦ (GrG(0)|C◦ ,k),

τy : D
b
GO

(GrG,k)→ Db
(L+GBD)|C◦ (GrG(y)|C◦ ,k)

both defined by the formula F 7→ F ⊠Lk kC◦ [1]. We will sometimes regard τ0, resp. τy,

as taking values in Db
I×C◦(GrG(0)|C◦ ,k), resp. in Db

L+G|C◦ (GrG(y)|C◦ ,k), instead;

this should not cause any confusion. It is immediate from the definitions that for
F ∈ Db

GO
(GrG,k) we have

(3.2.1) Z(F ) = Ψy(τy(F )).

On the other hand, it follows from the second isomorphism in Lemma 2.3.6 that for
F ∈ Db

I (FlG,k) there is a canonical isomorphism

(3.2.2) F ∼= Ψ0(τ0(F )).

In practice, we will often omit the subscript and denote both τ0 and τy simply by τ .

No ambiguity should result from this.

3.2.1.2. Convolution with central sheaves as nearby cycles. — Let us consider the
bifunctor

C : Db
GO

(GrG,k)×Db
I (FlG,k)→ Db

I (FlG,k)
given by

C(A ,F ) := Ψy∪0

(
A

L

⊠k F
L

⊠k kC◦ [1]
)
.

This bifunctor has partially equivariant counterparts

Db
GO

(GrG,k)×Db
c (FlG,k)→ Db

c (FlG,k),

Db
c (GrG,k)×Db

I (FlG,k)→ Db
c (FlG,k)

which will also be denoted by C.

Proposition 3.2.1. — 1. For A in Db
c (GrG,k), resp. in Db

GO
(GrG,k), and F

in Db
I (FlG,k), there is a canonical isomorphism

C(A ,F ) ∼= Z(A ) ⋆I F

in Db
c (FlG,k), resp. in Db

I (FlG,k).
2. For A in Db

GO
(GrG,k) and F in Db

c (FlG,k), resp. in Db
I (FlG,k), there is a

canonical isomorphism

C(A ,F ) ∼= F ⋆I Z(A )

in Db
c (FlG,k), resp. in Db

I (FlG,k).

Proof. — The proof will make use of the commutative diagram

(3.2.3)

GrG × FlG × C◦

GrG(y, 0)|C◦ GrG(0, y)|C◦

GrG(y∪0)|C◦

ν ν

ν

µ µ
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in which every map is an isomorphism. (See §2.3.4 for the definition of µ.) In the
setting of (1), the left-hand part of this diagram gives us a natural isomorphism

τ(A ) ⋆C◦ τ(F ) ∼= A
L
⊠k F

L
⊠k kC◦ [1]

(where we identify all the spaces in (3.2.3) without mention). Using Corollary 2.4.3
along with (3.2.1) and (3.2.2), we deduce the desired isomorphism

C(A ,F ) ∼= Z(A ) ⋆I F ,

either in Db
c (FlG,k) or in Db

I (FlG,k).
The proof of (2) is similar, using now the natural isomorphism

τ(F ) ⋆C◦ τ(A ) ∼= A
L
⊠k F

L
⊠k kC◦ [1]

provided by the right-hand part of (3.2.3).

Remark 3.2.2. — As in the case of GrG (see §1.3.1), for F ,G in PervI(FlG,k) we
set

F ⋆I0 G := pH 0(F ⋆I G ).

(Note that it is not clear, and probably false, that one can endow the bifunctor ⋆I0 with
an associativity constraint.) Taking the perverse degree-0 part in Proposition 3.2.1,
in the setting of (1), if A and F are perverse we obtain a canonical isomorphism

Ψy∪0

(
pH 0(A

L

⊠k F )
L

⊠k kC◦ [1]
) ∼= Z(A ) ⋆I0 F ,

and in the setting of (2), if A and F are perverse we obtain a canonical isomorphism

Ψy∪0

(
pH 0(A

L

⊠k F )
L

⊠k kC◦ [1]
) ∼= F ⋆I0 Z(A ).

3.2.1.3. Centrality isomorphism and compatibilities. — The following theorem is the
main application of Proposition 3.2.1, and the main result of the present section.

Theorem 3.2.3. — For A ∈ Db
GO

(GrG,k) and F ∈ Db
I (FlG,k), there is a natural

isomorphism

σ̃A ,F : Z(A ) ⋆I F
∼−→ F ⋆I Z(A )

in Db
I (FlG,k). Moreover, for A ∈ Db

GO
(GrG,k) and F1,F2 ∈ Db

I (FlG,k), the fol-
lowing diagram commutes:

(3.2.4)

(Z(A ) ⋆I F1) ⋆
I F2 Z(A ) ⋆I (F1 ⋆

I F2)

(F1 ⋆
I Z(A )) ⋆I F2

F1 ⋆
I (Z(A ) ⋆I F2)

F1 ⋆
I (F2 ⋆

I Z(A )) (F1 ⋆
I F2) ⋆ Z(A ).

σ̃A ,F1
⋆I idF2

αZ(A ),F1,F2

σ̃A ,F1⋆IF2
αF1,Z(A ),F2

idF1
⋆I σ̃A ,F2

α−1
F1,F2,Z(A )
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Proof. — The isomorphism σ̃A ,F is obtained as the composition of the isomorphisms

Z(A ) ⋆I F
∼−→ C(A ,F )

∼−→ F ⋆I Z(A )

provided by Proposition 3.2.1.
For the second part of the theorem, consider the following two diagrams:

(3.2.5)

GrG × (GK ×I FlG)× C◦ GrG(0, 0, y)|C◦

GrG(y, 0, 0)|C◦ GrG(0, y, 0)|C◦ GrG(0, y∪0)|C◦ GrG(0, y)|C◦

GrG(y∪0, 0)|C◦ GrG(y∪0)|C◦ ,

ν
ν

ν

µ
µ

µ
µ

µ

µ
µ

µ

(3.2.6)

GrG × (GK ×I FlG)× C◦ GrG(0, 0, y)|C◦

GrG(y, 0, 0)|C◦ GrG(y, 0)|C◦ GrG × FlG × C◦ GrG(0, y)|C◦

GrG(y∪0, 0)|C◦ GrG(y∪0)|C◦ ,

ν µ

ν

µ

µ

µ

µ

ν ν

µ

µ

in which once again µ is as in §2.3.4 and ν is as in §2.3.7. Both diagrams are commuta-
tive; indeed, they are both assembled from copies of the commutative squares (2.3.15),
(2.4.5), and (3.2.3).

By tracing through (3.2.5), we obtain the sequence of maps along the left-hand
side and bottom of the following diagram; by tracing through (3.2.6), we obtain the
maps along the top and right-hand side:

(τ(A ) ⋆C◦ τ(F1)) ⋆C◦ τ(F2) τ(A ) ⋆C◦ (τ(F1) ⋆C◦ τ(F2))

(τ(F1) ⋆C◦ τ(A )) ⋆C◦ τ(F2) τ(A ) ⋆C◦ τ(F1 ⋆
I F2)

τ(F1) ⋆C◦ (τ(A ) ⋆C◦ τ(F2)) τ(F1 ⋆
I F2) ⋆C◦ τ(A )

τ(F1) ⋆C◦ (τ(F2) ⋆C◦ τ(A )) (τ(F1) ⋆C◦ τ(F2)) ⋆C◦ τ(A ).

σ̃⋆C◦ id

α

≀

α σ̃

id⋆C◦ σ̃ ≀

α−1

This diagram commutes because (3.2.5) and (3.2.6) agree along their outermost edges.
We apply Ψy∪0 to this diagram to obtain (3.2.4), which is therefore commutative.

Remark 3.2.4. — The proof of Theorem 3.2.3 is precisely the point where it is
more convenient to work with the ind-scheme GrCen

G rather than the ind-scheme
considered in [G1] in the definition of the functor Z. In fact, in [G1, Proposition 6]
the isomorphisms of Proposition 3.2.1 are proved only in the case A and F are
perverse sheaves, which makes it impossible to state the commutativity of (3.2.4) in
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a reasonable way (since F1 ⋆
I F2 might not be perverse even if F1 and F2 are). This

issue was mentioned (and solved along the lines above) in [Zh1].

3.2.2. Some consequences. —

3.2.2.1. Convolution exactness. — The following corollary (to Proposition 3.2.1)
will play an important role in Chapter 4.

Corollary 3.2.5. — For A ∈ PervGO (GrG,k) and F ∈ Perv(FlG,k), the complex
F ⋆I Z(A ) is concentrated in nonpositive perverse degrees. If A ⊠Lk F ∈ Db

c (GrG ×
FlG,k) is perverse, then F ⋆I Z(A ) is perverse.

Similarly, for A ∈ Perv(GrG,k) and F ∈ PervI(FlG,k), the complex Z(A ) ⋆I F
is concentrated in nonpositive perverse degrees. If A ⊠Lk F ∈ Db

c (GrG × FlG,k) is
perverse, then Z(A ) ⋆I F is perverse.

Proof. — The claims follow from Proposition 3.2.1 and the t-exactness of nearby
cycles (see Theorem 9.1.3(2)).

Remark 3.2.6. — In case k is a field, the assumption that A ⊠Lk F is perverse
is always satisfied. Hence, in this case, Corollary 3.2.5 says that central sheaves are
“convolution exact” in the sense that convolution with such an object (on the right,
and on the left for I-equivariant objects) is an exact functor with respect to the
perverse t-structure.

3.2.2.2. Total cohomology. — Proposition 3.2.1 also has the following consequence
for total cohomology.

Corollary 3.2.7. — 1. For A in Db
c (GrG,k) and F in Db

I (FlG,k), there are
canonical isomorphisms

RΓ(FlG,Z(A ) ⋆I F ) ∼= RΓ(GrG × FlG,A
L

⊠k F ) ∼= RΓ(GrG,A )
L
⊗k RΓ(FlG,F )

in DbMofk. In particular, if H•(GrG,A ) or H•(FlG,F ) is k-flat, there are
canonical isomorphisms of graded k-modules

(3.2.7) H•(FlG,Z(A )⋆IF ) ∼= H•(GrG×FlG,A
L

⊠kF ) ∼= H•(GrG,A )⊗kH
•(FlG,F ).

2. For A in Db
GO

(GrG,k) and F in Db
c (FlG,k), there are canonical isomorphisms

RΓ(FlG,F ⋆I Z(A )) ∼= RΓ(GrG × FlG,A
L
⊠k F ) ∼= RΓ(GrG,A )

L
⊗k RΓ(FlG,F )

in DbMofk. In particular, if H•(GrG,A ) or H•(FlG,F ) is k-flat, there are
canonical isomorphisms of graded k-modules

(3.2.8) H•(FlG,F ⋆IZ(A )) ∼= H•(GrG×FlG,A
L
⊠kF ) ∼= H•(GrG,A )⊗kH

•(FlG,F ).

Proof. — By compatibility of nearby cycles with proper pushforward (see Proposi-
tion 9.1.4(1)) applied to the structure morphism GrG(y∪0)→ C, in both settings we
obtain a canonical isomorphism

RΓ(FlG,C(A ,F )) ∼= RΓ(GrG × FlG,A
L
⊠k F ).
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By a general form of the Künneth formula (see [Ac3, Proposition 2.9.2]), the right-
hand side identifies with RΓ(GrG,A ) ⊗Lk RΓ(FlG,F ). In each case the first claim
follows, in view of Proposition 3.2.1.

The second claim in each part of the proposition is a consequence of the following
well-known property of derived tensor product (cf. [Ac3, Lemma A.6.17]): forM,N ∈
DbMofk, there is a natural map

H•(M)⊗k H
•(N)→ H•(M

L
⊗k N)

that is an isomorphism if H•(M) is k-flat (or if H•(N) is k-flat).

3.2.2.3. Interpretation in terms of equivariant cohomology. — Recall that there ex-
ists a canonical algebra homomorphism

(3.2.9) H•
I(pt;k)→ H•(FlG;k)

constructed as follows. Denote by Iu the preimage of U under the projection GO → G.
(This subgroup is sometimes called the “pro-unipotent radical of I.”) We denote by

Fl
(1)
G the fppf quotient (GK /Iu)fppf . As for FlG, this functor is represented by a

separated ind-scheme of ind-finite type, and we have a canonical isomorphism

H•(FlG,k) ∼= H•
T (Fl

(1)
G ,k),

where T acts on Fl
(1)
G via the action induced by the action on GK given by t·γ = γt−1.

This provides an algebra morphism H•
T (pt;k)→ H•(FlG,k). Now it is well known that

the composition I → B → B/U ∼= T induces an isomorphism H•
T (pt;k)

∼−→ H•
I(pt;k).

We deduce the desired morphism (3.2.9). Using this morphism, for any complex F
in Db

c (FlG,k) we obtain a canonical action of H•
I(pt;k) on H•(FlG,F ).

Consider, as in Corollary 3.2.7(1), a complex A in Db
c (GrG,k) and a complex F in

Db
I (FlG,k). Then, as in the proof of this corollary, there exists a canonical morphism

of graded k-modules

(3.2.10) H•(GrG,A )⊗k H
•(FlG,F )→ H•(GrG × FlG,A

L
⊠k F ).

On the other hand, we also have a canonical morphism of graded k-modules

(3.2.11) H•(FlG,Z(A ))⊗H•
I (pt;k) H

•
I(FlG,F )→ H•(FlG,Z(A ) ⋆I F )

which sends f ⊗ g, where f ∈ Hp(FlG,Z(A )) is regarded as a morphism k→ Z(A )[p]

and g ∈ HqI(FlG,F ) is regarded as a morphism k → F [q], to f ⊠̃ g : k = k ⊠̃ k →
Z(A ) ⊠̃ F [p+ q], regarded as an element in

Hp+q(GK ×I FlG,Z(A ) ⊠̃ F ) ∼= Hp+q(FlG,Z(A ) ⋆I F ).

Lemma 3.2.8. — The following diagram commutes, where the right-hand vertical
arrow is induced by the isomorphism of Corollary 3.2.7(1), and in the left column
the top vertical arrow is induced by the forgetful map from equivariant cohomology to
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cohomology and the bottom vertical arrow is the natural one:

H•(GrG,A )⊗k H
•(FlG,F ) H•(GrG × FlG,A ⊠Lk F )

H•(GrG,A )⊗k H
•
I(FlG,F )

H•(FlG,Z(A ))⊗k H
•
I(FlG,F )

H•(FlG,Z(A ))⊗H•
I (pt;k) H

•
I(FlG,F ) H•(FlG,Z(A ) ⋆I F ).

(3.2.10)

≀(2.5.6)≀

(3.2.11)

Proof. — The isomorphism of Corollary 3.2.7(1) is obtained by remarking that there
exists a canonical isomorphism

Gr
(∞)
G,0 (y)×I FlG

∼−→ Gr(y, 0).

From this construction and the description of (2.5.6) in terms of nearby cycles (see
the last sentence in §2.5.4) it is clear that we have a commutative diagram

H•(GrG,A )⊗k H
•
I(FlG,F ) H•(GrG × FlG,A ⊠Lk F )

H•(GrG,Z(A ))⊗k H
•
I(FlG,F ) H•(FlG,Z(A ) ⋆I F ).

(2.5.6) ≀ ≀

Here the lower arrow factors as a composition

H•(GrG,Z(A ))⊗k H
•
I(FlG,F )→ H•(GrG,Z(A ))⊗H•

I (pt,k) H
•
I(FlG,F )

(3.2.11)−−−−−→ H•(FlG,Z(A ) ⋆I F )

where the first map is as above. On the other hand, since the restriction of the map

Gr
(∞)
G,0 (y)→ GrG,0(y) to C

◦ is the trivial projection (see Example 2.3.17), the upper

arrow factors as a composition

H•(GrG,A )⊗k H
•
I(FlG,F )→ H•(GrG,A )⊗k H

•(FlG,F )

(3.2.10)−−−−−→ H•(GrG × FlG,A
L

⊠k F ),

which implies our claim.

3.3. Variants for GC

The constructions of Section 3.2 have obvious counterparts in the setting where
the group scheme G is replaced by the constant group scheme GC , which we explain
in this section. These analogues provide different perspectives on the convolution
product in PervGO (GrG,k) (explained in §3.3.1) and on the tensor structure of the
functor F (see §§3.3.3–3.3.4).
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3.3.1. Convolution as nearby cycles. — We consider the bifunctor

CGr : D
b
GO

(GrG,k)×Db
GO

(GrG,k)→ Db
GO

(GrG,k)

given by

CGr(A ,B) := Ψy∪0

(
A

L
⊠k B

L
⊠k kC◦ [1]

)
,

where we are using the identifications in (2.5.3). This bifunctor has partially equiv-
ariant counterparts

Db
GO

(GrG,k)×Db
c (GrG,k)→ Db

c (GrG,k),

Db
c (GrG,k)×Db

GO
(GrG,k)→ Db

c (GrG,k)

which will also be denoted by CGr.
The proof of the following claim is similar to that of Proposition 3.2.1, and will

therefore be omitted.

Proposition 3.3.1. — 1. For A in Db
c (GrG,k), resp. in Db

GO
(GrG,k), and B

in Db
GO

(GrG,k), there is a canonical isomorphism

CGr(A ,B) ∼= A ⋆GO B

in Db
c (GrG,k), resp. in Db

GO
(GrG,k).

2. For A in Db
GO

(GrG,k) and B in Db
c (GrG,k), resp. in Db

GO
(GrG,k), there is a

canonical isomorphism

CGr(A ,B) ∼= B ⋆GO A

in Db
c (GrG,k), resp. in Db

GO
(GrG,k).

Applying Proposition 3.3.1(1) in the case where A and B are perverse sheaves,
and taking the 0-th perverse cohomology, we deduce a canonical isomorphism

(3.3.1) Ψy∪0(
pH 0(A

L

⊠k B)
L

⊠k kC◦ [1]) ∼= A ⋆GO
0 B.

See §3.3.2 below for the comparison with the “fusion product” construction of convo-
lution recalled in §1.3.3.

As for Theorem 3.2.3, one deduces the following theorem.

Theorem 3.3.2. — For A ,B in Db
GO

(GrG,k), there is a natural isomorphism

σ̃sph
A ,B : A ⋆GO B

∼−→ B ⋆GO A .

These isomorphisms are compatible with the associativity constraint for ⋆GO , in the
sense that (together with this associativity constraint) they endow (Db

GO
(GrG,k), ⋆GO )

with the structure of a symmetric monoidal category.

The commutativity constraint considered in this theorem is closely related to the
constraint of §1.3.3; see §3.5.1 below for a precise statement.

As for Corollary 3.2.5, we obtain the following corollary, which generalizes some
results from §1.3.1 (see Remark 1.3.3).
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Corollary 3.3.3. — For A ∈ Perv(GrG,k) and B ∈ PervGO (GrG,k), the complex
A ⋆GO B is concentrated in nonpositive degrees. If A ⊠Lk B ∈ Db

c (GrG ×GrG,k) is
perverse, then A ⋆GO B is perverse.

We also obtain the following counterpart of Corollary 3.2.7.

Corollary 3.3.4. — For A in Db
c (GrG,k) and B in Db

GO
(GrG,k), there exists a

canonical isomorphism

RΓ(GrG,A ⋆GO B) ∼= RΓ(GrG,A )
L
⊗k RΓ(GrG,B)

in DbMofk. In particular, if H•(GrG,A ) or H•(GrG,B) is k-flat there exists a canon-
ical isomorphism of graded k-vector spaces

H•(GrG,A ⋆GO B) ∼= H•(GrG,A )⊗k H
•(GrG,B).

Finally we state a variant of Corollary 3.3.4, which will be considered more closely
in §3.3.3 below.

Corollary 3.3.5. — For A ,B in PervGO (GrG,k), there exists a canonical isomor-
phism

H•(GrG,A ⋆GO
0 B) ∼= H•(GrG,A )⊗k H

•(GrG,B).

Proof. — Starting from (3.3.1), arguments similar to those encountered in the proof
of Corollary 3.2.7 (i.e. relying on the compatibility of nearby cycles with proper push-
forward) provide a canonical isomorphism

(3.3.2) H•(GrG,A ⋆GO
0 B) ∼= H•(GrG ×GrG,

pH 0(A
L

⊠k B)).

The claim follows, in view of (1.3.7).

3.3.2. Comparison with the fusion product. — Proposition 3.3.1 provides a
description of convolution of GO-equivariant complexes on GrG in terms of nearby
cycles. On the other hand, the proof of the geometric Satake equivalence involves
a description of convolution in terms of a “fusion product,” see §1.3.3. Let us now
explain the relationship between these two descriptions.

The fusion product involves the fusion space FusG, which comes with a structure
map FusG → C2. Recall from §2.5.2 that GrBD

GC
is identified with the restriction of

FusG to {0} × C ⊂ C2. Let i, j, i′, j′, a, and b be the embeddings shown in the
following diagram:

GrG GrBD
GC

GrG ×GrG × C◦

GrG × C FusG GrG ×GrG × (C2 ∖∆C)

i′

b a

j′

i j

The maps i and j were previously introduced in §1.3.3, and the maps i′ and j′ come
from (2.5.3).
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Lemma 3.3.6. — For any C in Perv(GrG × GrG,k), there exists a canonical iso-
morphism

a∗j!∗
(
C

L

⊠k kC2∖∆C [2]
) ∼= j′!∗

(
C

L

⊠k kC◦ [1]
)
[1].

Proof. — Using the additive structure on C = A1 we obtain an isomorphism C ×
({0}×C)→ C×C defined by (x, (0, y)) 7→ (x+y, y), which identifies {0}× ({0}×C)
in the left-hand side with ∆C in the right-hand side. Using this isomorphism (and
the fact that the group scheme GC is constant) we obtain a canonical isomorphism
of ind-schemes

C ×GrBD
GC

∼−→ FusG.

Under this identification, the perverse sheaf j!∗(C ⊠Lk kC2∖∆C [2]) on the right-hand
side corresponds to the perverse sheaf(

kC [1]
) L
⊠k j

′
!∗(C

L
⊠k kC◦ [1])

on the left-hand side. The claim follows.

Proposition 3.3.7. — For any A ,B in PervGO (GrG,k), there exists a canonical
isomorphism

b∗i∗j!∗
(
pH 0(A

L

⊠k B)
L

⊠k kC2∖∆C [2]
) ∼= Ψy∪0

(
pH 0(A

L

⊠k B)
L

⊠k kC◦ [1]
)
[2].

Moreover, this isomorphism is compatible with those in (1.3.4) and (3.3.1) in the
obvious way.

Proof. — We have i ◦ b = a ◦ i′, so that the left-hand side identifies with

(i′)∗a∗j!∗(
pH 0(A

L

⊠k B)
L

⊠k kC2∖∆C [2]).

In view of Lemma 3.3.6, our problem reduces to that of constructing an isomorphism

(i′)∗j′!∗(
pH 0(A

L

⊠k B)
L

⊠k kC◦ [1])[−1] ∼= Ψy∪0(
pH 0(A

L

⊠k B)
L

⊠k kC◦ [1]).

Since the left-hand side is known to be perverse (see (1.3.4)) this isomorphism will
follow from Lemma 9.1.9 provided we prove that the monodromy automorphism of
the right-hand side is trivial. However, using the compatibility of nearby cycles with
proper pushforward applied to the structure morphism GrGC

(y∪0) → C (as in the
proof of Corollary 3.3.5) and the fact that the monodromy is trivial for a constant
family, we obtain that this monodromy automorphism is sent to the identity by the
functor H•(GrG,−). Since the latter functor is faithful on perverse sheaves (see Propo-
sition 1.3.4), this concludes the proof.

The compatibility between the various isomorphisms is left to the reader.

The isomorphism of Proposition 3.3.7 can be described more explicitly as follows.
By definition (see §9.1.1) we have

Ψy∪0

(
pH 0(A

L
⊠k B)

L
⊠k kC◦ [1]

)
= (i′)∗j′∗

(
pH 0(A

L
⊠k B)

L
⊠k exp∗ kC[1]

)
[−1],
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where exp : C→ C× is the exponential map. Now we have canonical morphisms

j′!∗
(
pH 0(A

L
⊠k B)

L
⊠k kC◦ [1]

)
→ j′∗

(
pH 0(A

L
⊠k B)

L
⊠k kC◦ [1]

)
and kC◦ → exp∗ kC, which induce an isomorphism

(i′)∗j′!∗
(
pH 0(A

L
⊠k B)

L
⊠k kC◦ [1]

)
[−1] ∼−→ (i′)∗j′∗

(
pH 0(A

L
⊠k B)

L
⊠k exp∗ kC[1]

)
[−1].

3.3.3. Monoidal structure on total cohomology via nearby cycles. — Corol-
lary 3.3.5 provides a monoidal structure on the functor

F = H•(GrG,−) : PervGO (GrG,k)→ Mofk.

On the other hand, another monoidal structure on this functor is involved in the
proof of the geometric Satake equivalence, see §1.3.4. We will now prove that these
structures in fact coincide.

Proposition 3.3.8. — For any A ,B in PervGO (GrG,k), the isomorphisms

F(A ⋆GO
0 B)

∼−→ F(A )⊗k F(B)

constructed in §1.3.6 and in Corollary 3.3.5 coincide.

Proof. — In the construction of both isomorphisms, one produces an isomorphism

(3.3.3) H•(GrG,A ⋆GO
0 B) ∼= H•(GrG ×GrG,

pH 0(A
L

⊠k B)),

and then uses (1.3.7). To conclude, we therefore only have to prove that the two
versions of (3.3.3) coincide.

Set

C := j′!∗
(
pH 0(A

L

⊠k B)
L

⊠k kC◦ [1]
)
,

and denote by f ′ : GrGC
(y∪0) → C the structure morphism. Then, taking into

account Lemma 3.3.6, the construction of §1.3.4 is based on the fact that the complex
f ′∗C is constant in the sense considered in Example 9.1.2; then, identifying the stalks
of these sheaves at 0 and 1 ∈ C× = C◦ (see (9.1.3)) one obtains an isomorphism

RΓ(GrG,A ⋆GO
0 B)

∼−→ RΓ(GrG ×GrG,
pH 0(A

L

⊠k B)),

from which one deduces (3.3.3) by taking cohomology. On the other hand, the con-
struction in Corollary 3.3.5 is based on applying the nearby cycles functor associated
with id : C → C to

RΓ(GrG ×GrG,
pH 0(A

L
⊠k B))

L
⊗k kC◦ [1] = (f ′|C◦)∗(

pH 0(A
L

⊠k B)
L
⊗k kC◦ [1]),

and observing that this complex identifies with RΓ(GrG×GrG,
pH 0(A ⊠kB)) on the

one hand (see (9.1.4)), and with RΓ(GrG,A ⋆GO
0 B) on the other hand (by (3.3.1)

and compatibility of nearby cycles with proper pushforward). Once again, taking
cohomology we deduce the isomorphism (3.3.3).

Once these constructions are recalled, the claim follows from the commutativity of
the diagram in Example 9.1.2 (applied to the constant complex f ′∗C ).
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3.3.4. Monoidal structure on total cohomology via equivariant cohomol-
ogy. — We conclude this section by giving a third description of the monoidal struc-
ture on the functor F, in terms of equivariant cohomology, valid under the assumption
that all the torsion primes of G are invertible in k. (For a brief reminder on how to
compute the torsion primes, see [JMW, §2.6]. For a more detailled account, and
more details, see [To].) This construction of the monoidal structure is considered in
particular in [Zh4, §5.2] (in the case when k is a field of characteristic 0) and (in a
“mixed characteristic setting,” and again for characteristic-0 coefficients) in [Zh3].

Under our assumption on k, it is known that the equivariant cohomology H•
G(pt;k)

is concentrated in even degrees, and free (of finite rank in each degree) over k. A
construction similar to that of (3.2.9) yields a canonical algebra morphism

(3.3.4) H•
GO

(pt;k)→ H•(GrG;k).

From this morphism we deduce, for any A in Db
c (GrG,k), a canonical action of

H•
GO

(pt;k) on H•(GrG,A ). Note also that the projection GO → G induces an algebra
isomorphism

H•
G(pt;k)

∼−→ H•
GO

(pt;k).

Lemma 3.3.9. — Under our assumption above:

1. the morphism (3.3.4) vanishes on
⊕

i>0 H
i
GO

(pt;k);
2. for any A in PervGO (GrG,k), there exists a (noncanonical) isomorphism of

graded H•
GO

(pt;k)-modules

H•
GO

(GrG,A ) ∼= H•
GO

(pt;k)⊗k H
•(GrG,A ).

As a consequence, the forgetful functor induces an isomorphism of graded k-
modules

k⊗H•
GO

(pt;k) H
•
GO

(GrG,A )
∼−→ H•(GrG,A ).

In part (2) of this lemma, we regard H•
GO

(GrG,A ) as an H•
GO

(pt;k)-module in the
usual way for equivariant cohomology (cf. [Ac3, §6.7]).

Proof. — (1) There are two ways to construct a ring homomorphism H•
GO

(pt;k) →
H•
GO

(GrG;k). The first is the “usual” way that comes from the general theory of
equivariant cohomology. The second, which we will call the “special” way, arises by
repeating the construction of (3.3.4) (following (3.2.9)) with H•(GrG,A ) replaced by
H•
GO

(GrG,A ). Now consider the compositions

H•
GO

(pt;k) H•
GO

(GrG;k) H•(GrG;k).
usual

special

forget

In the usual case, this composition factors through the forgetful map H•
GO

(pt;k) →
H•(pt;k) = k: thus, it vanishes on

⊕
i>0 H

i
GO

(pt;k). In the special case, this compo-
sition is equal to the map (3.3.4).

Thus, to finish the proof, it is enough to show that the usual and special maps
H•
GO

(pt;k) → H•
GO

(GrG;k) coincide. This claim is essentially established in [MR2,
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proof of Lemma 3.6], following an argument of Ginzburg. Let us briefly explain how
to translate from our setting into that of [MR2]. Consider the ring homomorphism

(3.3.5) H•
GO

(pt;k)⊗k H
•
GO

(pt;k)→ H•
GO

(GrG;k)

given by having the left-hand, resp. right-hand, copy of H•
GO

(pt;k) act by the usual,
resp. special, action. Since H•

GO
(pt;k) is free (and hence flat) over k, the Künneth

formula (in the form stated in, say, [Ac3, Proposition 6.7.5]) lets us identify the
domain of (3.3.5) with H•

GO×GO
(pt;k). In view of this observation, the argument

in [MR2, Lemma 3.6] shows that (3.3.5) factors through the multiplication map

H•
GO

(pt;k)⊗k H
•
GO

(pt;k)→ H•
GO

(pt;k),

and thus the usual and special actions coincide.
(2) As usual one can assume that A is supported on a single connected component

of GrG. Recall that there exists a (Leray–Serre) convergent spectral sequence

Ep,q2 = HpGO
(pt;k)⊗k H

q(GrG,A ) ⇒ Hp+qGO
(GrG,A ).

Our assumption guarantees that HpGO
(pt;k) vanishes unless p is even. On the other

hand, since A is supported on a single connected component of GrG, all the coweights
λ such that Fλ(A ) ̸= 0 belong to the same ZR-coset. Therefore the parity of the
integer ⟨λ, 2ρ⟩ is the same for all these λ’s, which implies that H•(GrG,A ) is con-
centrated in degrees of constant parity. These observations imply that the spectral
sequence above degenerates at the E2-term, from which we deduce our claims.

As for (3.2.10)–(3.2.11), for A ,B in PervGO (GrG,k) we have canonical morphisms
of graded k-modules

(3.3.6) H•(GrG,A )⊗k H
•(GrG,B)→ H•(GrG ×GrG,

pH 0(A
L

⊠k B))

and

(3.3.7) H•(GrG,A )⊗H•
GO

(pt;k) H
•
GO

(GrG,A )→ H•(GrG,A ⋆GO
0 B).

The following lemma is analogous to Lemma 3.2.8, and its proof is similar. (In
particular, this proof does not require our running assumption on k.)

Lemma 3.3.10. — For any A ,B in PervGO (GrG,k) the following diagram com-
mutes, where in the left column the upper arrow is induced by the forgetful map from
equivariant cohomology to cohomology and the lower arrow is the natural one:

H•(GrG,A )⊗k H
•(GrG,B) H•(GrG ×GrG,

pH 0(A ⊠Lk B))

H•(GrG,A )⊗k H
•
GO

(GrG,B)

H•(GrG,A )⊗H•
GO

(pt;k) H
•
GO

(GrG,B) H•(GrG,A ⋆GO
0 B).

(3.3.6)

(3.3.2)≀

(3.3.7)
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Now we combine Lemma 3.3.9 and Lemma 3.3.10. Under our assumptions on k, for
A ,B in PervGO (GrG,k), Lemma 3.3.9 implies that we have a canonical isomorphism

H•(GrG,A )⊗H•
GO

(pt;k) H
•
GO

(GrG,B) ∼= H•(GrG,A )⊗k H
•(GrG,B).

Moreover, under this identification the two maps in the left-hand column of the dia-
gram of Lemma 3.3.10 coincide. This shows that the composition of the upper arrow
with the right vertical arrow (i.e., the monoidal structure on F from Proposition 3.3.8)
coincides with the lower horizontal arrow. In other words, the latter arrow provides
a third equivalent description of the monoidal structure on F.

3.4. The central functor is monoidal

We now drop the restrictions on k from §3.3.4.

3.4.1. Monoidality isomorphism. — Our main goal in this section is to construct
the “monoidality” isomorphism for Z, and to prove the analogue of property (3) of a
central functor, along the following lines.

Theorem 3.4.1. — For A ∈ Db
GO

(GrG,k), resp. A ∈ Db
c (GrG,k), and B ∈

Db
GO

(GrG,k), there is a natural isomorphism

ϕA ,B : Z(A ) ⋆I Z(B)
∼−→ Z(A ⋆GO B)

in Db
I (FlG,k), resp. in Db

c (FlG,k). Moreover, for A1,A2 ∈ Db
GO

(GrG,k) and F ∈
Db
I (Gr,k), the following diagram commutes:

(3.4.1)

(
Z(A1) ⋆

I Z(A2)
)
⋆I F Z(A1 ⋆

GO A2) ⋆
I F

Z(A1) ⋆
I
(
Z(A2) ⋆

I F
)

F ⋆I Z(A1 ⋆
GO A2)

Z(A1) ⋆
I
(
F ⋆I Z(A2)

)
F ⋆I

(
Z(A1) ⋆

I Z(A2)
)

(
Z(A1) ⋆

I F
)
⋆I Z(A2)

(
F ⋆I Z(A1)

)
⋆I Z(A2).

αZ(A1),Z(A2),F

ϕA1,A2
⋆I idF

σ̃
A1⋆GO A2,F

idZ(A1)⋆
I σ̃A2,F idF⋆

Iϕ−1
A1,A2

α−1
Z(A1),F,Z(A2)

α−1
F,Z(A1),Z(A2)

σ̃A1,F⋆
I idZ(A2)

Proof. — The proof is very similar to that of Theorem 3.2.3. Let η : (GK ×GO GrG)×
C◦ → GrG(y)|C◦ be the unique map making the following diagram commute:

(3.4.2)

(GK ×GO GrG)× C◦

GrG(y, y)|C◦ GrG × C◦

GrG(y)|C◦

ν µ

η

µ ν
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(see (2.3.16)). Comparing the two sides of (3.4.2), we obtain natural isomorphisms

τ(A ) ⋆C◦ τ(B) ∼= η∗(A
L

⊠k B
L

⊠k kC◦ [1]) ∼= τ(A ⋆GO B).

We define ϕ̃ : τ(A ) ⋆C◦ τ(B)
∼−→ τ(A ⋆GO B) to be the composition of these isomor-

phisms. By Corollary 2.4.3 along with (3.2.1) and (3.2.2), we obtain an isomorphism

ϕA ,B : Z(A ) ⋆I Z(B)
∼−→ Z(A ⋆GO B).

The rest of theorem involves the study of the following two diagrams:

(GK ×GO GrG)× FlG × C◦ GrG(0, y, y)|C◦

GrG(y, y, 0)|C◦ GrG × FlG × C◦ GrG(0, y)|C◦ GrG(y∪0, y)|C◦

GrG(y, 0)|C◦ GrG(y∪0)|C◦ ,

ν

ν µ
µ

µ

µ

ν

ν µ
µ

µ

(GK ×GO GrG)× FlG × C◦ GrG(0, y, y)|C◦

GrG(y, y, 0)|C◦ GrG(y, y∪0)|C◦ GrG(y, 0, y)|C◦ GrG(y∪0, y)|C◦

GrG(y, 0)|C◦ GrG(y∪0)|C◦ .

ν

ν ν µ

µ

µ

µ

µ µ

µ

µ

Both diagrams are assembled from copies of (2.3.15), (2.4.5), and (3.4.2), and they
coincide along their outermost edges. From this point on, the proof of Theorem 3.2.3
can be repeated essentially verbatim. We omit further details.

The isomorphism from Theorem 3.4.1 is compatible with monodromy in the sense
of the following claim.

Proposition 3.4.2. — For any A ,B in Db
GO

(GrG,k) the following diagram com-
mutes:

Z(A ) ⋆I Z(B) Z(A ⋆GO B)

Z(A ) ⋆I Z(B) Z(A ⋆GO B)

mA ⋆
ImB

ϕA ,B

m
A⋆GO B

ϕA ,B

Proof. — After tracing through the construction of ϕ in the proof of Theorem 3.4.1,
this claim is easily deduced from the last assertion in Corollary 2.4.3.

Recall the bifunctor ⋆I0 introduced in Remark 3.2.2. Theorem 3.4.1 and the t-
exactness of Z (see Lemma 2.4.5) ensure that for A ,B in PervGO (GrG,k) we have a
bifunctorial isomorphism

(3.4.3) ϕ0A ,B : Z(A ) ⋆I0 Z(B)
∼−→ Z(A ⋆GO

0 B).
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3.4.2. Projection to GrG. — The isomorphism of Theorem 3.4.1 has no meaning-
ful analogue in the setting where G is replaced by GC , since forgetting Z and replacing
I by GO we obtain a tautology. This suggests that this isomorphism “disappears”
when one applies the functor π∗. In this subsection, for later use we make this idea
precise.

Consider the map

π ×̃ π : GK ×I FlG → GK ×GO GrG.

For A ,B ∈ PervGO (GrG,k), using the fact that π∗Z(A ) ∼= A and π∗Z(B) ∼= B (see
Lemma 2.5.1), it is not difficult to check that we have a canonical isomorphism

(3.4.4) (π ×̃ π)∗
(
Z(A ) ⊠̃ Z(B)

) ∼= A ⊠̃ B.

Recall the mapsm andm′ from (1.3.1) and (2.2.2), respectively. Applying the functor
m∗, and using the fact that m ◦ (π ×̃ π) = π ◦m′, we deduce an isomorphism

(3.4.5) π∗
(
Z(A ) ⋆I Z(B)

) ∼−→ A ⋆GO B.

Lemma 3.4.3. — The following diagram commutes:

π∗
(
Z(A ) ⋆I Z(B)

)
π∗Z(A ⋆GO B)

A ⋆GO B.

π∗ϕA ,B

(3.4.5) Lemma 2.5.1

Proof. — Consider the following two commutative diagrams:

(3.4.6)

(GK ×GO GrG)× C◦

GrG(y, y)|C◦ GrGC
(y, y)|C◦ GrG × C◦

GrG(y)|C◦ GrGC
(y)|C◦ ,

ν µ
ν

µ

ϖ

µ
ν

ϖ

(3.4.7)

(GK ×GO GrG)× C◦

GrG(y, y)|C◦ GrG × C◦

GrG(y)|C◦ GrGC
(y)|C◦ .

ν µ

µ

ν
ν

ϖ
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Arguing as in the proof of Theorem 3.2.3, using these diagrams we obtain a commu-
tative diagram

π∗
(
Z(A ) ⋆I Z(B)

)
π∗Z(A ) ⋆GO π∗Z(B)

π∗Z(A ⋆GO B) Zsph(A ) ⋆GO Zsph(B)

Zsph(A ⋆GO B) A ⋆GO B

(3.4.5)

∼

π∗ϕA ,B ≀ ≀ Lemma 2.5.1

Lemma 2.5.1 ≀ ≀ (2.5.5)

(2.5.5)

∼

where the maps along the left-hand side and bottom come from (3.4.7), and those on
the top and right-hand side come from (3.4.6).

The isomorphism (3.4.5) also explains the relationship between the isomorphisms

σ̃−,− and σ̃sph
−,−, as follows.

Lemma 3.4.4. — For any A ,B in Db
GO

(GrG,k) the following diagram commutes:

π∗
(
Z(A ) ⋆I Z(B)

)
π∗
(
Z(B) ⋆I Z(A )

)
A ⋆GO B B ⋆GO A .

σ̃A ,Z(B)

(3.4.5) (3.4.5)

σ̃sph
A ,B

Proof. — The claim follows from the compatibility of nearby cycles with proper push-
forward, see Proposition 9.1.4.

3.5. Compatibility of commutativity

The goal of this section is to establish a compatibility result between the natural
transformation σ̃A ,F of Theorem 3.2.3 and the intrinsic commutativity constraint of
the symmetric monoidal category PervGO (GrG,k), which specializes to property (1)
in Section 3.1 in case k is a field.

3.5.1. Statement. — Recall (see §1.3.3) that the morphism of bifunctors σFus
−,− is

not the commutativity constraint for the monoidal category (PervGO (GrG,k), ⋆GO
0 );

they differ by a sign modification. To take this into account, we will similarly modify
the definition of σ̃A ,F . By additivity again, we only have to explain this modification
in the case where A and F are supported on a single connected component of GrG
and FlG respectively. In this case, we set

σA ,F = −σ̃A ,F

in case the connected component supporting A and the image in GrG of the connected
component supporting F are both odd, and

σA ,F = σ̃A ,F

otherwise.
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We are now ready to state the main result of this section. In the following state-
ment, the maps ϕ0A ,B and ϕ0B,A are defined as in (3.4.3).

Theorem 3.5.1. — For any A ,B in PervGO (GrG,k) the following diagram com-
mutes:

Z(A ) ⋆I0 Z(B) Z(A ⋆GO
0 B)

Z(B) ⋆I0 Z(A ) Z(B ⋆GO
0 A ).

pH 0(σA ,Z(B))

ϕ0
A ,B

Z(σCom
A ,B)

ϕ0
B,A

The proof will be given in §3.5.8, following some preliminaries.

3.5.2. Affine Grassmannians over a 2-dimensional base. — The proof of The-
orem 3.5.1 will require the use of “nearby cycles over a 2-dimensional base.” A general
theory of nearby cycles over an arbitrary base exists, and has seen progress recently
(see [I2]), but this is not the theory we will use. Instead, in Section 9.4 (following
Gaitsgory [G2]) we explain how such a functor can be constructed (and sometimes
computed) in the situation at hand by generalizing Bĕılinson’s construction of (unipo-
tent) nearby cycles. (The latter construction is reviewed in Section 9.2.)

In the present subsection we introduce the geometric data that will be used in this
construction, namely certain 2-dimensional analogues of the iterated affine Grassman-
nians introduced in Section 2.3. These will be ind-schemes over C2 = A2.

Let GrG(x) be the ind-scheme over C2 representing the functor given by

R 7→

{
(x, y, E , β)

∣∣∣∣∣ x, y ∈ C(R), E a principal G-bundle over Γ̂x ∪ Γy,

and β : E|Γ̂x∪Γy∖Γx

∼−→ E0
Γ̂x∪Γy∖Γx

a trivialization

}
.

(Here, following the same conventions as in §3.5.2 and Chapter 2, in the right-hand

side we denote by Γx, resp. Γy, the graph of x, resp. y, and by Γ̂x ∪ Γy the completion
of CR along the closed subscheme Γx ∪ Γy. Also, we tacitly consider the equivalence
classes of quadruples (x, y, E , β) for the obvious equivalence relation.) By restricting

E from Γ̂x ∪ Γy to Γ̂x and β from Γ̂x ∪ Γy ∖ Γx to Γ̂◦
x, we get a map

GrG(x)→ GrCen
G × C.

Reasoning similar to that in Remark 2.2.14 shows that this is an isomorphism, which
justifies the claim that this functor is indeed represented by an (ind-projective) ind-
scheme over C2.

Similar considerations allow to define the ind-scheme GrG(y) over C
2 representing

the functor given by

R 7→

{
(x, y, E , β)

∣∣∣∣∣ x, y ∈ C(R), E a principal G-bundle over Γ̂x ∪ Γy,

and β : E|Γ̂x∪Γy∖Γy

∼−→ E0
Γ̂x∪Γy∖Γy

a trivialization

}
.

Next, let L+GBD
be the affine group scheme over C2 defined by

R 7→ {(x, y, γ) | x, y ∈ C(R), γ ∈ G(Γ̂x ∪ Γy)}.
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(The representability of this functor can be obtained as an application of [HR1,
Lemma 3.2], as for Lemma 2.3.1. Moreover, as in this case, this group scheme is an

inverse limit of smooth group schemes of finite type over C2.) We also let Gr
(∞)
G (x)

be the ind-scheme over C2 given by

Gr
(∞)
G (x)(R) = {(x, y, E , β, γ) |

x, y ∈ C(R), E a principal G-bundle over Γ̂x ∪ Γy,

β : E|Γ̂x∪Γy∖Γx

∼−→ E0
Γ̂x∪Γy∖Γx

and γ : E ∼−→ E0
Γ̂x∪Γy

trivializations

}
.

There is a natural right action of L+GBD
on this ind-scheme (by twisting γ), and as

in Lemma 2.3.9 the map

Gr
(∞)
G (x)→ GrG(x)

given by forgetting γ is an étale locally trivial principal L+GBD
-bundle.

Let GrG(x, y) be the functor from C-algebras to sets defined by

R 7→ {(x, y, E1, E2, β1, β2) |

x, y ∈ C(R), E1, E2 principal G-bundles over Γ̂x ∪ Γy,
and β1 : E1

|Γ̂x∪Γy∖Γx

→ E0
Γ̂x∪Γy∖Γx

, β2 : E2
|Γ̂x∪Γy∖Γy

→ E1
|Γ̂x∪Γy∖Γy

isom.

}
.

In analogy with Proposition 2.3.11, one can show that

GrG(x, y)
∼= Gr

(∞)
G (x)×L+GBD

C2 GrG(y),

and thereby conclude that GrG(x, y) is represented by an ind-proper ind-scheme over

C2.
Finally, given x, y ∈ C(R), recall the scheme (Γ̂x ∪ Γy)

◦ = Γ̂x ∪ Γy ∖ (Γx ∪ Γy)
from §1.3.3. We define the functor GrG(x∪y) by

R 7→

{
(x, y, E , β)

∣∣∣∣∣ x, y ∈ C(R), E a principal G-bundle over Γ̂x ∪ Γy,

and β : E|(Γ̂x∪Γy)◦
∼−→ E0

(Γ̂x∪Γy)◦
an isomorphism

}
.

As in the proof of Proposition 2.3.4, using [HR1, Corollary 3.10] (now for the noethe-
rian ring O = C[x, y], the O-curve X = C3, and the divisor given by the union
{(x, y, x) : x, y ∈ C}∪{(x, y, y) : x, y ∈ C}) one obtains that GrG(x∪y) is represented
by an ind-scheme over C2. There is an obvious proper map

µ : GrG(x, y)→ GrG(x∪y)

given by (x, y, E1, E2, β1, β2) 7→ (x, y, E2, β
1|(Γ̂x∪Γy)◦

◦ β
2|(Γ̂x∪Γy)◦

).

3.5.3. Convolution. — We are now ready to combine these ingredients. Using the
natural maps

(3.5.1) GrCen
G ×GrCen

G
∼= GrG(x)×C2 GrG(y)

p←− Gr
(∞)
G (x)×C2 GrG(y)

q−→ Gr
(∞)
G (x)×L+GBD

C2 GrG(y)
∼= GrG(x, y)

µ−→ GrG(x∪y)
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we can define a twisted external tensor product and a convolution product over C2,
denoted by

⊠̃C2 : Db
c (GrCen

G ,k)×Db
L+G(GrCen

G ,k)→ Db
c (GrG(x, y),k),

⋆C2 : Db
c (GrCen

G ,k)×Db
L+G(GrCen

G ,k)→ Db
c (GrG(x∪y),k)

respectively, by the same procedure as in §1.3.1 or in §2.4.3. Of course, they are
related by

µ∗(F ⊠̃C2 G ) = F ⋆C2 G .

These bifunctors have obvious analogues over (C◦)2 instead of C2, which will be

denoted ⊠̃(C◦)2 and ⋆(C◦)2 respectively.

3.5.4. Relation with the fusion product. — The ind-schemes introduced above
in §3.5.2 have obvious analogues in the setting where the group scheme G is replaced
by the constant group scheme GC , which have in fact already appeared in the con-
struction of the fusion product from §1.3.3 (see also [BR, §1.7] for more details).
Namely, the ind-scheme GrGC

(x, y) coincides with the one denoted GrG,X×̃GrG,X
in [BR, §1.7.4](1); the ind-scheme GrGC

(x∪y) coincides with the one denoted GrG,X2

in [BR, §1.7.3] (and denoted FusG in §1.3.3); and the analogues of the constructions
from §3.5.3 in this setting were considered in [BR, §1.7.5]. We will use the same
notation for these variants.

We have a canonical isomorphism

GrGC
(x, y)|C2∖∆C

∼−→
(
GrGC

(x)×C2 GrGC
(y)
)
|C2∖∆C

which sends the datum of (E1, E2, β1, β2) to ((E1, β1), (Ẽ2, β̃2)) where Ẽ2 is obtained
by gluing the trivial bundle away from Γy with E2 away from Γx using the composition
of β2 and β1 as gluing datum. In turn, we have a natural identification(

GrGC
(x)×C2 GrGC

(y)
)
|C2∖∆C

∼−→ GrG ×GrG × (C2 ∖∆C)

obtained by moving x and y to the origin, under which the restriction of τ(A ) ⊠̃C2

τ(B) identifies with A ⊠L B ⊠L k[2], for any A ,B in Db
GO

(GrG,k).
The natural morphism

GrGC
(x, y)→ GrGC

(x∪y)

restricts to an isomorphism over C2 ∖ ∆C and, from this point of view, [BR,
Lemma 1.7.10] states that for A ,B perverse sheaves such that A ⊠Lk B is perverse
we have

τ(A ) ⋆C2 τ(B) ∼= j!∗(A
L
⊠ B

L
⊠ k[2])[−1],

where we use the notation of §1.3.3. Restricting to the diagonal we obtain the iso-
morphism

τ(A ⋆GO B) ∼= i∗j!∗(A
L
⊠ B

L
⊠ k[2])

(1)In [BR], the curve A1 was denoted X rather than C.
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from (1.3.4). Now, exchanging the points x and y defines an automorphism

swap : GrGC
(x∪y) ∼−→ GrGC

(x∪y)

which stabilizes the preimage of C2 ∖ ∆C, and restricts on this preimage to the
automorphism of GrG × GrG × (C2 ∖∆C) sending (a, b, (x, y)) to (b, a, (y, x)). The
commutativity constraint σFus

A ,B is then obtained using the fact that i = swap ◦ i, so
that i∗ ∼= i∗ ◦ swap∗.

3.5.5. Restriction to subvarieties of C2. — The ind-schemes defined above can
be restricted to various subsets of C2, such as the open subset (C◦)2, or the diagonal
copy ∆C of C inside C2. We also consider ∆C◦ := (C◦)2 ∩∆C, and the open subset

C2† := (C◦)2 ∖∆C◦.

The following observations are essentially immediate from the definitions.

1. Over (C◦)2, since the restrictions of G and GC coincide we have canonical iden-
tifications

GrG(x, y)|(C◦)2
∼= GrGC

(x, y)|(C◦)2 ,

GrG(x∪y)|(C◦)2
∼= GrGC

(x∪y)|(C◦)2 = (FusG)|(C◦)2 .

2. Over {0} × C we have

GrG(x, y)|{0}×C
∼= GrG(0, y), GrG(x∪y)|{0}×C ∼= GrG(y∪0).

3. Similarly, over C × {0} we have

GrG(x, y)|C×{0} ∼= GrG(y, 0), GrG(x∪y)|C×{0} ∼= GrG(y∪0).

4. Over ∆C, we have

(GrG(x)×C2 GrG(y))|∆C
∼= GrCen

G ×C GrCen
G ,

GrG(x, y)|∆C
∼= GrG(y, y),

GrG(x∪y)|∆C ∼= GrCen
G .

5. Over C2†, the morphism

GrG(x, y)|C2† → GrG(x∪y)|C2†

is an isomorphism, and these ind-schemes identify canonically with GrG×GrG×
C2†.

3.5.6. Iterated cleanness. — Below we will make use of the “2-dimensional
nearby cycles” construction from Section 9.4, applied to the ind-schemes GrG(x, y)

and GrG(x∪y). For this, it will be convenient to let i∆× denote either of the inclusion
maps

GrG(x, y)|∆C◦ ↪→ GrG(x, y)|(C◦)2 , GrG(x∪y)|∆C◦ ↪→ GrG(x∪y)|(C◦)2 .

If F is a perverse sheaf that lives on GrG(x, y)|(C◦)2 or GrG(x∪y)|(C◦)2 , one can
ask whether it is iterated-clean in the sense of Definition 9.4.5.
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Lemma 3.5.2. — Let A ,B ∈ PervGO (GrG,k) be such that A ⊠Lk B is perverse.

Then τ(A ) ⊠̃(C◦)2 τ(B) and τ(A ) ⋆(C◦)2 τ(B) are iterated-clean.

Proof. — Consider the perverse sheaves τ(A ), τ(B) in PervL+G|C◦ (GrCen
G |C◦ ,k). Our

assumption implies that the object

τ(A )
L
⊠k τ(B) ∼= A

L
⊠k B

L
⊠k k(C◦)2 [2]

is perverse. It is iterated-clean by Lemma 9.4.14. Since the maps p and q involved in
the definition of convolution are smooth (and surjective), and the map µ is proper,
applying Lemma 9.4.6 repeatedly yields the result.

For the rest of this subsection and the next one we fix A ,B ∈ PervGO (GrG,k)
such that A ⊠Lk B is perverse.

Lemma 3.5.3. — Let A ,B ∈ PervGO (GrG,k) be such that A ⊠Lk B is perverse.

1. Let h : GrG(x∪y)|C2† ↪→ GrG(x∪y)(C◦)2 be the inclusion map. Then there is a
natural isomorphism

τ(A ) ⋆(C◦)2 τ(B) ∼= h!∗(A
L

⊠k B
L

⊠k kC2† [2]).

2. There is a natural isomorphism

(i∆×)∗
(
τ(A ) ⋆(C◦)2 τ(B)

)
[−1] ∼= τ(A ⋆GO B).

In particular, these complexes are perverse.

Proof. — These statements are clear from the study of the scheme GrGC
(x∪y)

in §3.5.4, since GrG(x∪y) and GrGC
(x∪y) coincide over (C◦)2 (see §3.5.5).

3.5.7. Study of nearby cycles over C2. — We continue with our A ,B ∈
PervGO (GrG,k) such that A ⊠Lk B is perverse. We first want to apply the for-
malism of Section 9.4 to the ind-scheme GrG(x, y) over C2 and the perverse sheaf

τ(A ) ⊠̃(C◦)2 τ(B). By Lemma 3.5.2 this object is iterated clean. In order to apply
Proposition 9.4.7 (which guarantees in particular that the 2-dimensional nearby
cycles construction is well defined), we need to check two further conditions, stating
that some nearby cycles are unipotent. By Lemma 9.4.15 and Remark 2.4.7(2) these

assumptions are satisfied by the object τ(A ) ⊠Lk τ(B) on GrCen
G × GrCen

G . Using

Remark 9.4.13 we deduce that they also hold for GrG(x, y) and τ(A ) ⊠̃(C◦)2 τ(B).
Therefore, applying Proposition 9.4.7 one can consider the objects

F(x,y)(A ,B) = ΥGrG(x,y)

(
τ(A ) ⊠̃(C◦)2 τ(B)

)
,

F
(2)
(x,y)(A ,B) = Ψ

(2)
GrG(x,y)

(
τ(A ) ⊠̃(C◦)2 τ(B)

)
,

F∆
(x,y)(A ,B) = Ψun

GrG(x,y)|∆C

(
(i∆×)∗(τ(A ) ⊠̃(C◦)2 τ(B))[−1]

)
.

Now, consider the ind-schemeGrG(x∪y) over C2 and the perverse sheaf τ(A )⋆(C◦)2

τ(B) (see Lemma 3.5.3). Using again Remark 9.4.13 we obtain that the conditions
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of Proposition 9.4.7 are again satisfied in this context, so that one can consider the
objects

F(x∪y)(A ,B) = ΥGrG(x∪y)

(
τ(A ) ⋆(C◦)2 τ(B)

)
,

F
(2)
(x∪y)(A ,B) = Ψ

(2)
GrG(x∪y)

(
τ(A ) ⋆(C◦)2 τ(B)

)
,

F∆
(x∪y)(A ,B) = Ψun

GrG(x∪y)|∆C

(
(i∆×)∗(τ(A ) ⋆(C◦)2 τ(B))[−1]

)
.

Lemma 3.5.4. — Let A ,B ∈ PervGO (GrG,k) be such that A ⊠Lk B is perverse.
We then have natural isomorphisms

(3.5.2) F
(2)
(x,y)(A ,B)

∼←− F(x,y)(A ,B)
∼−→ F∆

(x,y)(A ,B),

and likewise for the (x∪y) versions. Moreover, there is a commutative diagram

(3.5.3)

µ∗F
(2)
(x,y)(A ,B) µ∗F(x,y)(A ,B) µ∗F

∆
(x,y)(A ,B)

F
(2)
(x∪y)(A ,B) F(x∪y)(A ,B) F∆

(x∪y)(A ,B)

≀

∼ ∼

≀ ≀

∼ ∼

where the horizontal maps are induced by (3.5.2) and its variant for (x∪y).

Proof. — As explained above Proposition 9.4.7 applies in both settings, which justi-
fies the isomorphisms

F(x,y)(A ,B)
∼−→ F

(2)
(x,y)(A ,B), F(x∪y)(A ,B)

∼−→ F
(2)
(x∪y)(A ,B).

The isomorphism in the left column of (3.5.3) and the commutativity of the left part
of this diagram follow from Corollary 9.4.8 and its proof.

By Lemma 9.4.11, we also have natural maps

(3.5.4) F(x,y)(A ,B)→ F∆
(x,y)(A ,B), F(x∪y)(A ,B)→ F∆

(x∪y)(A ,B).

To check that these maps are isomorphisms, we first work on GrG(x)×C2 GrG(y). In
this setting, as above we have a morphism

(3.5.5) ΥGrG(x)×C2GrG(y)(τ(A )
L
⊠k τ(B))→ Ψun

GrCen
G ×CGrCen

G
(τ(A )

L
⊠k τ(B)),

which now is known to be an isomorphism thanks to Proposition 9.4.17. The first
map in (3.5.4) is related to that in (3.5.5) by smooth pullback along the maps p and
q from (3.5.1), so it is an isomorphism by Proposition 9.4.12(2).

For the second map in (3.5.4), we use the proper map µ from (3.5.1). The fact
that our map is an isomorphism follows from Proposition 9.4.12(1). Similarly, the
isomorphism in the right column of (3.5.3), and the commutativity of the right part
of this diagram, follow from the proof of this proposition.
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3.5.8. Proof of Theorem 3.5.1. — We can finally give the proof of Theorem 3.5.1.
So, we fix A ,B in PervGO (GrG,k).

Assume for now that H•(GrG,A ) is flat over k. This implies that A ⊠Lk B is
a perverse sheaf (see Remark 1.3.10), so that the discussion above can be applied.
Using the compatibility of (iterated) nearby cycles with smooth pullback along the
maps p and q in (3.5.1), we obtain an isomorphism

(3.5.6) F
(2)
(x,y)(A ,B) ∼= Z(A ) ⊠̃ Z(B).

On the other hand, Lemma 2.4.2 implies that we have

F∆
(x,y)(A ,B) ∼= Z(A ) ⊠̃ Z(B).

In fact, unwrapping the constructions we see that the isomorphism

F
(2)
(x,y)(A ,B)

∼−→ F∆
(x,y)(A ,B)

obtained by composing the two identifications in (3.5.2) is the identity.
For the complexes constructed using the (x∪y) variant, we remark that from the

definition (see the discussion following (9.4.1)), if Z ⊂ (C◦)2 is a closed subset that
remains closed in C × C◦, then the output of the functor Ψ(2) depends only on the
restriction of the given perverse sheaf to (C◦)2 ∖ Z. In particular, this holds for
Z = ∆C◦, in which case (C◦)2 ∖ Z = C2†. Over C2†, the ind-schemes GrG(x, y),
GrG(x∪y) and GrG(x)×C2 GrG(y) are all canonically identified (see §3.5.5), and from
this we obtain a canonical isomorphism

F
(2)
(x∪y)(A ,B) ∼= C(B,Z(A )),

where C is defined as in §3.2.1. On the other hand, from the definitions we see that

(3.5.7) F∆
(x∪y)(A ,B) ∼= Z(A ⋆GO B).

Combining these identifications, we conclude that the commutative diagram (3.5.3)
can be rewritten as

(3.5.8)

Z(A ) ⋆I Z(B) µ∗F(x,y)(A ,B) Z(A ) ⋆I Z(B)

C(B,Z(A )) F(x∪y)(A ,B) Z(A ⋆GO B).

≀

id

∼ ∼

≀ ≀

∼ ∼

Moreover, here the right vertical isomorphism coincides with the isomorphism ϕA ,B

from Theorem 3.4.1, and the left vertical isomorphism coincides with that of Propo-
sition 3.2.1(2).

In the construction of F
(2)
(x,y)(A ,B) and F

(2)
(x∪y)(A ,B), we have made a choice of

first applying nearby cycles in the direction of {0}×C ⊂ C2, and then in the direction
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of {(0, 0)} ⊂ C×{0}. But we could have also first taken nearby cycles in the direction
of C × {0} ⊂ C2, and then in the direction of {(0, 0)} ⊂ C × {0}. If we denote by

F
(2)′
(x,y)(A ,B), F

(2)′
(x∪y)(A ,B)

the objects obtained in this way, then we have canonical isomorphisms

(3.5.9) F
(2)′
(x,y)(A ,B) ∼= Z(A ) ⊠̃ Z(B), F

(2)′
(x∪y)(A ,B) ∼= C(A ,Z(B)).

We also have a canonical isomorphism

µ∗F
(2)′
(x,y)(A ,B) ∼= F

(2)′
(x∪y)(A ,B),

which now coincides under the identifications (3.5.9) with the isomorphism of Propo-
sition 3.2.1(1), and these complexes are related to F(x,y)(A ,B) and F(x∪y)(A ,B) by

canonical isomorphisms.
For the next step, we observe as in §3.5.4 that we have an automorphism of the

ind-scheme GrG(x∪y) obtained by exchanging the points x and y, which we will also
denote by swap : GrG(x∪y)→ GrG(x∪y). This automorphism preserves the preimage

of {(0, 0)}, and induces the identity on this preimage. As in the construction of σFus
A ,B,

we therefore obtain a canonical isomorphism

ΥGrG(x∪y)

(
τ(A ) ⋆(C◦)2 τ(B)

) ∼−→ ΥGrG(x∪y)

(
swap∗(τ(A ) ⋆(C◦)2 τ(B))

)
,

or in other words (in view of Lemma 3.5.3(1)) a canonical isomorphism

(3.5.10) F(x∪y)(A ,B)
∼−→ F(x∪y)(B,A ).

More generally swap restricts to the identity on the preimage of ∆C, so that we
similarly obtain an isomorphism

(3.5.11) F∆
(x∪y)(A ,B)

∼−→ F∆
(x∪y)(B,A )

which, by construction (see §3.5.4), identifies under the isomorphism (3.5.7) and its
version for the pair (B,A ) with Z(σFus

A ,B).

The automorphism swap does not stabilize the preimage of {0}×C, so it does not

“commute” with F
(2)
(x∪y) in the sense above. Instead, we obtain a canonical isomorphism

(3.5.12) F
(2)
(x∪y)(A ,B)

∼−→ F
(2)′
(x∪y)(B,A ).

As explained above, both of these complexes identify with C(B,Z(A )), and in fact
the isomorphism so constructed is just the identity map of this complex. But this
identification can be combined with the isomorphisms

µ∗F
(2)
(x,y)(A ,B)

∼−→ F
(2)
(x∪y)(A ,B), µ∗F

(2)′
(x,y)(B,A )

∼−→ F
(2)′
(x∪y)(B,A )

to provide a canonical isomorphism

µ∗F
(2)
(x,y)(A ,B)

∼−→ µ∗F
(2)′
(x,y)(B,A ),

which via the identifications (3.5.6) and (3.5.9) coincides with σ̃A ,Z(B).
Of course the isomorphisms (3.5.10), (3.5.11) and (3.5.12) are compatible in the

obvious way, and from the identifications above we deduce the commutativity of a
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diagram similar to that of Theorem 3.5.1, but for the isomorphisms σ̃A ,Z(B) and

σFus
A ,B. Twisting by the appropriate signs, this proves the theorem in the special case

where H•(GrG,A ) is flat over k.
For the general case, recall that any A ∈ PervGO (Gr,k) can be written as a

quotient of a perverse sheaf A ′ such that H•(GrG,A ′) is flat (see [BR, Proof of
Lemma 1.10.10]). Consider the commutative diagram

Z(A ′) ⋆I Z(B) Z(A ) ⋆I0 Z(B)

Z(B ⋆GO A ′) Z(B ⋆GO
0 A ),

ϕB,A ′σA ′,Z(B)−Z(σCom
A ′,B)ϕA ′,B ϕ0

B,A
pH 0(σA ,Z(B))−Z(σCom

A ,B)ϕ0
A ,B

where the horizontal maps are induced by the quotient morphism A ′ → A . The left-
hand vertical map is 0 by the special case of the theorem that is already proved. The
upper horizontal arrow is surjective by Corollary 3.2.5. It follows that the right-hand
vertical map is 0 as well, which finishes the proof of the theorem.

3.5.9. Alternative description of the commutativity constraint of the Sa-
take category. — We conclude this chapter with some consequences of Theo-
rem 3.5.1.

First, as a corollary of Theorem 3.5.1 and Lemma 3.4.3 we get a commutative
diagram

pH 0(π∗(Z(A ) ⋆I Z(B))) A ⋆GO
0 B

pH 0(π∗(Z(B) ⋆I Z(A ))) B ⋆GO
0 A

pH 0(π∗σA ,Z(B))

∼
(3.4.5)

σCom
A ,B

∼
(3.4.5)

for all A ,B in PervGO (GrG,k). Informally, this diagram says that “π∗ sends σA ,Z(B)

to σCom
A ,B.”

If we further take Lemma 3.4.4 into account we obtain the following corollary, which
can be used to provide an alternative description of the commutativity constraint
σCom
−,− .

Corollary 3.5.5. — For A ,B ∈ PervGO (GrG,k) we have

pH 0(σ̃sph
A ,B) = σFus

A ,B : A ⋆GO
0 B

∼−→ B ⋆GO
0 A .



CHAPTER 4

CENTRAL SHEAVES, WAKIMOTO SHEAVES, AND THE
SATAKE EQUIVALENCE

In this chapter we establish a number of properties of central sheaves due to
Arkhipov–Bezrukavnikov [AB]. In particular we explain the construction (due to
Mirković) of “Wakimoto sheaves,” which are certain I-equivariant perverse sheaves
on FlG parametrized by X∨ which “categorify” the Bernstein elements in the affine
Hecke algebra (in a sense that will be made precise in Chapter 5). We then show that
for each A in PervGO (GrG,k) the central sheaf Z(A ) admits a canonical filtration
whose subquotients are Wakimoto sheaves, with multiplicities governed by weight
spaces of S(A ). The proof of this fact uses in a crucial way the results on centrality
and convolution-exactness proved in Chapter 3.

We then explore some consequences of this property, and use it in particular to
provide yet another equivalent description of the fiber functor F. These properties
are essential for applications of central sheaves to representation theory, and in par-
ticular for the construction of the Arkhipov–Bezrukavnikov equivalence explained in
Chapter 6.

In the constructions from [AB], a distinguished role is played by the dominant
weights. Here, following Zhu [Zh1], we generalize these constructions in a way that
allows this role to be played by any choice of Weyl chamber. The other main difference
from [AB] is that we allow the coefficients to be an arbitrary noetherian commutative
ring of finite global dimension, instead of a field of characteristic 0.

4.1. Standard sheaves, costandard sheaves, and their convolutions

4.1.1. Affine Weyl group combinatorics. — The (extended) affine Weyl group
is the semi-direct product

W :=Wf ⋉X∨.

To avoid any possible confusion, for λ ∈ X∨ we will denote by t(λ) the element
(1, λ) ∈ W . The group W parametrizes the I-orbits on FlG; more precisely if w =
t(λ)v with λ ∈ X∨ and v ∈Wf , we set

FlG,w := I · xλv̇I/I ⊂ FlG,
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where v̇ is any choice of lift of v in NG(T ). Then we have

(FlG)red =
⊔
w∈W

FlG,w,

see [PR, Proposition 8.1]. If we denote by ℓ(w) the dimension of FlG,w, then a formula
due to Iwahori–Matsumoto [IM] states that if w = xt(λ) with x ∈ Wf and λ ∈ X∨,
we have

(4.1.1) ℓ(w) =
∑
α∈R+

x(α)∈R+

|⟨λ, α⟩|+
∑
α∈R+

x(α)∈−R+

|⟨λ, α⟩+ 1|.

This function ℓ defines a structure of a “quasi-Coxeter group” on W . In more
detail, let R∨ ⊂ X∗(T ) be the set of coroots corresponding to X∨, and set

WCox :=Wf ⋉ ZR∨ ⊂W.

If we also set S := {w ∈ WCox | ℓ(w) = 1}, then the pair (WCox, S) is a Coxeter
system, with length function the restriction of ℓ. Furthermore, if we set Ω := {w ∈
W | ℓ(w) = 0}, then conjugation by any element of Ω stabilizes S, and hence acts
on WCox as a Coxeter group automorphism. Finally, multiplication in W induces a
group isomorphism

Ω⋉WCox
∼−→W.

Remark 4.1.1. — One can easily check that the composition of natural projections

W =Wf ⋉X∨ → X∨ → X∨/ZR∨

factors through a group isomorphism W/WCox
∼−→ X∨/ZR∨. In particular we have

a group isomorphism Ω
∼−→ X∨/ZR∨, showing that Ω is a finitely generated abelian

group.
This bijection can be made explicit as follows. Recall the subset X∨

min ⊂ X∨ of
minuscule coweights, see §1.2.1.6. Then it is known that we have bijections

Ω
∼←− X∨

min
∼−→ X∨/ZR∨

where the right arrow is the composition of natural maps X∨
min ↪→ X∨ ↠ X∨/ZR∨

and the left arrow sends λ to t(λ)v, where v ∈ Wf is the unique element of minimal
length such that v(λ) ∈ −X∨

+.

The Bruhat order ≤Bru on WCox can be extended in a canonical way to W by
setting, for w,w′ ∈WCox and ω, ω′ ∈ Ω,

wω ≤Bru w
′ω′ iff ω = ω′ and w ≤Bru w

′.

We then have, for any w,w′ ∈W ,

(4.1.2) FlG,w ⊂ FlG,w′ iff w ≤Bru w
′.

We denote by X∨
+ ⊂ X∨ the subset consisting of dominant coweights. If λ is

dominant, then ⟨λ, α⟩ ≥ 0 for all α ∈ R+, so (4.1.1) implies that

(4.1.3) ℓ(t(λ)) = ⟨λ, 2ρ⟩ for λ ∈ X∨
+.
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In particular, it follows that

(4.1.4) ℓ(t(λ+ µ)) = ℓ(t(λ)) + ℓ(t(µ)) for λ, µ ∈ X∨
+.

Similarly, using (4.1.1) one sees that

(4.1.5) ℓ(t(xλ)) = ℓ(t(λ)) for λ ∈ X∨ and x ∈Wf .

It is also well known that for λ, µ ∈ X∨
+ we have

(4.1.6) t(λ) ≤Bru t(µ) iff µ− λ ∈ Z≥0R+.

This can e.g. by justified as follows. Observe first that t(λ) ≤Bru t(µ) iff t(−λ) ≤Bru

t(−µ). Now using (4.1.1) one can check that for any ν ∈ −X∨
+, the element t(ν) is

minimal in the coset t(ν)Wf . Using (4.1.2), one can see that the restriction of ≤Bru

to the elements w ∈ W which are minimal in wWf describes the closure order on
I-orbits in GrG. Since for ν ∈ −X∨

+ the I-orbit attached to t(ν) is dense in the

GO-orbit Gr
w◦(ν)
G attached to w◦(ν), using the description of closures of GO-orbits in

GrG (see (1.2.2)), we conclude that t(λ) ≤Bru t(µ) iff w◦(−µ) − w◦(−λ) ∈ Z≥0R+,
which is equivalent to the condition that µ− λ ∈ Z≥0R+.

Recall that the (closed) Weyl chambers are the closures of the connected compo-
nents of the complement in X∨ ⊗Z R of the hyperplanes determined by the elements
of R. In this section we fix such a chamber, and denote by Λ, resp. Λ◦, its intersection
with X∨, resp. the intersection of its interior with X∨. Then there exists a unique
element xΛ ∈ Wf such that Λ = xΛ(X

∨
+), and we set RΛ := xΛ(R+). The subset

RΛ is a positive system in R, and Λ consists of the weights which are dominant with
respect to RΛ. Attached to RΛ we have a partial order ⪯Λ on X∨, determined by

λ ⪯Λ µ iff µ− λ ∈ Z≥0R
Λ.

The following statement generalizes (4.1.4) and (4.1.6) to the setting where X∨
+ is

replaced by Λ.

Lemma 4.1.2. — For any λ, µ ∈ Λ, we have:

1. ℓ(t(λ+ µ)) = ℓ(t(λ)) + ℓ(t(µ));
2. t(λ) ≤Bru t(µ) iff λ ⪯Λ µ.

Proof. — The formula in part (1) is immediate from (4.1.4) and (4.1.5). For part (2),
we start from the fact that t(x−1

Λ (λ)) ≤Bru t(x−1
Λ (µ)) iff x−1

Λ (µ − λ) ∈ Z≥0R+

(see (4.1.6)), which is equivalent to the condition that λ ⪯Λ µ. Now since x−1
Λ (λ) and

x−1
Λ (µ) are dominant, using (4.1.1) we see that

ℓ(xΛt(x
−1
Λ (λ))) = ℓ(xΛ) + ℓ(t(x−1

Λ (λ))), ℓ(xΛt(x
−1
Λ (µ))) = ℓ(xΛ) + ℓ(t(x−1

Λ (µ))),

which in view of (4.1.5) can also be interpreted as

ℓ(t(λ)xΛ) = ℓ(t(λ)) + ℓ(xΛ), ℓ(t(µ)xΛ) = ℓ(t(µ)) + ℓ(xΛ).

Now for x, y, z ∈W such that ℓ(xz) = ℓ(x) + ℓ(z) and ℓ(yz) = ℓ(y) + ℓ(z) we have

x ≤Bru y ⇔ xz ≤Bru yz.

(To establish this claim, it is enough to prove it when ℓ(z) ∈ {0, 1}. If ℓ(z) = 0
then the equivalence is clear from definitions, and if ℓ(z) = 1 it holds by, e.g., [Hu2,
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Proposition 5.9].) Similarly, for x, y, z ∈W such that ℓ(zx) = ℓ(x)+ ℓ(z) and ℓ(zy) =
ℓ(y) + ℓ(z) we have

x ≤Bru y ⇔ zx ≤Bru zy.

We deduce in our setting that

t(x−1
Λ (λ)) ≤Bru t(x−1

Λ (µ)) iff xΛt(x
−1
Λ (λ)) ≤Bru xλt(x

−1
Λ (µ)) iff t(λ) ≤Bru t(µ),

which finishes the proof.

4.1.2. Standard and costandard objects on FlG. — For w ∈W , we denote by
jw : FlG,w → FlG the embedding. Then for M in DbMofk we set

∆I
w(M) := (jw)!MFlG,w

[ℓ(w)], ∇Iw(M) := (jw)∗MFlG,w
[ℓ(w)],

where MFlG,w
means the pullback of M (considered as a constructible complex on

a point) under the map FlG,w → pt. Note that since the latter map is smooth and
since the embedding FlG,w → FlG is affine (because FlG is separated and FlG,w is
affine), the complexes ∆I

w(M) and ∇Iw(M) are perverse sheaves if M is concentrated
in degree 0 (see [Ac3, Corollary 3.5.9]). In other words, the functors

∆I
w(−) : DbMofk → Db

I (FlG,k)

and

∇Iw(−) : DbMofk → Db
I (FlG,k)

are t-exact. If k is a field, we will also denote by IC I
w the image of the canonical

morphism ∆I
w(k) → ∇Iw(k); then IC I

w is a simple perverse sheaf, and any simple
I-equivariant perverse sheaf on FlG is isomorphic to some IC I

w.
The following claim will not be used in this chapter, but it will be required in later

chapters.

Lemma 4.1.3. — Assume that k is a field. Let w ∈ W , and let ω ∈ Ω be the
unique element such that w ∈ ωWCox. Then the socle (resp. top) of the perverse sheaf
∆I
w(k) (resp. ∇Iw(k)) is IC I

ω , and moreover the multiplicity of this simple object (as
a composition factor) is 1.

Proof. — A proof of an analogous claim for ordinary flag varieties appears in [BBM,
§2.1] under the assumption that k has characteristic 0. In fact, the arguments given
there apply for any field of coefficients, and also for affine flag varieties.

The following (standard) properties will be very useful to us in various places.

Lemma 4.1.4. — 1. For any two elements w1, w2 ∈ W such that ℓ(w1w2) =
ℓ(w1)+ℓ(w2) and any M1,M2 in DbMofk, there exists a canonical isomorphism

ϑ∆,M1,M2
w1,w2

: ∆I
w1

(M1) ⋆
I ∆I

w2
(M2)

∼−→ ∆w1w2

(
M1

L
⊗k M2

)
.
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Moreover, if w1, w2, w3 satisfy ℓ(w1w2w3) = ℓ(w1)+ℓ(w2)+ℓ(w3), the following
diagram commutes:

∆I
w1

(M1) ⋆
I ∆I

w2
(M2) ⋆

I ∆I
w3

(M3) ∆I
w1w2

(
M1 ⊗Lk M2

)
⋆I ∆I

w3

∆I
w1

(M1) ⋆
I ∆I

w2w3

(
M2 ⊗Lk M3

)
∆I
w1w2w3

(
M1 ⊗Lk M2 ⊗Lk M3

)
.

ϑ∆,M1,M2
w1,w2

⋆I id

∼

id⋆Iϑ∆,M2,M3
w2,w3

≀ ≀ ϑ
∆,M1⊗L

k M2,M3
w1w2,w3

ϑ
∆,M1,M2⊗L

k M3
w1,w2w3

∼

2. For any two elements w1, w2 ∈ W such that ℓ(w1w2) = ℓ(w1) + ℓ(w2) and any
M1,M2 in DbMofk, there exists a canonical isomorphism

ϑ∇,M1,M2
w1,w2

: ∇Iw1
(M1) ⋆

I ∇Iw2
(M2)

∼−→ ∇w1w2

(
M1

L
⊗k M2

)
.

Moreover, if w1, w2, w3 satisfy ℓ(w1w2w3) = ℓ(w1)+ℓ(w2)+ℓ(w3), the following
diagram commutes:

∇Iw1
(M1) ⋆

I ∇Iw2
(M2) ⋆

I ∇Iw3
(M3) ∇Iw1w2

(
M1 ⊗Lk M2

)
⋆I ∇Iw3

∇Iw1
(M1) ⋆

I ∇Iw2w3

(
M2 ⊗Lk M3

)
∇Iw1w2w3

(
M1 ⊗Lk M2 ⊗Lk M3

)
.

ϑ∇,M1,M2
w1,w2

⋆I id

∼

id⋆Iϑ∇,M2,M3
w2,w3

≀ ≀ ϑ
∇,M1⊗L

k M2,M3
w1w2,w3

ϑ
∇,M1,M2⊗L

k M3
w1,w2w3

∼

3. For any w ∈W there exist isomorphisms

∆I
w(k) ⋆I ∇Iw−1(k) ∼= ∇Iw−1(k) ⋆I ∆I

w(k) ∼= ∆I
e(k).

In particular, the objects ∆I
w(k) and ∇Iw(k) are invertible in the monoidal cat-

egory (Db
I (FlG,k), ⋆I).

Note that in parts (1) and (2), the condition ℓ(w1w2w3) = ℓ(w1) + ℓ(w2) + ℓ(w3)
implies that ℓ(w1w2) = ℓ(w1) + ℓ(w2) and ℓ(w2w3) = ℓ(w2) + ℓ(w3).

Proof. — (1) It is well known from the (affine analogue of the) Bruhat decomposition
that if ℓ(w1w2) = ℓ(w1) + ℓ(w2) then multiplication induces an isomorphism

q−1(FlG,w1)×I FlG,w2

∼−→ FlG,w1w2 ,

where q : GK → FlG is the quotient map. Now it is easily seen that

∆w1
(M1) ⋆

I ∆w2
(M2) ∼= m′

! ◦ (jw1,w2
)!
(
M1FlG,w1

⊠̃M2FlG,w2

)
where jw1,w2

: q−1(FlG,w1
) ×I FlG,w2

→ GK ×I FlG is the embedding, and that we
have

M1FlG,w1

⊠̃M2FlG,w2

∼=M1

L
⊗k M2q−1(FlG,w1

)×IFlG,w2

.

We deduce the isomorphism ϑ∆,M1,M2
w1,w2

.
To prove the commutativity of the diagram in the setting where ℓ(w1w2w3) =

ℓ(w1)+ ℓ(w2)+ ℓ(w3) it suffices to consider the restrictions of all the objects involved
to the stratum FlG,w1w2w3 ; then the claim is obvious.

(2) The proof is similar to that of (1).
(3) Using (1) and (2), and using a reduced decomposition of w, we see that it

suffices to prove the isomorphisms when w ∈ Ω or w ∈ S. The case w ∈ Ω is trivial
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(in this case, FlG,w is reduced to a point, and closed, and similarly for FlG,w−1).
Suppose now that w ∈ S. To follow standard notation, we rename this element as s.

We want to consider the object ∆I
s(k) ⋆I ∇Is(k), which is supported on FlG,s =

FlG,s ⊔ FlG,e. Consider the diagram

q−1(FlG,s)×I FlG,s
u−→ q−1(FlG,s)×I FlG,s

v−→ q−1(FlG,s)×I FlG,s
m′

−−→ FlG,s,

where u and v are open embeddings, andm′ is the restriction of the multiplication map
from (2.2.2). Let q̄ : q−1(FlG,s)×I FlG,s → FlG,s be the map given by q̄(x, y) = q(x).
It is easily checked that the map

q−1(FlG,s)×I FlG,s
(q̄,m′◦v)−−−−−→ FlG,s × FlG,s ∼= A1 × P1

is an isomorphism of varieties. Let Y = (m′ ◦ v)−1(FlG,s), and let U = (m′ ◦ v ◦
u)−1(FlG,s). Then Y is isomorphic to A2, and (m′ ◦ v)|Y : Y → FlG,s is identified

with a projection map A2 → A1. The variety U is an open subset of Y whose
complement maps isomorphically to FlG,s under m

′ ◦ v. Let u′ = u|U : U → Y be the
inclusion map.

We have

∆I
s(k) ⋆I ∇Is(k) ∼= m′

!v!(kFlG,s
⊠̃∇Is(k)) ∼= m′

!v!u∗(kFlG,s
⊠̃ kFlG,s

).

First, we claim that the restriction of this object to FlG,s vanishes. To check this it is
enough to show that its stalk at any point x ∈ FlG,s vanishes. By base change, this
is equivalent to showing the vanishing of

H•
c((m

′ ◦ v)−1(x), (u∗kq−1(FlG,s)×IFlG,s
)|(m′◦v)−1(x))

∼= H•
c((m

′ ◦ v)−1(x), (u′∗kU )|(m′◦v)−1(x)).

Here, (m′ ◦ v)−1(x) is isomorphic to A1, and U ∩ (m′ ◦ v)−1(x) is the complement of
one point in A1. Because the complement of U in Y is a smooth hypersurface (and
hence a fortiori a divisor with simple normal crossings), we can use base change again
(by [Ac3, Lemma 2.4.4]) to rewrite the cohomology above as

H•
c(A1, j∗kA1∖{0}),

where j : A1 ∖ {0} → A1 the embedding. It is well known that this module vanishes:
see, for instance, [Ac3, Lemma B.2.6 or Lemma B.6.1].

Now we consider the distinguished triangle

(ȷs)∗kFlG,s
→ (je)∗kFlG,e

→ ∆I
s(k)

[1]−→

associated with the decomposition FlG,s = FlG,s⊔FlG,e, where ȷs : FlG,s → FlG is the
(closed) embedding. Convolving on the right with ∇s(k) we obtain a distinguished
triangle

((ȷs)∗kFlG,s
) ⋆I ∇Is(k)→ ∇Is(k)→ ∆I

s(k) ⋆I ∇Is(k)
[1]−→ .

It is easy to see that the first object in this triangle identifies with (ȷs)∗kFlG,s
[1].

What we have proved above about the third object implies that the restriction of the
first map in this triangle to FlG,s is an isomorphism; hence this morphism identifies
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(up to an invertible element in k) with the natural embedding of perverse sheaves
(ȷs)∗kFlG,s

[1] ↪→ ∇Is(k), whose cone is ∆I
e(k). We deduce an isomorphism

∆I
s(k) ⋆I ∇Is(k) ∼= ∆I

e(k).

Similar arguments allow us to produce an isomorphism

∇Is(k) ⋆I ∆I
s(k) ∼= ∆I

e(k),

which completes the proof.

Remark 4.1.5. — Combining the isomorphisms proved in Lemma 4.1.4 one can
obtain more relations between the standard and costandard objects; for instance one
can check that if ℓ(wv) = ℓ(w)− ℓ(v) then we have

∆I
w(M) ⋆I ∇Iv(N) ∼= ∆I

wv(M
L
⊗k N)

for M,N in DbMofk.

We emphasize that the isomorphisms in Lemma 4.1.4(3) are not canonical; the
isomorphism constructed in the proof depends on various choices (in particular, on a
choice of reduced expression for w). In order to consider a more canonical inverse to
the object ∇Iw(k), one can proceed as follows.

By Lemma 4.1.4(3), the functor

∇Iw(k) ⋆I (−) : Db
I (FlG,k)→ Db

I (FlG,k)

is an equivalence of categories. Hence there exists a pair (Aw, φw) where Aw is in

Db
I (FlG,k) and φw : ∇w(k)⋆I Aw

∼−→ ∆e(k) is an isomorphism. This pair is “unique”
in the sense that if (A ′

w, φ
′
w) is another pair with the same properties, there exists a

unique isomorphism f : Aw
∼−→ A ′

w which makes the diagram

∇w(k) ⋆I Aw ∇w(k) ⋆I A ′
w

∆e(k)

id⋆If

φw φ′
w

commutative. In particular, Aw is (noncanonically) isomorphic to ∆w−1(k).
Using the isomorphisms

Hom(∆I
e(k),Aw ⋆

I ∇Iw(k))
∼−→ Hom(∇Iw(k),∇Iw(k) ⋆I Aw ⋆

I ∇Iw(k)) ∼= End(∇Iw(k))

(where the second step is induced by φw) we see that there exists a unique morphism
ψw : ∆I

e(k)→ Aw ⋆
I ∇Iw(k) whose image under ∇Iw(k) ⋆I (−) identifies with id∇I

w(k);
such a morphism is necessarily invertible. In particular, in this way the functor
Aw ⋆

I (−) becomes the quasi-inverse to ∇Iw(k) ⋆I (−), and the functor (−) ⋆I Aw

becomes the quasi-inverse to (−) ⋆I ∇Iw(k).
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4.1.3. Convolutions of standard and costandard objects. — In this subsec-
tion we will study some objects obtained by convolving a standard and a costandard
object. For this we will need the following observation.

Lemma 4.1.6. — For any w ∈ W and any closed finite union of I-orbits X, the
morphisms

q−1(FlG,w)×I X → FlG and q−1(X)×I FlG,w → FlG

induced by the morphism m′ from (2.2.2) are affine.

Proof. — Write w = xt(λ) with x ∈ Wf and λ ∈ X∨, and choose a lift ẋ of x in
NG(T ). Then if we write Iw for the stabilizer in I of the point ẋzλI ∈ FlG, the map

g 7→ gẋzλI induces an isomorphism I/Iw
∼−→ FlG,w. Let Y be a closed finite union of

I-orbits containing ẋzλ ·X. Then we can identify q−1(FlG,w)×IX with I×Iw ẋzλ ·X,
and the map q−1(FlG,w)×I X → FlG with the composition

I ×Iw ẋzλ ·X ↪→ I ×Iw Y ∼−→ I/Iw × Y → Y ↪→ FlG

where the second map is given by [g : y] 7→ (gI, g ·y), and the third one is projection on
the second factor. Here the first and last maps are closed immersions (and hence, in
particular, affine), and the third one is projection along the affine space I/Iw ∼= FlG,w.
Thus, our map q−1(FlG,w)×I X → FlG is indeed affine.

The proof for the map q−1(X) ×I FlG,w → FlG is similar, using instead a closed
finite union of orbits Y ′ ⊂ FlG such that q−1(X) · ẋzλ ⊂ q−1(Y ′).

This lemma will allow us to prove the following claim.

Lemma 4.1.7. — For any w, y ∈ W and any M,N in Mofk such that the complex
M ⊗Lk N is concentrated in degree 0, the objects

∆I
w(M) ⋆I ∇Iy(N) and ∇Iw(M) ⋆I ∆I

y(N)

are perverse sheaves.

Proof. — We treat the case of the object ∆I
w(M) ⋆I ∇Iy(N); the case of ∇Iw(M) ⋆I

∆I
y(N) is similar.

First, we remark that the object ∆I
w(M) ⋆I ∇Iy(N) can be obtained from the com-

plex MFlG,w
⊠̃ NFlG,y

∼= M ⊗Lk Nq−1(FlG,w)×IFlG,y

by first taking the ∗-pushforward
under the embedding

q−1(FlG,w)×I FlG,y ↪→ q−1(FlG,w)×I FlG,y,

and then the !-pushforward under the morphism

q−1(FlG,w)×I FlG,y → FlG

induced by m′. Here the first map is an affine embedding, so the associated ∗-
pushforward functor is exact (see [Ac3, Corollary 3.5.9]), and the second map is affine
by Lemma 4.1.6, so that the associated !-pushforward functor is left exact (see [Ac3,
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Theorem 3.5.8]). This shows that our object is concentrated in nonnegative perverse
degrees. Similar arguments using the composition

q−1(FlG,w)×I FlG,y ↪→ q−1(FlG,w)×I FlG,y → FlG

show that this complex is also concentrated in nonpositive degrees, and hence that it
is perverse.

Remark 4.1.8. — 1. It is clear from the proof of Lemma 4.1.7 that the objects
∆I
w(M)⋆I∇Iy(N) and∇Iw(M)⋆I∆I

y(N) do not depend onM and N individually,

but only on the derived tensor product M ⊗Lk N (up to canonical isomorphism).
For this reason one can always assume that N = k, which we will do below.

2. Lemma 4.1.7 has the following slight extension, which will also be used below.
If X is a separated scheme of finite type over C, if F is a k-perverse sheaf on
X, and if M,N ∈ Mofk are such that F ⊗Lk (M ⊗Lk N) is perverse, then for any
w, y ∈W the complexes

F
L

⊠k
(
∆I
w(M) ⋆I ∇Iy(N)

)
and F

L

⊠k
(
∇Iw(M) ⋆I ∆I

y(N)
)

are perverse sheaves on X × FlG.

4.1.4. Support of convolutions of standard and costandard objects. — Our
next goal is to study the support of the perverse sheaves from Lemma 4.1.7. First we
consider the case when k is a field.

Lemma 4.1.9. — Assume that k is a field. Then, in the Grothendieck group
[Db

I (FlG,k)] of the triangulated category Db
I (FlG,k), for any w, y ∈W we have

[∆I
w(k) ⋆I ∇Iy(k)] = [∇Iw(k) ⋆I ∆I

y(k)] = [∆I
wy(k)] = [∇Iwy(k)].

In particular, the perverse sheaf ∇Iw(k) ⋆I ∆I
y(k) is supported on FlG,wy, and its re-

striction to FlG,wy is kFlG,wy
[ℓ(wy)].

Proof. — We have a natural isomorphism of abelian groups

φ : [Db
I (FlG,k)]

∼−→ Z[W ]

sending F to ∑
z∈W

(∑
n∈Z

(−1)n · dimHn+ℓ(z)(FlG,z, j
∗
zF )

)
· z,

i.e. sending [∆I
z(k)] to z for any z ∈W . For any s ∈ S, using the exact sequences

IC I
e ↪→ ∆I

s(k) ↠ IC I
s and IC I

s ↪→ ∇Is(k) ↠ IC I
e

we see that [∆I
s(k)] = [∇Is(k)]. Next, Lemma 4.1.4 implies that φ is in fact a ring

homomorphism, and that it satisfies

φ([∇z(k)]) = φ([∆z(k)]) = z

for any z ∈W . We deduce that

φ([∆I
w(k) ⋆I ∇Iy(k)]) = φ([∇Iw(k) ⋆I ∆I

y(k)]) = wy,

which proves the desired equalities.



148 CHAPTER 4. CENTRAL, WAKIMOTO, SATAKE

Now if F is a perverse sheaf in Db
I (FlG,k) and if FlG,z is open in its support then

the complex j∗z (F ) is concentrated in degree −ℓ(z); in particular the sum∑
n∈Z

(−1)n · dimHn+ℓ(z)(FlG,z, j
∗
zF )

is equal to the rank of j∗z (F ), which is necessarily nonzero. In the case at hand, we
deduce that FlG,wy is the only I-orbit open in the support of ∆I

w(k) ⋆I ∇Iy(k), and
that the restriction of this perverse sheaf to this stratum has rank 1.

We next come back to the case when k is a general ring (satisfying our running
assumptions), and extend Lemma 4.1.9 to this case, as follows.

Lemma 4.1.10. — For any M in Mofk, the perverse sheaf ∇Iw(M) ⋆I ∆I
y(k) is

supported on FlG,wy, and its restriction to FlG,wy is isomorphic to MFlG,wy
[ℓ(wy)].

Proof. — To simplify notation, we denote by Fk : DbMofk → Db
I (FlG,k) the functor

given by

Fk(M) = ∇Iw(M) ⋆I ∆I
y(k).

Then for any M we have

Fk(M) ∼=M
L
⊗k Fk(k),

and if φ : k → k′ is a ring homomorphism (where k and k′ satisfy our running
assumptions) there is a canonical isomorphism of functors

k′
L
⊗k Fk(−) ∼= Fk′(k′

L
⊗k (−)) : DbMofk → Db

I (FlG,k′).

Here the first isomorphism lets us reduce the proof to the caseM = k, and the second
one (applied to the unique ring homomorphism Z→ k) reduces it to the case k = Z.

Now let F := FZ(Z) = ∇Iw(Z) ⋆I ∆I
y(Z). By Lemma 4.1.7, F is a perverse sheaf.

Let FlG,x be an open I-orbit in its support. Then there is a nonzero and finitely
generated Z-module J such that

F|FlG,x
∼= JFlG,x

[ℓ(x)].

For any prime number p we have

(Fp
L
⊗Z F )|FlG,x

∼= Fp
L
⊗Z J

FlG,x

[ℓ(x)],

and if these objects are nonzero then FlG,x is open in the support of Fp ⊗LZ F . In
particular, choosing p such that Fp ⊗LZ J ̸= 0 and using Lemma 4.1.9 we deduce that
x = wy, and then using again this lemma we obtain that for any p the complex of
Fp-vector spaces Fp ⊗LZ J is concentrated in degree 0, and of dimension 1. It follows
that J ∼= Z, as desired.
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4.2. Wakimoto sheaves

4.2.1. Wakimoto functors. — Recall that in Section 4.1 we have fixed a closed
Weyl chamber Λ. We now consider another order on X∨ determined by Λ, defined by

λ ⊴Λ µ iff µ− λ ∈ Λ.

(This order should not be confused with the order ⪯Λ considered in §4.1.1.)
For λ ∈ X∨ we set

Λλ = {µ ∈ Λ | µ− λ ∈ Λ} = {µ ∈ Λ | λ ⊴Λ µ}.

We will consider Λλ as a poset, for the order obtained from ⊴Λ by restriction. If M
is in DbMofk and F is in Db

I (FlG,k), then for any µ ∈ Λλ and µ′ ∈ X∨ such that
µ ⊴Λ µ

′ we consider the isomorphism

HomDb
I (FlG,k)(∇

I
t(µ)(M),F ⋆I ∇It(µ−λ)(k))

∼−→ HomDb
I (FlG,k)(∇

I
t(µ′)(M),F ⋆I ∇It(µ′−λ)(k))

given by convolution on the right with ∇It(µ′−µ)(k), using the canonical isomorphisms

∇It(µ)(M) ⋆I ∇It(µ′−µ)(k) ∼= ∇
I
t(µ′)(M),

∇It(µ−λ)(k) ⋆
I ∇It(µ′−µ)(k) ∼= ∇

I
t(µ′−λ)(k),

see Lemma 4.1.2(1) and the first claim in Lemma 4.1.4(2). The second claim in Lem-
ma 4.1.4(2) shows that these spaces and maps define an inductive system parametrized
by the poset (Λλ,⊴Λ), all of whose transition maps are isomorphisms.

We define the Wakimoto functor

JΛ
λ : DbMofk → Db

I (FlG,k)

associated with Λ and λ to be the functor sending a complex M to the object which
represents the functor

F 7→ lim−→
µ∈Λλ

HomDb
I (FlG,k)(∇

I
t(µ)(M),F ⋆I ∇It(µ−λ)(k)).

(The representability of this functor follows from Lemma 4.1.4(3), see (4.2.1) below.)

Lemma 4.2.1. — For any λ ∈ X∨, the functor JΛ
λ is t-exact.

Proof. — Lemma 4.1.4(3) implies that for any µ ∈ Λλ we have

(4.2.1) JΛ
λ (M) ∼= ∇It(µ)(M) ⋆I ∆I

t(λ−µ)(k).

Hence the claim follows from Lemma 4.1.7.

Remark 4.2.2. — In view of Remark 4.1.8(2), we have the following slight extension
of Lemma 4.2.1: given a separated scheme X of finite type over C, a perverse sheaf
F on X, and a finitely generated k-module M such that F ⊗Lk M is perverse, the
complex F ⊠Lk JΛ

λ (M) is a perverse sheaf on X × FlG, for any λ ∈ X∨.



150 CHAPTER 4. CENTRAL, WAKIMOTO, SATAKE

Objects of the form JΛ
λ (M) will be called Wakimoto objects. In the case when M

is concentrated in degree 0 (so that JΛ
λ (M) is a perverse sheaf) we will also speak of

Wakimoto sheaves. These objects will play a crucial role throughout the rest of the
book.

Proposition 4.2.3. — For any λ ∈ X∨ andM ∈ Mofk, the perverse sheaf J
Λ
λ (M) is

supported on FlG,t(λ), and its restriction to FlG,t(λ) is isomorphic to MFlG,t(λ)
[ℓ(t(λ))].

If M = k, then this object is invertible in the monoidal category Db
I (FlG,k).

Proof. — In view of (4.2.1), the first claim follows from Lemma 4.1.10, and the second
one from Lemma 4.1.4(3).

Remark 4.2.4. — Assume that k is a field. From Lemma 4.1.3 and Lemma 4.1.9
we see that if ω ∈ Ω is the unique element such that t(λ) ∈ ωWCox, then the simple
object IC I

ω is a composition factor of JΛ
λ (k) with multiplicity 1.

4.2.2. Full faithfulness. — The isomorphism (4.2.1) gives a rather concrete de-
scription of the Wakimoto sheaf JΛ

λ (M), but has the significant drawback of being
noncanonical. To remedy this one can choose a pair (At(µ−λ), φt(µ−λ)) as in §4.1.2;
such a pair is unique up to isomorphism, and we have a canonical isomorphism

JΛ
λ (M) ∼= ∇It(µ)(M) ⋆I At(µ−λ).

In practice, below it will be more convenient to use the following formulation.

Lemma 4.2.5. — Let λ ∈ X∨. For any µ ∈ Λλ and M ∈ DbMofk there exists a
canonical (in particular, functorial) isomorphism

JΛ
λ (M) ⋆I ∇It(µ−λ)(k) ∼= ∇

I
t(µ)(M).

Moreover, if µ, µ′ ∈ Λλ and µ ⊴Λ µ′, then the isomorphism for µ′ can be obtained
from that for µ by convolution on the right with ∇It(µ′−µ)(k), via the isomorphisms

provided by Lemma 4.1.4(2).

Proof. — We observe that by definition of JΛ
λ (M), for any µ ∈ Λλ we have a canonical

isomorphism

HomDb
I (FlG,k)

(
JΛ
λ (M),JΛ

λ (M)
) ∼= HomDb

I (FlG,k)
(
∇It(µ)(M),JΛ

λ (M) ⋆I ∇It(µ−λ)(k)
)
.

Taking the image of id under these isomorphisms provides a family (fµ)µ∈Λλ
of mor-

phisms fµ : ∇It(µ)(M)→ JΛ
λ (M)⋆I∇It(µ−λ)(k) such that if µ ⊴Λ µ

′ then fµ′ is deduced

from fµ by convolution with ∇It(µ′−µ)(k). Choosing a pair (At(µ−λ), φt(µ−λ)) as above

we see that fµ is an isomorphism, which completes the proof.

Proposition 4.2.6. — Let λ ∈ X∨.

1. The composition

DbMofk
JΛ
λ−−→ Db

I (FlG,k)
For−−→ Db

c (FlG,k)
is fully faithful. In particular, the functor

F 7→ HomPervI(FlG,k)(J
Λ
λ (k),F )
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is a left inverse to the fully faithful functor JΛ
λ : Mofk → PervI(FlG,k).

2. For any λ ∈ X∨ and anyM,M ′ in Mofk, the functor J
Λ
λ induces an isomorphism

Ext1Mofk(M,M ′)
∼−→ HomDb

I (FlG,k)(J
Λ
λ (M),JΛ

λ (M
′)[1]).

In particular, the essential image of JΛ
λ : Mofk → PervI(FlG,k) is stable under

extensions.

Proof. — (1) Choose some µ ∈ Λλ. Then since the functor of right convolution with
∇It(µ−λ)(k) is an autoequivalence of Db

c (FlG,k) (see §4.1.2), for any M,M ′ ∈ DbMofk
it induces an isomorphism

HomDb
c (FlG,k)(J

Λ
λ (M),JΛ

λ (M
′))

∼−→
HomDb

c (FlG,k)(J
Λ
λ (M) ⋆I ∇It(µ−λ)(k),J

Λ
λ (M

′) ⋆I ∇It(µ−λ)(k)).

Now by Lemma 4.2.5 the right-hand side identifies with

HomDb
c (FlG,k)(∇

I
t(µ)(M),∇It(µ)(M

′)).

Then the first claim follows from the fact that the composition of the functor ∇It(µ)(−)
with the forgetful functor Db

I (FlG,k) → Db
c (FlG,k) is fully faithful, which is clear

from adjunction.
The second claim follows, using the fact that the forgetful functor PervI(FlG,k)→

Db
c (FlG,k) is fully faithful, see e.g. [Ac3, Proposition 6.2.15] or [BR, §1.16].
(2) As in (1), choosing µ ∈ Λλ we reduce the proof to the case λ ∈ Λ. In this

case, for any M in DbMofk we have JΛ
λ (M) = (jt(λ))∗MFlG,t(λ)

[ℓ(t(λ))], so that by

adjunction we have

HomDb
I (FlG,k)(J

Λ
λ (M),JΛ

λ (M
′)[1]) ∼= HomDb

I (FlG,t(λ),k)(M [ℓ(t(λ))],M ′[ℓ(t(λ)) + 1]).

Now, by general properties of t-structures (see e.g. [BR, Equation (1.4.1)]) we have

HomDb
I (FlG,t(λ),k)(M [ℓ(t(λ))],M ′[ℓ(t(λ)) + 1])

∼= Ext1PervI(FlG,t(λ),k)(M [ℓ(t(λ))],M ′[ℓ(t(λ))]).

Hence the first claim follows from the observation that the functor M 7→ M [ℓ(t(λ))]

induces an equivalence of categories Mofk
∼−→ PervI(FlG,t(λ),k).

For the second claim we simply have to remark that extensions of JΛ
λ (M

′) by
JΛ
λ (M) are governed by the space

Ext1PervI(FlG,k)(J
Λ
λ (M),JΛ

λ (M
′)),

which as above identifies with

HomDb
I (FlG,k)(J

Λ
λ (M),JΛ

λ (M
′)[1]),

hence with Ext1Mofk(M,M ′).

In particular, part (1) in this lemma implies that JΛ
λ induces an equivalence of

categories between Mofk and its essential image in PervI(FlG,k), with quasi-inverse
the functor F 7→ HomPervI(FlG,k)(J

Λ
λ (k),F ).
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4.2.3. Wakimoto functors and convolution. — The construction of Wakimoto
objects is compatible with convolution in the sense of the following lemma.

Lemma 4.2.7. — For any λ, λ′ ∈ X∨ and any M,M ′ in DbMofk there exists a
canonical (in particular, bifunctorial) isomorphism

JΛ
λ (M) ⋆I JΛ

λ′(M ′) ∼= JΛ
λ+λ′

(
M

L
⊗k M

′).
Proof. — Let µ ∈ Λλ ∩ Λλ+λ′ . Then from Lemma 4.1.4(2) and Lemma 4.2.5 we
obtain canonical isomorphisms

JΛ
λ (M) ⋆I JΛ

λ′(M ′) ⋆I ∇It(µ−λ−λ′)(k) ∼= JΛ
λ (M) ⋆I ∇It(µ−λ)(M

′)

∼= JΛ
λ (M) ⋆I ∇It(µ−λ)(k) ⋆

I ∇Ie(M ′) ∼= ∇It(µ)(M) ⋆I ∇Ie(M ′) ∼= ∇It(µ)
(
M

L
⊗k M

′)
and

JΛ
λ+λ′

(
M

L
⊗k M

′) ⋆I ∇It(µ−λ−λ′)(k) ∼= ∇
I
t(µ)

(
M

L
⊗k M

′).
Since the functor of right convolution with ∇It(µ−λ−λ′)(k) is an equivalence, we de-

duce an isomorphism as in the lemma. Using the properties of the isomorphisms of
Lemma 4.2.5 it is easily seen that this isomorphism does not depend on the choice of
µ, and hence that it is canonical.

Using Lemma 4.2.7 one can consider the collection (JΛ
λ )λ∈X∨ as a “monoidal collec-

tion of functors.” More precisely, consider the category (DbMofk)
X∨

whose objects
are pairs (λ,M) with λ ∈ X∨ and M in DbMofk, and morphisms from (λ,M) to
(λ′,M ′) are {0} if λ ̸= λ′, and Hom(M,M ′) otherwise. We turn this category into a
monoidal category by setting

(λ,M) ⋆ (λ′,M ′) = (λ+ λ′,M
L
⊗k M

′).

Then the assignment (λ,M) 7→ JΛ
λ (M) defines a functor from (DbMofk)

X∨
to

Db
I (FlG,k), and one can check that the isomorphisms of Lemma 4.2.7 endow this

functor with the structure of a monoidal functor.

4.3. Wakimoto filtrations

We continue with the closed Weyl chamber Λ from Sections 4.1–4.2.

4.3.1. Wakimoto functors and morphisms. — We now study morphisms be-
tween Wakimoto objects.

Lemma 4.3.1. — For λ, λ′ ∈ X∨, M,M ′ in DbMofk and n ∈ Z, we have

HomDb
I (FlG,k)(J

Λ
λ (M),JΛ

λ′(M ′)[n]) = 0

unless λ′ ⪯Λ λ.
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Proof. — Choose ν ∈ X∨ such that λ+ ν ∈ Λ and λ′ + ν ∈ Λ. Then it follows from
Proposition 4.2.3 that right convolution with JΛ

ν (k) is an equivalence of categories, so
that we have

HomDb
I (FlG,k)(J

Λ
λ (M),JΛ

λ′(M ′)[n]) ∼=

HomDb
I (FlG,k)(J

Λ
λ (M) ⋆I JΛ

ν (k),JΛ
λ′(M ′) ⋆I JΛ

ν (k)[n]).

Using Lemma 4.2.7 and our choice of ν we deduce an isomorphism

HomDb
I (FlG,k)(J

Λ
λ (M),JΛ

λ′(M ′)[n]) ∼= HomDb
I (FlG,k)(∇t(λ+ν)(M),∇t(λ′+ν)(M

′)[n]).

Finally, using adjunction we obtain that

HomDb
I (FlG,k)(J

Λ
λ (M),JΛ

λ′(M ′)[n]) ∼=
HomDb

I (FlG,t(λ′+ν),k)(j
∗
t(λ′+ν)∇t(λ+ν)(M),M ′

FlG,t(λ′+ν)
[n+ ℓ(t(λ′ + ν))]).

Now, using Lemma 4.1.2(2) and (4.1.2) we see that j∗t(λ′+ν)∇t(λ+ν)(M) = 0 unless

λ′ + ν ⪯Λ λ+ ν, which is equivalent to λ′ ⪯Λ λ.

4.3.2. Wakimoto filtrations. — If F belongs to PervI(FlG,k), a (Λ-)Wakimoto
filtration of F is a (finite) filtration whose subquotients are of the form JΛ

λ (M) with
λ ∈ X∨ andM in Mofk. We will say that F admits a (Λ-)Wakimoto filtration if such

a filtration exists, and will denote by PervΛI (FlG,k) the full additive subcategory of
PervI(FlG,k) whose objects are those which admit a Wakimoto filtration. Note that

PervΛI (FlG,k) is not in general an abelian category.
We will say that a subset Ω ⊂ X∨ is an ideal (with respect to the order ⪯Λ) if for

any λ ∈ Ω and any µ ∈ X∨ such that µ ⪯Λ λ we have µ ∈ Ω.

Lemma 4.3.2. — If F ∈ PervΛI (FlG,k), then for any ideal Ω ⊂ X∨ there exists a
unique subobject FΩ ⊂ F which admits a Wakimoto filtration with subquotients of
the form JΛ

λ (M) with λ ∈ Ω, and such that the quotient F/FΩ admits a Wakimoto
filtration with subquotients of the form JΛ

λ (M) with λ ∈ X∨ ∖ Ω. Moreover, the
assignment F 7→ FΩ is functorial.

Proof. — We prove the existence by induction on the length of a Wakimoto filtration.
If this filtration has length 0 then F = 0 and there is nothing to prove. Otherwise,
consider an object F and an embedding JΛ

λ (M) ↪→ F (with M ∈ Mofk) whose
cokernel G admits a Wakimoto filtration, and assume the result is known for G . We
will denote by F ′ the preimage of GΩ in F . If λ ∈ Ω, then FΩ := F ′ satisfies the
required properties. If λ /∈ Ω, then we consider the short exact sequence

JΛ
λ (M) ↪→ F ′ ↠ GΩ.

Lemma 4.3.1 implies that Ext1PervI(FlG,k)(GΩ,J
Λ
λ (M)) = 0, so that this exact sequence

must split. Choose a splitting GΩ ↪→ F ′; then the cokernel of the embedding GΩ ↪→ F
fits in an exact sequence

JΛ
λ (M) ↪→ F/GΩ ↠ G /GΩ,

so that FΩ := GΩ satisfies the required properties.
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Now, assume that we have two subobjects FΩ and F ′
Ω satisfying the desired con-

ditions. Then the composition

FΩ ↪→ F ↠ F/F ′
Ω

vanishes by Lemma 4.3.1, so that FΩ ⊂ F ′
Ω. By symmetry we also have F ′

Ω ⊂ FΩ,
so the two subobjects coincide.

The functoriality of the assignment F 7→ FΩ follows from similar arguments.

Consider now two ideals Ω,Γ ⊂ X∨ such that Ω ⊂ Γ.

Lemma 4.3.3. — For any F in PervΛI (FlG,k), we have FΩ ⊂ FΓ, and moreover the
quotient FΓ/FΩ admits a Wakimoto filtration with subquotients of the form JΛ

λ (M)
with λ ∈ Γ∖ Ω.

Proof. — The subobject (FΓ)Ω of F is such that the cokernel F/(FΓ)Ω fits in a
short exact sequence

(FΓ)/(FΓ)Ω ↪→ F/(FΓ)Ω ↠ F/FΓ.

It follows that FΩ = (FΓ)Ω, and the claims follow.

It follows in particular from Lemma 4.3.3 and Proposition 4.2.6(2) that if we choose

any bijection Z ∼−→ X∨, denoted by i 7→ λi, such that

(4.3.1) λi ⪯Λ λj =⇒ i ≤ j

then any F in PervΛI (FlG,k) has a functorial filtration

· · · ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ F

indexed by Z such that each Fi/Fi−1 is isomorphic to JΛ
λi
(Mi) for some (unique)

Mi ∈ Mofk, and finitely many of the Mi’s are nonzero.

4.3.3. The associated graded functor. — We can now define a kind of “associ-
ated graded of the Wakimoto filtration” as follows.

Lemma 4.3.4. — Let λ ∈ X∨ and F ∈ PervΛI (FlG,k). Choose an ideal Ω ⊂ X∨

such that λ ∈ Ω and λ is maximal in Ω (in other words, Ω∖ {λ} is again an ideal).
Then the quotient FΩ/FΩ∖{λ} is independent of the choice of Ω up to canonical

isomorphism, and belongs to the essential image of JΛ
λ : Mofk → PervI(FlG,k).

Proof. — By Lemma 4.3.3 the quotient FΩ/FΩ∖{λ} admits a filtration with all sub-

quotients in the essential image of JΛ
λ : Mofk → PervI(FlG,k). Hence by Proposi-

tion 4.2.6(2) it itself belongs to this essential image.
Since Ω is an ideal containing λ, it must contain Γ := {µ ∈ X∨ | µ ⪯Λ λ}. Hence

by Lemma 4.3.3 we have FΓ ⊂ FΩ. Similarly, setting Ω′ := Ω∖{λ} and Γ′ := Γ∖{λ}
we have FΓ′ ⊂ FΩ′ . We deduce that there is a canonical morphism

(4.3.2) FΓ/FΓ′ → FΩ/FΩ′ .

To finish the proof, it suffices to prove that this morphism is invertible. Now, as
observed above both of these objects belong to the essential image of JΛ

λ : Mofk →
PervI(FlG,k). Since this functor is fully faithful (see Proposition 4.2.6(1)), by the
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Yoneda lemma, to prove that (4.3.2) is invertible it suffices to prove that for any
M ∈ Mofk the induced map

HomPervI(FlG,k)(FΩ/FΩ′ ,JΛ
λ (M))→ HomPervI(FlG,k)(FΓ/FΓ′ ,JΛ

λ (M))

is an isomorphism. Now Lemma 4.3.1 implies that the quotient morphisms FΩ →
FΩ/FΩ′ and FΓ → FΓ/FΓ′ induce isomorphisms

HomPervI(FlG,k)(FΩ/FΩ′ ,JΛ
λ (M))

∼−→ HomPervI(FlG,k)(FΩ,J
Λ
λ (M))

and

HomPervI(FlG,k)(FΓ/FΓ′ ,JΛ
λ (M))

∼−→ HomPervI(FlG,k)(FΓ,J
Λ
λ (M)).

Another application of Lemma 4.3.1 implies that

HomPervI(FlG,k)(FΩ/FΓ,J
Λ
λ (M)) = Ext1PervI(FlG,k)(FΩ/FΓ,J

Λ
λ (M)) = 0,

so from the long exact sequence associated to FΓ ↪→ FΩ ↠ FΩ/FΓ, we obtain an
isomorphism

HomPervI(FlG,k)(FΩ,J
Λ
λ (M))

∼−→ HomPervI(FlG,k)(FΓ,J
Λ
λ (M)),

and the proof is complete.

We can now define the functor

grΛλ : PervΛI (FlG,k)→ PervI(FlG,k)

by

grΛλ (F ) = FΩ/FΩ∖{λ},

where Ω ⊂ X∨ is any ideal in which λ is maximal. From Lemma 4.3.4 we see that
grΛλ is well defined and takes values in the essential image of the functor JΛ

λ , and from

the considerations in §4.3.2 we see that for any given F in PervΛI (FlG,k), there exist
only finitely many λ’s such that grΛλ (F ) ̸= 0. We will also set

GradΛλ (F ) := HomPervI(FlG,k)
(
JΛ
λ (k), grΛλ (F )

)
,

so that we have a canonical isomorphism

(4.3.3) grΛλ (F ) ∼= JΛ
λ (GradΛλ (F )),

see Proposition 4.2.6(1). Observe that F belongs to the subcategory of PervI(FlG,k)
generated under extensions by the objects JΛ

λ (GradΛλ (F )), where λ runs over those
values such that grΛλ (F ) ̸= 0.

It is clear that for any λ, µ ∈ X∨ and M in Mofk we have

(4.3.4) GradΛµ(J
Λ
λ (M)) ∼=

{
M if µ = λ;

0 otherwise.

It will sometimes be convenient to combine all the GradΛλ (for λ ∈ X) into a

single object. Let MofX
∨

k be the (abelian) category of X∨-graded finitely generated
k-modules, and define a functor

(4.3.5) GradΛX∨ : PervΛI (FlG,k)→ MofX
∨

k
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by

GradΛX∨(F ) :=
⊕
λ∈X∨

GradΛλ (F ),

where the right-hand side has the obvious X∨-grading.

Remark 4.3.5. — It is not clear from the definition whether the functor grΛλ is
exact. We will address this question in Remark 4.6.4 below.

4.3.4. Stability under direct summands. — In this subsection, we will prove
that PervΛI (FlG,k) is closed under taking direct summands. To do this, we will need
the following auxiliary notion: a perverse sheaf F ∈ PervI(FlG,k) is said to admit a
(Λ-)dominant Wakimoto filtration if it admits a finite filtration whose subquotients
are of the form JΛ

λ (M) ∼= ∇It(λ)(M) with λ ∈ Λ and M ∈ Mofk.

Lemma 4.3.6. — A perverse sheaf F ∈ PervI(FlG,k) admits a Λ-Wakimoto filtra-
tion if and only if there is some λ ∈ Λ such that ∇It(λ)(k) ⋆

I F is perverse and admits

a Λ-dominant Wakimoto filtration.

Proof. — If F admits a Wakimoto filtration, say with subquotients denoted by
JΛ
λ1
(M1), . . . ,J

Λ
λr
(Mr), then choose λ ∈ Λ such that λ + λ1, . . . , λ + λr all lie in

Λ. In this setting Lemma 4.2.7 implies that ∇It(λ)(k) ⋆
I F is perverse and admits a

dominant Wakimoto filtration.
Conversely, let G = ∇It(λ)(k) ⋆

I F , and assume that G is perverse and admits a

dominant Wakimoto filtration. Since λ ∈ Λ we have ∇It(λ)(k) ∼= JΛ
λ (k), and using

Lemma 4.2.7 we see that

F ∼= JΛ
−λ(k) ⋆I G .

Using again Lemma 4.2.7 we obtain that F admits a Wakimoto filtration.

Lemma 4.3.7. — Let F ∈ Db
I (FlG,k). We have that F is a perverse sheaf admit-

ting a Λ-dominant Wakimoto filtration if and only if

(4.3.6) pH n(j!w(F )) ̸= 0 =⇒ n = 0 and w ∈ {t(µ) : µ ∈ Λ}.

Proof. — The condition (4.3.6) is clearly stable under extensions, and it is satisfied
by JΛ

λ (M) ∼= ∇It(λ)(M) for any λ ∈ Λ and any M ∈ Mofk. Thus, if F admits a

dominant Wakimoto filtration, it satisfies (4.3.6).
For the opposite implication, suppose F is a perverse sheaf satisfying (4.3.6). Of

course, there can be only finitely many w ∈ W such that j!wF ̸= 0. Moreover, if
FlG,w is open in the support of F , then j!wF ̸= 0.

We proceed by induction on the number of w’s such that j!wF ̸= 0. If there are
no such w, then we must have F = 0, and there is nothing to prove. Otherwise, let
v be a maximal element of W such that j!vF = 0, and set M := Hom(∆I

v(k),F ) ∼=
Hom(kFlG,v

[ℓ(v)], j!vF ). We then have an isomorphism F|FlG,v
∼=MFlG,v

[ℓ(v)], and a

canonical map θ : F → ∇Iv(M). Complete the map θ to a distinguished triangle

F ′ → F
θ−→ ∇Iv(M)

[1]−→ .
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Since θ is an isomorphism over FlG,v, we have

j!wF ′ ∼=

{
j!wF if w ̸= v,

0 if w = v.

Therefore, F ′ satisfies (4.3.6) as well, but there are fewer w’s for which j!wF ′ ̸=
0. By induction, F ′ is a perverse sheaf with a dominant Wakimoto filtration. By
assumption, v = t(µ) for some µ ∈ Λ, so ∇Iv(M) ∼= JΛ

µ(M). The distinguished triangle
above shows that F is also a perverse sheaf with a dominant Wakimoto filtration,
which finishes the proof.

Corollary 4.3.8. — The subcategory PervΛI (FlG,k) ⊂ PervI(FlG,k) is stable under
direct summands.

Proof. — Condition (4.3.6) is clearly stable direct summands, so this follows from
Lemmas 4.3.6 and 4.3.7.

4.4. Central sheaves admit Wakimoto filtrations

4.4.1. An existence criterion. — Our goal in this subsection is to explain the
proof of the following criterion which guarantees the existence of a Wakimoto filtra-
tion.

Proposition 4.4.1. — Let F in PervI(FlG,k). Assume that

1. for any ν ∈ −Λ we have an isomorphism

(4.4.1) ∆I
t(ν)(k) ⋆

I F ∼= F ⋆I ∆I
t(ν)(k),

and moreover these objects are perverse;
2. for any ν ∈ Λ the object ∇It(ν)(k) ⋆

I F is perverse.

Then F admits a (Λ-)Wakimoto filtration.

The proof will require some preliminaries.

Lemma 4.4.2. — Let X ⊂ FlG be a finite union of I-orbits. Then there exists a
finite subset AX ⊂W such that for any x ∈W we have

m′(q−1(FlG,x)×I X) ⊂
⋃

y∈AX

FlG,x·y, m′(q−1(X)×I FlG,x) ⊂
⋃

y∈AX

FlG,y·x.

Proof. — Of course we can assume that X = FlG,w for some w ∈ W . In this case,
we prove the statement by induction on ℓ(w). In case ℓ(w) = 0, the subset A =
{w} satisfies the required properties, since for any x ∈ W the morphism m′ induces
isomorphisms

q−1(FlG,x)×I FlG,w
∼−→ FlG,xw, q−1(FlG,w)×I FlG,x

∼−→ FlG,wx.

Now we assume that ℓ(w) > 0, and write w = sw′ = w′′t with ℓ(w′) = ℓ(w′′) =
ℓ(w)− 1 and s, t ∈ S. By induction we have finite subsets A′, A′′ ⊂W such that

m′(q−1(FlG,x)×I FlG,w′) ⊂
⋃
y∈A′

FlG,x·y, m′(q−1(FlG,w′′)×I FlG,x) ⊂
⋃
y∈A′′

FlG,y·x
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for any x ∈W . Then the morphism m′ induces isomorphisms

q−1(FlG,s)×I FlG,w′
∼−→ FlG,w and q−1(FlG,w′′)×I FlG,t

∼−→ FlG,w.

Since moreover we have, for any x ∈W ,

m′(q−1(FlG,x)×I FlG,s) ⊂ FlG,x ⊔ FlG,xs,

m′(q−1(FlG,t)×I FlG,x) ⊂ FlG,x ⊔ FlG,tx,

we deduce that the subset A := A′ ∪ A′s ∪ A′′ ∪ tA′′ satisfies the required property
for w.

We now define the ∗-support and the !-support of an object F of Db
I (FlG,k) as

follows:

∗-Supp(F ) = {w ∈W | j∗w(F ) ̸= 0};

!-Supp(F ) = {w ∈W | j!w(F ) ̸= 0}.

The main point of introducing these notions is given by the following lemma.

Lemma 4.4.3. — For any F in Db
I (FlG,k), the object F belongs to the subcategory

of Db
I (FlG,k) generated under extensions by the objects (jw)!j

∗
wF where w runs over

∗-Supp(F ), as well as to the subcategory of Db
I (FlG,k) generated under extensions

by the objects (jw)∗j
!
wF where w runs over !-Supp(F ).

Proof. — We proceed by induction on the smallest closed union X of I-orbits over
which F is supported. If X = ∅ then F = 0, and there is nothing to prove.

Now, assume that X ̸= ∅, and choose w ∈W such that FlG,w is open in X. Then
we have j∗wF ∼= j!wF ̸= 0, so that w belongs both to ∗-Supp(F ) and to !-Supp(F ).
If i : X ∖ FlG,w ↪→ X is the closed embedding, then we have distinguished triangles

i!i
!F → F → (jw)∗j

!
wF

[1]−→ and (jw)!j
∗
wF → F → i∗i

∗F
[1]−→ .

Moreover, for any x ∈W such that FlG,x ⊂ X ∖ FlG,w we have

j∗xi∗i
∗F ∼= j∗xF , j!xi!i

!F ∼= j!xF .

Using these isomorphisms and induction (with the first claim applied to i∗i
∗F , and

the second one applied to i!i
!F ), we deduce the desired claims for F .

Proposition 4.4.4. — For any F in Db
I (FlG,k), there exists a finite subset AF ⊂

W such that for any x ∈W and any M in DbMofk we have

∗-Supp(∆x(M) ⋆I F ) ⊂ x ·AF , !-Supp(∇x(M) ⋆I F ) ⊂ x ·AF ,

∗-Supp(F ⋆I ∆x(M)) ⊂ AF · x, !-Supp(F ⋆I ∇x(M)) ⊂ AF · x.

Proof. — Let X ⊂ FlG be a closed finite union of I-orbits such that F is supported
on X. Then the base change theorem shows that j∗w(∆x(M)⋆IF ) = 0 unless FlG,w ⊂
m′(q−1(FlG,x)×I X); in other words we have

∗-Supp(∆x(M) ⋆I F ) ⊂ {w ∈W | FlG,w ⊂ m′(q−1(FlG,x)×I X)}.
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Similar considerations for the objects ∇x(M) ⋆I F , F ⋆I ∆x(M) and F ⋆I ∇x(M)
show that if AX is a finite subset of W as in Lemma 4.4.2 (for our given X), then the
subset AF = AX satisfies the required properties.

Proof of Proposition 4.4.1. — Let AF ⊂W be a finite subset as in Proposition 4.4.4,
and choose (as we may) ν ∈ −Λ such that

t(ν) ·AF ⊂ {t(µ) · x : µ ∈ −Λ◦, x ∈Wf},
AF · t(ν) ⊂ {x · t(µ) : µ ∈ −Λ◦, x ∈Wf}.

Then, in particular, we have

(4.4.2) (t(ν) ·AF ) ∩ (AF · t(ν)) ⊂ {t(µ) : µ ∈ −Λ◦},

see e.g. [Hu1, §13.2, Lemma A].
Since ν ∈ −Λ, we have JΛ

ν (k) ∼= ∆I
t(ν)(k) (see (4.2.1)). Hence (4.4.1), (4.4.2), and

the choice of AF imply that

∗-Supp(JΛ
ν (k) ⋆I F ) ⊂ {t(µ) : µ ∈ −Λ◦}.

On the other hand, we have assumed that JΛ
ν (k) ⋆I F is perverse, so that for any

w ∈ W the complex j∗w(J
Λ
ν (k) ⋆I F ) is concentrated in degrees ≤ −ℓ(w). These two

observations, together with Lemma 4.4.3, ensure that the object JΛ
ν (k) ⋆I F belongs

to the full subcategory of Db
I (FlG,k) generated under extensions by objects of the

form ∆t(µ)(M)[n] with µ ∈ −Λ◦, M ∈ Mofk and n ∈ Z≥0, or in other words by

objects of the form JΛ
µ(M)[n] with µ ∈ −Λ◦, M ∈ Mofk and n ∈ Z≥0.

Convolving on the left with JΛ
−ν(k) and using Lemma 4.2.7, we deduce that F can

be obtained from some collection of objects (JΛ
µi
(Mi)[ni])i∈I where I is a finite set,

µi ∈ X∨, ni ∈ Z≥0, and Mi ∈ Mofk, by taking successive extensions. If we choose
some η ∈ Λ such that µi + η ∈ Λ for any i, it follows (using again Lemma 4.2.7) that
the object JΛ

η (k) ⋆I F belongs to the full subcategory of Db
I (FlG,k) generated under

extensions by objects of the form JΛ
µ(M)[n] with µ ∈ Λ,M ∈ Mofk and n ∈ Z≥0, or in

other words by objects of the form ∇t(µ)(M)[n] with µ ∈ Λ, M ∈ Mofk and n ∈ Z≥0.

We then have !-Supp(JΛ
η (k) ⋆I F ) ⊂ {t(µ) : µ ∈ Λ}, and moreover for each µ ∈ Λ the

complex j!t(µ)(J
Λ
η (k) ⋆I F ) is concentrated in degrees ≤ −ℓ(t(µ)). On the other hand,

by assumption JΛ
η (k) ⋆I F is perverse, so that this complex is also concentrated in

degrees ≥ −ℓ(t(µ)). Hence it is concentrated in degree −ℓ(t(µ)). By Lemma 4.3.7,
JΛ
η (k) ⋆I F admits a dominant Wakimoto filtration, and then by Lemma 4.3.6, F

admits a Wakimoto filtration.

4.4.2. Central sheaves admit filtrations by Wakimoto sheaves. — We can
now prove the main result of this section.

Theorem 4.4.5. — For any F in PervGO (GrG,k), the perverse sheaf Z(F ) admits
a Wakimoto filtration.

Proof. — We will apply the criterion of Proposition 4.4.1 to the perverse sheaf Z(F ).
Theorem 3.2.3 guarantees the existence of isomorphisms (4.4.1), so to conclude it
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suffices to prove that for any w ∈W the objects

∆I
w(k) ⋆I Z(F ) and ∇Iw(k) ⋆I Z(F )

are perverse. For this, in view of Corollary 3.2.5 it suffices to prove that the complexes

F
L
⊠k ∆

I
w(k) and F

L
⊠k ∇Iw(k)

are perverse sheaves. However, the first complex can be obtained from the perverse
sheaf F by shifted pullback along the natural projection GrG × FlG,w → GrG (a
smooth morphism) followed by !-pushforward along the embedding GrG × FlG,w ↪→
GrG×FlG (an affine embedding). Since both of these operations are t-exact (see [Ac3,
Corollary 3.5.9 and Proposition 3.6.1] respectively), it follows that F ⊠Lk ∆I

w(k) is
indeed perverse. Similar considerations show that F ⊠Lk ∇Iw(k) is perverse, which
finishes the proof.

4.5. Cohomology of Wakimoto-filtered perverse sheaves

4.5.1. Cohomology. — In this subsection we study the consequences of the exis-
tence of a Wakimoto filtration on cohomology. For this we must first describe the
cohomology of Wakimoto sheaves.

Lemma 4.5.1. — For any λ ∈ X∨ and M ∈ Mofk, we have canonical isomorphisms

Hn(FlG,J
Λ
λ (M)) ∼=

{
M if n = −⟨x−1

Λ (λ), 2ρ⟩;
0 otherwise.

In order to prove this lemma we will need some preparation. It is well known that
the algebra H•

I(pt;k) identifies canonically with Symk(k⊗ZX). For F in Db
I (FlG,k),

we can consider its ordinary cohomology H•(FlG,F ), as well as its equivariant co-
homology H•

I(FlG,F ). By construction the latter k-module is a graded module over
H•
I(pt;k); this action will be called the left action. But since FlG is obtained by taking

the quotient of GK by I, H•
I(FlG,F ) has a second H•

I(pt;k)-module structure, called
the right action. The right action is inherited by H•(FlG,F ).

Consider now two objects F and G in Db
I (FlG,k). Then there exists a canonical

morphism of graded k-modules

(4.5.1) H•(FlG,F )⊗H•
I (pt;k) H

•
I(FlG,G )→ H•(FlG,F ⋆I G )

where the tensor product is taken with respect to the right H•
I(pt;k)-action on

H•(FlG,F ) and the left H•
I(pt;k)-action on H•

I(FlG,G ). This morphism sends f ⊗ g
(where f ∈ Hn(FlG,F ) is regarded as a morphism kFlG → F [n] and g ∈ HmI (FlG,G )
is regarded as a morphism kFlG → G [m]) to the morphism

f ⊠̃ g : kGK ×IFlG
= kFlG ⊠̃ kFlG → F ⊠̃ G [n+m],

regarded as an element in

Hn+m(GK ×I FlG,F ⊠̃ G ) ∼= Hn+m(FlG,F ⋆I G ).

(This construction is similar to that in (3.2.11).)
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Lemma 4.5.2. — In case G = ∇Iw(k) for some w ∈W , the morphism (4.5.1) is an
isomorphism for any F in Db

c (FlG,k).

Proof. — If G = ∇Iw(k) then we have

H•
I(FlG,G ) = H

•+ℓ(w)
I (FlG,w;k),

which is canonically isomorphic to H
•+ℓ(w)
I (pt;k). On the other hand,

H•(FlG,F ⋆I G ) = H•(GK ×I FlG,F ⊠̃ G )

identifies canonically with the total cohomology of the shifted pullback of F under
the morphism GK ×I FlG,w → FlG defined by [a : b] 7→ aI. The desired claim is then
clear.

Proof of Lemma 4.5.1. — Choose some µ ∈ Λλ, and recall the isomorphism from
Lemma 4.2.5. Applying Lemma 4.5.2 we obtain a canonical isomorphism

H•(FlG,J
Λ
λ (M))⊗H•

I (pt;k) H
•
I(FlG,∇It(µ−λ)(k))

∼−→ H•(FlG,∇It(µ)(M)).

Since (as in the proof of Lemma 4.5.2) H•
I(FlG,∇It(µ−λ)(k)) is canonically isomorphic

to H
•+ℓ(t(µ−λ))
I (pt;k) and since

Hm(FlG,∇It(µ)(M)) =

{
M if m = −ℓ(t(µ));
0 otherwise,

we deduce isomorphisms

(4.5.2) Hm(FlG,J
Λ
λ (M)) ∼=

{
M if m = −ℓ(t(µ)) + ℓ(t(µ− λ));
0 otherwise.

Now since µ and µ− λ belong to Λ, using (4.1.5) and (4.1.3) we see that

ℓ(t(µ)) = ℓ(t(x−1
Λ (µ))) = ⟨x−1

Λ (µ), 2ρ⟩

and similarly that

ℓ(t(µ− λ)) = ⟨x−1
Λ (µ− λ), 2ρ⟩,

so that

(4.5.3) ℓ(t(µ))− ℓ(t(µ− λ)) = ⟨x−1
Λ (λ), 2ρ⟩.

From the properties of the isomorphisms in Lemma 4.2.5 one can check that the
isomorphism (4.5.2) does not depend on the choice of µ, and hence is canonical.

Remark 4.5.3. — Lemma 4.5.1 shows that the functor H−⟨x−1
Λ (λ),2ρ⟩(FlG,−) is left

inverse to the functor

JΛ
λ : Mofk → PervI(FlG,k).

We deduce that there exists a canonical isomorphism

GradΛλ (F ) ∼= H−⟨x−1
Λ (λ),2ρ⟩(FlG, gr

Λ
λ (F ))
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for any F in PervΛI (FlG,k). In fact, if Ω = {µ ∈ X∨ | µ ⪯Λ λ}, we similarly have a
canonical isomorphism

(4.5.4) GradΛλ (F ) ∼= H−⟨x−1
Λ (λ),2ρ⟩(FlG,FΩ).

As a consequence we obtain the following property.

Proposition 4.5.4. — For any F in PervΛI (FlG,k) and any n ∈ Z there exists a
canonical (in particular, functorial) isomorphism of k-modules

(4.5.5) Hn(FlG,F ) ∼=
⊕
λ∈X∨

⟨x−1
Λ (λ),2ρ⟩=−n

GradΛλ (F ).

Taking the sum over all n, this proposition yields a canonical isomorphism

(4.5.6) H•(FlG,F )
∼−→ GradΛX∨(F ).

Proof. — We set X = {λ ∈ X∨ | GradΛλ (F ) ̸= 0}. We can of course assume that F
is supported on a connected component Y of FlG; then, in view of Proposition 4.2.3,
for any λ ∈ X we have FlG,t(λ) ⊂ Y . It follows that X is contained in some ZR∨-coset

in X∨, so that ⟨x−1
Λ (λ), 2ρ⟩ has the same parity for all λ ∈ X. In this setting, we

proceed by induction on the cardinality of

{⟨x−1
Λ (λ), 2ρ⟩ : λ ∈ X} ⊂ Z.

If this set is empty then F = 0 and there is nothing to prove. Otherwise let n
be the smallest integer in this set, and let Xmin = {λ ∈ X | ⟨x−1

Λ (λ), 2ρ⟩ = n}.
Since the function µ 7→ ⟨x−1

Λ (µ), 2ρ⟩ is order-preserving with respect to ⪯Λ and the
standard order on Z, all the elements in Xmin are minimal in X. In particular, if
Ω =

⋃
λ∈Xmin

{µ ∈ X∨ | µ ⪯Λ λ}, then FΩ has a Wakimoto filtration with subquo-

tients grΛλ (F ) where λ runs over Xmin, and F/FΩ has a Wakimoto filtration with
subquotients grΛµ(F ) where µ runs over X∖Xmin. Now since the elements in Xmin are
pairwise incomparable, Lemma 4.3.1 and (4.3.3) ensure that there exists a canonical
isomorphism

FΩ
∼−→

⊕
λ∈Xmin

JΛ
λ

(
GradΛλ (F )

)
.

In particular, by Lemma 4.5.1 we have

Hm(FlG,FΩ) ∼=


⊕

λ∈Xmin

GradΛλ (F ) if m = −n;

0 otherwise.

On the other hand, by induction we have

Hm(FlG,F/FΩ) ∼=


⊕
µ∈X

⟨x−1
Λ (µ),2ρ⟩=−m

GradΛµ(F ) if m ≤ −n− 2;

0 otherwise.
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From these computations we obtain that the exact sequence FΩ ↪→ F ↠ F/FΩ

induces isomorphisms

Hm(FlG,F ) ∼=

{
Hm(FlG,FΩ) if m = −n;
Hm(FlG,F/FΩ) otherwise,

which completes the proof.

4.5.2. Equivariant cohomology. — Proposition 4.5.4 also has consequences for
the equivariant cohomology of perverse sheaves admitting Wakimoto filtrations. We
first start with the following lemma, which should be compared with Lemma 3.3.9(2).
(Note however that we do not have to impose any assumption on k in the present
case.)

Lemma 4.5.5. — For any F in PervΛI (FlG,k), there exists a noncanonical isomor-
phism of H•

I(pt;k)-modules

(4.5.7) H•
I(FlG,F ) ∼= H•

I(pt;k)⊗k H
•(FlG,F ).

Moreover, the forgetful functor induces an isomorphism

k⊗H•
I (pt;k) H

•
I(FlG,F )

∼−→ H•(FlG,F ).

Proof. — Of course we can assume that F is supported on a single connected com-
ponent of FlG. There exists a convergent spectral sequence

Ep,q2 = HpI(pt;k)⊗k H
q(FlG,F ) ⇒ Hp+qI (FlG,F ),

and to prove both claims it suffices to prove that this spectral sequence degenerates
at the E2-page. However, we have HpI(pt;k) = 0 unless p is even (see §4.5.1). On
the other hand, it follows from our assumption that all the coweights λ such that
Gradλ(F ) ̸= 0 belong to the same ZR∨-coset, so the parity of ⟨x−1

Λ (λ), 2ρ⟩ is con-
stant for these coweights. Thus, Proposition 4.5.4 implies that the integers q such
that Hq(FlG,F ) ̸= 0 all have the same parity, so that the spectral sequence indeed
degenerates for parity reasons.

Let us explain the noncanonicity of (4.5.7) in more detail. The degeneration of the
spectral sequence in the preceding proof means that H•

I(FlG,F ) admits a filtration
(as an H•

I(pt;k)-module) whose subquotients are of the form H•
I(pt;k)⊗kH

q(FlG,F ).
The isomorphism (4.5.7) is obtained by choosing a splitting of this filtration.

To get a better description of equivariant cohomology one can proceed as follows.
For brevity, given F in PervΛI (FlG,k) and λ ∈ X∨, we set

(4.5.8) F⪯Λλ := F{µ∈X∨|µ⪯Λλ}.

Proposition 4.5.6. — For any F in PervΛI (FlG,k), the natural morphism of
H•
I(pt;k)-modules⊕

λ∈X∨

H•
I(pt;k)⊗k H

−⟨x−1
Λ (λ),2ρ⟩

I (FlG,F⪯Λλ)→ H•
I(FlG,F )

is an isomorphism.
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Proof. — We begin by analyzing the left-hand side. By Proposition 4.5.4, we have

Hn(FlG,F⪯Λλ)
∼=


GradΛλ (F⪯Λλ)

∼= GradΛλ (F ) if n = −⟨x−1
Λ (λ), 2ρ⟩,⊕

µ∈X∨, µ≺Λλ

⟨x−1
Λ (µ),2ρ⟩=−n

GradΛµ(F ) if n > −⟨x−1
Λ (λ), 2ρ⟩,

0 if n < −⟨x−1
Λ (λ), 2ρ⟩.

Since Hn(FlG,F⪯Λλ) vanishes if n < −⟨x−1
Λ (λ), 2ρ⟩, Lemma 4.5.5 implies that the

morphism

(4.5.9) H
−⟨x−1

Λ (λ),2ρ⟩
I (FlG,F⪯Λλ)→ H−⟨x−1

Λ (λ),2ρ⟩(FlG,F⪯Λλ)

induced by the forgetful map is an isomorphism. Moreover, both sides vanish for
all but finitely many λ (namely, those λ such that GradΛλ (F ) ̸= 0). In particular,
the direct sum appearing in the statement of the proposition has only finitely many
nonzero terms.

Now we can prove the statement. As usual one can assume that F is supported on
a single connected component of FlG, and we proceed by induction on the number of
λ’s such that GradΛλ (F ) ̸= 0. (Note that our assumption guarantees that the parity
of −⟨x−1

Λ (λ), 2ρ⟩ is constant on these coweights.) If this number is 0 then F = 0 and
there is nothing to prove. If it is 1, then F ∼= JΛ

µ(M) for some µ ∈ X∨ andM ∈ Mofk.
The summand in the left-hand side parametrized by λ vanishes unless λ = µ, and the
claim follows easily from Lemma 4.5.1 and Lemma 4.5.5. If this number is at least 2,
we choose µ minimal such that GradΛµ(F ) ̸= 0, and consider the exact sequence

F⪯Λµ ↪→ F ↠ F/F⪯Λµ.

Lemma 4.5.1, Lemma 4.5.5 and parity considerations imply that applying H•
I(FlG,−)

we obtain an exact sequence

H•
I(FlG,F⪯Λµ) ↪→ H•

I(FlG,F ) ↠ H•
I(FlG,F/F⪯Λµ).

On the other hand, the identifications above show that this exact sequence also induces
an exact sequence⊕

λ∈X∨

H•
I(pt;k)⊗k H

−⟨x−1
Λ (λ),2ρ⟩

I (FlG, (F⪯Λµ)⪯Λλ) ↪→⊕
λ∈X∨

H•
I(pt;k)⊗k H

−⟨x−1
Λ (λ),2ρ⟩

I (FlG,F⪯Λλ) ↠⊕
λ∈X∨

H•
I(pt;k)⊗k H

−⟨x−1
Λ (λ),2ρ⟩

I (FlG, (F/F⪯Λµ)⪯Λλ).

We conclude using the 5-lemma.

Using the calculations carried out in the preceding proof, we can rephrase Propo-
sition 4.5.6 as follows: there is a canonical isomorphism⊕

λ∈X∨

H•
I(pt;k)⊗k GradΛλ (F )→ H•

I(FlG,F ).
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4.5.3. Cohomology with support. — Let ẋΛ be a lift of xΛ in NG(T ). We then
set

B+
Λ := ẋΛ ·B+ · ẋ−1

Λ ,

so that the roots appearing in the Lie algebra of B+
Λ are those in RΛ. We also denote

by U+
Λ the unipotent radical of B+

Λ . Let χ ∈ X∨ be a cocharacter such that x−1
Λ (χ)

is strictly dominant. As in §1.2.2.2, the action of Gm on G via conjugation with χ
defines an attractor scheme, which is the subgroup B+

Λ , and a fixed points scheme,
equal to T . We can also consider the action of Gm on FlG via χ, which turns to be
Zariski locally linearizable (see [HR2, Lemma 4.3]), and the associated ind-schemes

(FlG)
+, (FlG)

0,

see Theorem 1.1.6. Here (FlG)
0 is discrete, with underlying topological spaceW (seen

as a subspace in FlG via the assignment t(λ)w 7→ xλẇ for λ ∈ X∨ and w ∈Wf , where
ẇ is any lift of w in NG(T )). As in §1.1.2.2 of Proposition 1.2.8 the natural morphism
(FlG)

+ → (FlG)
0 induces a bijection between sets of connected components, so that

the connected component of (FlG)
+ are in a natural bijection withW . We will denote

by

SΛ
w

the connected component associated with w. If w = t(λ) ·x with λ ∈ X∨ and x ∈Wf ,
and if ẋ is a lift of x in NG(T ), then we have

(SΛ
w)(C) := (U+

Λ )K · zλẋI.

The corresponding inclusion will be denoted

σΛ
w : SΛ

w → FlG.

(As in §1.2.3.1, this morphism is representable by a locally closed immersion.)

Lemma 4.5.7. — For any λ ∈ Λ we have FlG,t(λ) = (I ∩ (U+
Λ )K ) · xλI.

Proof. — For α ∈ R and m ∈ Z we denote by Uα,m ⊂ GK the subgroup which

identifies, for any choice of isomorphism uα : Ga
∼−→ Uα (where Uα is the root subgroup

of G associated with α), with the image of the morphism t 7→ uα(tx
m). If we fix an

arbitrary order on R+ and −R+ and set, for any λ ∈ X∨,

(4.5.10) Iλ :=

 ∏
α∈R+

⟨λ,α∨⟩>0

⟨λ,α∨⟩∏
m=1

Uα,m

×
 ∏

α∈−R+

⟨λ,α∨⟩>0

⟨λ,α∨⟩−1∏
m=0

Uα,m

 ,

then it is well known that the I-action on the point xλI ∈ FlG induces an isomorphism

Iλ
∼−→ FlG,t(λ).

In (4.5.10), only the roots α such that ⟨λ, α∨⟩ > 0 contribute. If we assume that
λ ∈ Λ, then these roots all belong to RΛ, which implies the desired claim.
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Lemma 4.5.8. — For any λ ∈ Λ, w ∈W and F in Db
I (FlG,k) we have a canonical

isomorphism

H•
SΛ

t(λ)w

(
FlG,∇It(λ)(k) ⋆

I F
)
∼= H

•+ℓ(t(λ))
SΛ

w
(FlG,F ).

Proof. — By definition we have

H•
SΛ

t(λ)w

(
FlG,∇It(λ)(k) ⋆

I F
)
= H•

(
SΛ

t(λ)w, (σ
Λ
t(λ)w)

!(∇It(λ)(k) ⋆
I F )

)
.

Let X ⊂ FlG be a closed finite union of I-orbits over which F is supported. Then
from the definition we see that ∇It(λ)(k) ⋆

I F is the ∗-pushforward of the complex

k ⊠̃ F [ℓ(t(λ))] under the map q−1(FlG,t(λ)) ×I X → FlG induced by m′. Now since
λ ∈ Λ, by Lemma 4.5.7 we have

FlG,t(λ) = (I ∩ (U+
Λ )K ) · xλI.

We deduce isomorphisms

q−1(FlG,t(λ))×I X ∼= I ×I∩x
λIx−λ

xλX ∼= (I ∩ (U+
Λ )K )×I∩x

λIx−λ∩(U+
Λ )K xλX,

under which k ⊠̃ F [ℓ(t(λ))] corresponds to k ⊠̃ (xλ)∗F [ℓ(t(λ))] (where by abuse we
denote by xλ : FlG → FlG the left multiplication by xλ). The preimage of SΛ

t(λ)w in

the right-hand side is then

(I ∩ (U+
Λ )K )×I∩x

λIx−λ∩(U+
Λ )K (xλX ∩SΛ

t(λ)w)

= (I ∩ (U+
Λ )K )×I∩x

λIx−λ∩(U+
Λ )K xλ · (X ∩SΛ

w)

since SΛ
t(λ)w = xλ ·SΛ

w. It follows that

(4.5.11) H•
SΛ

t(λ)w

(
FlG,∇It(λ) ⋆

I F
)
∼=

H•((I ∩ (U+
Λ )K )×I∩x

λIx−λ∩(U+
Λ )K xλ · (X ∩SΛ

w),k ⊠̃ (xλ)∗(σ
Λ
w)

!F [ℓ(t(λ))]).

The scheme on the right-hand side of this formula is a bundle over

(I ∩ (U+
Λ )K )/(I ∩ xλIx−λ ∩ (U+

Λ )K ) ∼= FlG,t(λ),

which is contractible, so the Leray–Serre spectral sequence identifies (4.5.11) with

H• (xλ · (X ∩SΛ
w), (x

λ)∗(σ
Λ
w)

!F [ℓ(t(λ))]
)
.

This, in turn, is identified with H
•+ℓ(t(λ))
SΛ

w
(FlG,F ), so we are done.

Lemma 4.5.9. — For any λ ∈ X∨ and M ∈ Mofk we have canonical isomorphisms

HnSΛ
w
(FlG,J

Λ
λ (M)) ∼=

{
M if n = −⟨x−1

Λ (λ), 2ρ⟩ and w = t(λ);

0 otherwise.
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Proof. — Choose µ ∈ Λλ. Then by Lemma 4.2.7 we have a canonical isomorphism

∇It(µ−λ)(k) ⋆
I JΛ

λ (M) ∼= ∇It(µ)(M).

Using Lemma 4.5.8 twice, we obtain canonical isomorphisms

HnSΛ
w
(FlG,J

Λ
λ (M)) ∼= H

n−ℓ(t(µ−λ))
SΛ

t(µ−λ)w

(FlG,∇It(µ)(M))

∼= H
n−ℓ(t(µ−λ))+ℓ(t(µ))
SΛ

t(−λ)w

(FlG,∇Ie(M)).

Now FlG,e ⊂ SΛ
e , so the right-hand side vanishes unless w = t(λ) and n = ℓ(t(µ −

λ))−ℓ(t(µ)), in which case it is isomorphic toM . Using (4.5.3) we deduce the desired
description. One can check that our isomorphism does not depend on the choice of
µ, so it is canonical.

Proposition 4.5.10. — Let F ∈ PervΛI (FlG,k).
1. For any λ ∈ X∨, we have canonical isomorphisms

HnSΛ
t(λ)

(FlG,F ) ∼=

{
GradΛλ (F ) if n = −⟨x−1

Λ (λ), 2ρ⟩;
0 otherwise.

2. For any w ∈W ∖ {t(λ) : λ ∈ X∨} we have

HnSΛ
w
(FlG,F ) = 0

for any n ∈ Z.

Proof. — The claims are immediate from Lemma 4.5.9.

Remark 4.5.11. — For any λ ∈ X∨ we have π(SΛ
t(λ)) = (UxΛw◦)K · Lλ, where we

use the notation of Remark 1.3.7. In particular, if SΛ
t(λ) ⊂ SΛ

t(µ) then

(UxΛw◦)K · Lλ ⊂ (UxΛw◦)K · Lµ,
so that (by [BR, Proposition 1.3.4]) we have µ ⪯Λ λ. If λ ̸= µ, this guarantees that
⟨x−1

Λ (λ), 2ρ⟩ ≠ ⟨x−1
Λ (µ), 2ρ⟩. Using this and standard arguments (see e.g. [BR, Proof

of Theorem 1.5.9]), from Proposition 4.5.10 we deduce that for any F in PervΛI (FlG,k),
for any locally closed union X of orbits Sw, and for any n ∈ Z we have a canonical
isomorphism

HnX(FlG,F ) ∼=
⊕

λ∈X∨, SΛ
t(λ)⊂X,

⟨x−1
Λ (λ),2ρ⟩=−n

GradΛλ (F ).

4.6. Consequences

The results proved in Section 4.5 have a number of significant consequences for the
functors GradΛλ and grΛλ (and also for the functor Z) that we explain in the present
section.

4.6.1. First consequences. —
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4.6.1.1. Acyclicity. — Recall the functor GradΛX∨ from (4.3.5). The first observation
is that this functor “detects” acyclic chain complexes of Wakimoto-filtered perverse
sheaves, in the following sense.

Proposition 4.6.1. — Let

(4.6.1) F = (· · · → F−1 → F 0 → F 1 → · · · )

be a bounded chain complex over PervΛI (FlG,k). If this chain complex is acyclic (when
regarded as a chain complex over PervI(FlG,k)) then the chain complex

(4.6.2) · · · → GradΛX∨(F−1)→ GradΛX∨(F 0)→ GradΛX∨(F 1)→ · · ·

is an acyclic complex of X∨-graded k-modules. Conversely, if n ∈ Z and if the
chain complex (4.6.2) has no cohomology in degree n, then the complex (4.6.1) has
no cohomology in degree n.

Proof. — Suppose first that (4.6.1) is acyclic. Define a functor

f : Db
I (FlG,k)→ DbMofX

∨

k

by

f(G ) :=
⊕
λ∈X

RΓSΛ
t(λ)

(G )[−⟨x−1
Λ (λ), 2ρ⟩].

By Proposition 4.5.10, if G ∈ PervΛI (FlG,k), then the chain complex f(G ) is concen-
trated in degree 0, and there is a natural isomorphism

f(G ) ∼= GradΛX∨(G ).

Thus, the chain complex (4.6.2) can be identified with

· · · → f(F−1)→ f(F 0)→ f(F 1)→ · · · .

To see that this complex is acyclic, apply Lemma 4.6.2 below (with A1 = PervI(FlG,k)
and A2 = MofX

∨

k ).
Conversely, fix n ∈ Z, and assume that (4.6.2) has no cohomology in degree n. To

show that (4.6.1) has no cohomology in degree n, we proceed by induction on the size
of the set

X = {λ ∈ X | for some i ∈ Z, GradΛλ (F
i) ̸= 0}.

(Note that this set is finite because only finitely many F i’s are nonzero.) If X is
empty, then F i = 0 for all i, and there is nothing to prove.

If X is a singleton, say X = {λ}, then by Lemma 4.3.4 all F i’s are in the essential
image of the functor JΛ

λ : Mofk → PervI(FlG,k). Since the latter functor is fully faith-
ful (see Proposition 4.2.6), the entire chain complex (4.6.1) is obtained by applying
JΛ
λ to some chain complex

(4.6.3) · · · →M−1 →M0 →M1 → · · ·

in Mofk. By (4.3.4), the complex (4.6.2) identifies with (4.6.3); in particular, (4.6.3)
has no cohomology in degree n. Since JΛ

λ is exact (see Lemma 4.2.1), we conclude
that (4.6.1) has no cohomology in degree n as well.
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Now suppose that X contains more than one element, and choose an element
λ ∈ X that is minimal with respect to ⪯Λ. By Lemma 4.3.2 we can form two new
chain complexes as follows:

F⪯Λλ := (· · · → F−1
⪯Λλ
→ F 0

⪯Λλ → F 1
⪯Λλ → · · · ),

F/F⪯Λλ := (· · · → F−1/F−1
⪯Λλ
→ F 0/F 0

⪯Λλ → F 1/F 1
⪯Λλ → · · · ),

and we have a short exact sequence of chain complexes

0→ F⪯Λλ → F → F/F⪯Λλ → 0.

Using the long exact sequence of cohomology associated with this short exact se-
quence, we see that to conclude it is enough to show that both F⪯Λλ and F/F⪯Λλ

have no cohomology in degree n. It is immediate from the definitions that

GradΛX∨(F ) ∼= GradΛX∨(F⪯Λλ)⊕GradΛX∨(F/F⪯Λλ);

since (4.6.2) is assumed to have no cohomology in degree n, this implies that the

chain complexes GradΛX∨(F⪯Λλ) and GradΛX∨(F/F⪯Λλ) also have no cohomology in
degree n. By induction we deduce that F⪯Λλ and F/F⪯Λλ have no cohomology in
degree n, which concludes the proof.

Lemma 4.6.2. — Let D1 and D2 be triangulated categories equipped with t-
structures, and let A1 ⊂ D1 and A2 ⊂ D2 be their respective hearts. Let

0→ X1 → X2 → · · · → Xn → 0

be an exact sequence in A1, with n ≥ 2. Let f : D1 → D2 be a triangulated functor.

1. If f(X1), f(X2), . . . , f(Xn−1) all lie in A2, then f(Xn) lies in D≤0
2 .

2. If f(X2), f(X3), . . . , f(Xn) all lie in A2, then f(X1) lies in D≥0
2 .

3. If all terms f(X1), . . . , f(Xn) lie in A2, then the sequence

0→ f(X1)→ f(X2)→ · · · → f(Xn)→ 0

is an exact sequence in A2.

Proof. — (1) We proceed by induction on n. If n = 2, the claim is obvious. If n ≥ 3,
let Y be the kernel of Xn−1 → Xn, so that we have two exact sequences

(4.6.4) 0→ X1 → X2 → · · ·Xn−2 → Y → 0, 0→ Y → Xn−1 → Xn → 0

in A1. By induction, the first exact sequence shows that f(Y ) ∈ D≤0
2 . The second

short exact sequence comes from some distinguished triangle Y → Xn−1 → Xn
[1]→ in

D1. Apply F to this distinguished triangle; the claim follows.
(2) This is similar to part (1).
(3) We proceed by induction on n. If n = 2, the claim is obvious. If n ≥ 3, define

Y as above, and consider the two exact sequences (4.6.4). Parts (1) and (2) together
imply that f(Y ) ∈ A2. By induction, the sequences

0→ f(X1)→ f(X2)→ · · · f(Xn−2)→ f(Y )→ 0,

0→ f(Y )→ f(Xn−1)→ f(Xn)→ 0

are both exact. The claim follows by concatenating these sequences.
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Remark 4.6.3. — The “converse” implication in Proposition 4.6.1 also holds for
unbounded complexes, in the sense that if n ∈ Z and if F is any chain complex over
PervΛI (FlG,k), if the complex obtained by applying the functor GradΛX∨ to all terms
has no cohomology in degree n, then the same holds for the complex F . In fact, it
suffices to apply the property for bounded complexes to the complex F ′ whose i-th
term is F i if i ∈ {n− 1, n, n+ 1}, and 0 otherwise.

We can now answer the question raised in Remark 4.3.5.

Remark 4.6.4. — Although PervΛI (FlG,k) is not an abelian category, it inherits
from PervI(FlG,k) the structure of a (Quillen) exact category. Since a short exact

sequence in PervΛI (FlG,k) can be regarded as a three-term acyclic chain complex,
Proposition 4.6.1 implies that

GradΛX∨ : PervΛI (FlG,k)→ MofX
∨

k

is an exact functor of exact categories. Using (4.3.3) and the exactness of the functor
JΛ
λ (see Lemma 4.2.1), we see that

grΛλ : PervΛI (FlG,k)→ PervI(FlG,k)

is also an exact functor of exact categories.
Since an isomorphism in PervΛI (FlG,k) can be regarded as a two-term acyclic chain

complex, Proposition 4.6.1 also tells us that GradΛX∨ is conservative.

4.6.1.2. Cohomology with support for central sheaves. — We now turn our attention
to central sheaves. The ind-subschemes SΛ

w are analogues in FlG of the “semi-infinite
orbits” Sλ considered in §1.2.3. More specifically, consider a cocharacter χ as in §4.5.3,
and the associated action of Gm on GrG. As in §1.2.3 the fixed points for this action
identify (at the level of reduced ind-schemes) with X∨, hence the connected compo-
nents of the associated attractor ind-scheme are parametrized by X∨, and we denote
by SΛ

λ the connected component associated with λ. Comparing with the setting
of §1.2.3, we see that for any λ ∈ X∨ we have

SΛ
λ = ẋΛ · Sx−1

Λ (λ).

With this notation, it is easily seen that for any λ ∈ X∨ we have

(4.6.5) π−1(SΛ
λ ) =

⊔
w∈Wf

SΛ
t(λ)w.

Proposition 4.6.5. — For any F in PervGO (GrG,k) we have

HnSΛ
λ
(GrG,F ) ∼=

{
GradΛλ (Z(F )) if n = −⟨x−1

Λ (λ), 2ρ⟩;
0 otherwise.

Proof. — Recall from Lemma 2.5.1 that we have F ∼= π∗Z(F ). Using the base
change theorem we deduce a canonical isomorphism

HnSΛ
λ
(GrG,F ) ∼= Hnπ−1(SΛ

λ )(FlG,Z(F )).
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In view of Theorem 4.4.5 and (4.6.5), the result follows from Remark 4.5.11 applied
with X = π−1(SΛ

λ ).

Remark 4.6.6. — 1. The vanishing statement in Proposition 4.6.5 is not new:
it is one of the fundamental ingredients in the Mirković–Vilonen proof of the
geometric Satake equivalence, see Proposition 1.3.5. (More specifically, Propo-
sition 1.3.5 corresponds to the case when Λ = −X∨

+. For the more general case,
see Remark 1.3.7.)

2. Combining Proposition 4.6.5 with Proposition 4.5.10(1) we obtain isomorphisms

HnSΛ
wt(λ)

(FlG,F ) ∼=

{
Hn
SΛ
λ
(GrG,F ) if w = 1;

0 otherwise.

In this form, this result can be seen as an application of a general compatibil-
ity result between hyperbolic localization and nearby cycles proved in [Rc3];
see [HR2, Theorem A] for this point of view.

4.6.1.3. Support. — Proposition 4.6.5 tells us in particular that a Wakimoto sheaf
with label λ appears in a Wakimoto filtration of Z(F ) iff H•

SΛ
λ
(GrG,F ) ̸= 0. We

will apply this observation in the following special case. Assume that λ ∈ X∨
+ is a

dominant coweight. Then we have perverse sheaves J∗(λ,k) and J!(λ,k), see §1.3.1.
For these objects, it is known that H•

SΛ
µ
(GrG,J∗(λ,k)) ̸= 0 iff H•

SΛ
µ
(GrG,J!(λ,k)) ̸= 0,

and that this happens iff µ belongs to the intersection of the convex hull of Wf · λ
with λ + ZR∨, cf. [BR, Theorem 1.5.2 and Proposition 1.11.1], or equivalently iff
λ− µ+ ∈ Z≥0R+, where µ

+ is the dominant Wf -translate of µ.

Corollary 4.6.7. — Let F ∈ PervGO (GrG,k), and let X ⊂ GrG be a closed finite
union of GO-orbits on which F is supported. Then Z(F ) is supported on⋃

µ∈X∨
+

GrµG⊂X open

⋃
η∈Wfµ

FlG,t(η).

Proof. — First we consider the case F = J!(λ,k) and X = GrλG. Then, as explained
above, it is known that Z(F ) admits a filtration with subquotients of the form JΛ

µ(M)

where µ runs over the weights such that λ−µ+ ∈ Z≥0R+. Since J
Λ
µ(M) is supported

on FlG,t(µ) (see Proposition 4.2.3), it follows that Z(F ) is supported on the union of

the closures FlG,t(µ) where µ runs over these weights. To conclude the proof in this
case, it thus suffices to show that any of these closures is contained in⋃

ν∈Wfλ

FlG,t(ν).

However, if µ is as above, and if ν is a Wf -translate of λ which belongs to the same
closed Weyl chamber as µ, then using Lemma 4.1.2(2) one can check that t(µ) ≤Bru

t(ν), so that FlG,t(µ) ⊂ FlG,t(ν), which finishes the proof.
We now consider the general case. To fix notation, we denote by A ⊂ X∨

+ the
set of dominant coweights ν such that GrνG is open in X, and by A′ ⊂ X∨

+ the set
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of dominant coweights η such that GrηG ⊂ X. Then η belongs to A′ iff there exists
ν ∈ A such that ν − η ∈ Z≥0R+.

As explained in [BR, §§1.12.1–1.12.2], there exists an object P in PervGO (X,k)
which admits a (finite) filtration with subquotients of the form J!(η,k) with η ∈ A′,
integers n,m ∈ Z≥0, and an exact sequence

P⊕n →P⊕m → F → 0

in PervGO (GrG,k). By exactness of Z we deduce an exact sequence

Z(P)⊕n → Z(P)⊕m → Z(F )→ 0

in PervI(FlG,k). This exact sequence reduces the proof to the case F = P, and then
to the case F = J!(η,k) with η ∈ A′. In this case we have seen that Z(J!(η,k)) is
supported on ⋃

ν∈Wfη

FlG,t(ν).

If µ ∈ A is such that µ− η ∈ Z≥0R+, then as above we have⋃
ν∈Wfη

FlG,t(ν) ⊂
⋃

ν∈Wfµ

FlG,t(ν),

which completes the proof.

Remark 4.6.8. — In the particular cases considered before the statement, Corol-
lary 4.6.7 says that Z(J!(λ,k)) and Z(J∗(λ, k)) are supported on⋃

ν∈Wfλ

FlG,t(ν).

The orbits which are open in this subset are exactly those of the form FlG,t(ν) with
ν ∈Wfλ, and all of them are of dimension ℓ(t(λ)) = ⟨λ, 2ρ⟩ (see (4.1.5)). A closer look
at the proof of the corollary shows (using also Proposition 4.2.3) that the restriction
of Z(J!(λ,k)) and Z(J∗(λ,k)) to each of these orbits is the constant sheaf placed in
degree −⟨λ, 2ρ⟩.

4.6.2. Monodromy and Wakimoto filtrations. — Recall (see §2.4.5) that as
part of the nearby cycles formalism, there is a natural monodromy map

mA : Z(A )→ Z(A )

for every A ∈ PervGO (GrG,k). In Proposition 2.4.6(1) we have proved that this
monodromy automorphism is unipotent. Our goal in this subsection is to provide an
alternative proof of this fact based on Theorem 4.4.5 and the idea in Remark 9.3.7.

Lemma 4.6.9. — For any λ ∈ X∨, the induced map

mA ,λ := GradΛλ (mA ) : GradΛλ (Z(A ))→ GradΛλ (Z(A ))

is the identity map.
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Proof. — By Proposition 4.5.4, it is enough to show that for any n ∈ Z, the map

Hn(FlG,mA ) : Hn(FlG,Z(A ))→ Hn(FlG,Z(A ))

is the identity map. By Lemma 2.5.1 we have natural isomorphisms

Hn(FlG,Z(A )) ∼= Hn(GrG, π∗Z(A )) ∼= Hn(GrG,Z
sph(A )),

which identify Hn(FlG,mA ) with Hn(GrG,m
sph
A ). As explained in §2.5.4, msph

A is the
identity map, which implies that Hn(FlG,mA ) is also the identity map, as desired.

Proposition 4.6.10. — For A ∈ PervGO (GrG,k), the map mA : Z(A )→ Z(A ) is
unipotent.

Proof. — Choose a bijection Z ∼−→ X∨ as in (4.3.1), and let (Z(A )i)i∈Z be
the corresponding filtration of Z(A ) (see §4.3.2). By Lemma 4.6.9, we have
(id − mA )(Z(A )i) ⊂ Z(A )i−1 for any i ∈ Z. Since the filtration has only finitely
many nonzero steps, it follows that (id−mA )N = 0 for some N > 0.

4.6.3. Highest weight arrows. — We conclude this section with the construc-
tion and study of some “highest weight arrows” (somewhat similar to the projection
from an induced module over a connected reductive group to its highest weight line,
see §1.5.1) that will be used in Chapter 6.

This endeavor will require some background on I-orbits on GrG. For µ ∈ X∨, set

GrG,µ := I · Lµ,
and denote by jµ : GrG,µ → GrG the embedding. (This notation should not be
confused with jt(µ), which denotes the embedding of FlG,t(µ) in FlG.) Then for any
λ ∈ X∨

+ we have

GrλG =
⊔

µ∈Wfλ

GrG,µ;

in particular we have

(GrG)red =
⊔

µ∈X∨

GrG,µ.

Note also that each GrG,µ is isomorphic to an affine space.
Let us now fix λ ∈ X∨

+, and let µ be the unique Wf -translate of λ which belongs
to Λ. By Lemma 2.5.1, we have a canonical isomorphism

π∗Z(J∗(λ,k)) ∼= J∗(λ,k).
On the other hand, since µ belongs to Λ we have

JΛ
µ(k) ∼= ∇It(µ)(k).

Since π restricts to a trivial fibration FlG,t(µ) → GrG,µ with fibers isomorphic to

Aℓ(t(µ))−dim(GrG,µ), we deduce a canonical isomorphism

π∗J
Λ
µ(k) ∼= (jµ)∗kGrG,µ

[ℓ(t(µ))].

(Note that here the right-hand side is not perverse in general.) We use these isomor-
phisms in the following statement.
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Lemma 4.6.11. — For λ and µ as above, the functor π∗ induces an isomorphism

HomDb
c (FlG,k)

(
Z(J∗(λ,k)),JΛ

µ(k)
) ∼−→ HomDb

c (GrG,k)
(
J∗(λ, k), (jµ)∗kGrG,µ

[ℓ(t(µ))]
)
,

and moreover both sides are free k-modules of rank 1.

Proof. — Since (as explained above) we have JΛ
µ(k) ∼= ∇It(µ)(k), by adjunction we

have

Hom
(
Z(J∗(λ,k)),JΛ

µ(k)
) ∼= Hom

(
(jt(µ))

∗Z(J∗(λ, k)),kFlG,t(µ)
[ℓ(t(µ))]

)
.

By Remark 4.6.8 we know that

(jt(µ))
∗Z(J∗(λ, k)) ∼= kFlG,t(µ)

[ℓ(t(µ))].

After fixing such an isomorphism, we deduce that the k-module

Hom
(
Z(J∗(λ, k)), (jt(µ))∗kFlG,t(µ)

[ℓ(t(µ))]
)

is free of rank 1, and spanned by the morphism

(4.6.6) Z(J∗(λ,k))→ (jt(µ))∗(jt(µ))
∗Z(J∗(λ,k)) ∼= (jt(µ))∗kFlG,t(µ)

[ℓ(t(µ))].

induced by adjunction.
On the other hand, again by adjunction we have

Hom
(
J∗(λ,k), (jµ)∗kGrG,µ

[ℓ(t(µ))]
) ∼= Hom((jµ)

∗J∗(λ, k),kGrG,µ
[ℓ(t(µ))]).

Now we have GrG,µ ⊂ GrλG, and the restriction of J∗(λ, k) to the subset GrλG
(which is open in its support) is free of rank 1 (with a canonical generator). Since
ℓ(t(λ)) = ℓ(t(µ)) (see (4.1.5)), we deduce a (canonical) isomorphism (jµ)

∗J∗(λ,k) ∼=
kGrG,µ

[ℓ(t(µ))], so that the k-module Hom(J∗(λ,k), (jµ)∗kGrG,µ
[ℓ(t(µ))]) is also free

of rank 1, and spanned by the adjunction morphism

(4.6.7) J∗(λ,k)→ (jµ)∗(jµ)
∗J∗(λ, k) ∼= (jµ)∗kGrG,µ

[ℓ(t(µ))].

These considerations show that proving the lemma amounts to proving that the
functor π∗ sends the morphism (4.6.6) to a multiple of (4.6.7) by an invertible scalar.
Now, recall that we have a canonical isomorphism

k
L
⊗Z J∗(λ,Z) ∼= J∗(λ,k),

see [BR, Proposition 1.11.13]. Since all the functors considered above commute with
the functor k⊗LZ (−) (see Proposition 9.1.6(2) for the functor Z), it suffices to prove
the claim above in case k = Z. Using then the functor Fp ⊗LZ (−) we can further
reduce the proof to showing that, in case k is a finite field, the functor π∗ does not kill
the morphism (4.6.6). In fact we will prove this claim for any choice of coefficients.

For this we observe that we have

H•(FlG,−) ∼= H•(GrG,−) ◦ π∗.

Hence the claim will follow if we prove that the functor H•(FlG,−) does not kill the
first map in (4.6.6). Let Γ := {ν ∈ X∨ | ν ≺Λ µ}. Then the considerations preceding

Corollary 4.6.7 show that all the coweights η such that GradΛη (Z(J∗(λ,k))) ̸= 0 belong
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to Γ ∪ {µ}. In particular, setting F := (Z(J∗(λ,k)))Γ we have an exact sequence of
perverse sheaves

(4.6.8) 0→ F → Z(J∗(λ,k))→ grΛµ(Z(J∗(λ, k)))→ 0.

Here the perverse sheaf grΛµ(Z(J∗(λ,k))) is of the form JΛ
µ(M) = ∇t(µ)(M) for some

M in Mofk, and F is supported on the image of the closed embedding

k :

( ⋃
ν∈Wfλ

FlG,t(ν)

)
∖ FlG,t(µ) ↪→

⋃
ν∈Wfλ

FlG,t(ν).

Hence (4.6.8) is induced by the distinguished triangle

k!k
!(Z(J∗(λ,k)))→ Z(J∗(λ,k))→ (jt(µ))∗(jt(µ))

∗Z(J∗(λ,k))
[1]−→

provided by the gluing formalism. In particular, we have proved that the first map
in (4.6.6) identifies with the surjection Z(J∗(λ, k)) ↠ grΛµ(Z(J∗(λ,k))). By definition,

the latter map is not killed by the functor GradΛµ . Using Proposition 4.5.4 we deduce
that this map is not killed by the functor H•(FlG,−) either, which finishes the proof.

As seen in the course of the proof of Lemma 4.6.11, there exists a canonical mor-
phism fΛλ : J∗(λ,k)→ (jµ)∗kGrG,µ

[ℓ(t(µ))]. We will denote by

fΛλ : Z(J∗(λ,k))→ JΛ
µ(k)

the inverse image of this map under the isomorphism of Lemma 4.6.11. From the
proof of this lemma we know that fΛλ is a surjective morphism of perverse sheaves,
and moreover that its kernel admits a Wakimoto filtration whose subquotients have
labels in the intersection of the convex hull of Wf · λ with λ+ ZR, and distinct from
µ. In particular, this map induces a canonical isomorphism

(4.6.9) GradΛµ(Z(J∗(λ, k)))
∼−→ k.

This construction can also be phrased in the following terms. We have a morphism
of functors

(jµ)
∗π∗ → (πµ)∗(jt(µ))

∗

(where πµ is the restriction of π to FlG,t(µ)) obtained by adjunction from the nat-
ural morphism π∗ → π∗(jt(µ))∗(jt(µ))

∗ ∼= (π ◦ jt(µ))∗(jt(µ))∗ ∼= (jµ)∗(πµ)∗(jt(µ))
∗.

Lemma 4.6.11 says that applying this morphism to Z(J∗(λ,k)) we obtain an isomor-
phism

(4.6.10) (jµ)
∗J∗(λ, k)

∼−→ (πµ)∗(jt(µ))
∗Z(J∗(λ,k)).

Now the left-hand side has a canonical trivialization (i.e., an isomorphism with
kGrG,µ

[ℓ(t(µ))]). Since πµ is a trivial fibration with fibers isomorphic to an affine

space, and since (jt(µ))
∗Z(J∗(λ, k)) is known to be isomorphic to a constant sheaf

(with stalks k) concentrated in degree −ℓ(t(µ)), we deduce a canonical isomorphism
(jt(µ))

∗Z(J∗(λ,k)) ∼= kFlG,t(µ)
[ℓ(t(µ))]. By adjunction, this isomorphism provides the

morphism fΛλ .
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4.6.4. Highest weight arrows, convolution, and commutativity. — Consider
now two dominant coweights λ1, λ2 ∈ X∨

+, and denote by µ1, µ2 their Wf -translates
in Λ. Recall the morphism

aλ1,λ2
: J∗(λ1,k) ⋆GO J∗(λ2,k)→ J∗(λ1 + λ2,k)

constructed in §1.5.2. Applying Z and using the isomorphism ϕJ∗(λ1,k),J∗(λ2,k) from
Theorem 3.4.1, we deduce a canonical morphism

(4.6.11) Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k))→ Z(J∗(λ1 + λ2,k)).

This map will be used in the proof of the following statement.

Proposition 4.6.12. — The following diagram commutes:

Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k)) Z(J∗(λ2,k)) ⋆I Z(J∗(λ1,k))

JΛ
µ1
(k) ⋆I JΛ

µ2
(k) JΛ

µ1+µ2
(k) JΛ

µ2
(k) ⋆I JΛ

µ1
(k).

fΛλ1
⋆fΛλ2

σJ∗(λ1,k),Z(J∗(λ2,k))

fΛλ2
⋆fΛλ1

∼
Lemma 4.2.7

∼
Lemma 4.2.7

Proof. — For the duration of the proof we set

λ := λ1 + λ2, µ := µ1 + µ2.

Then µ is the unique Wf -translate of λ which belongs to Λ.
The statement claims that two elements in

HomDb
c (FlG,k)(Z(J∗(λ1,k)) ⋆

I Z(J∗(λ2,k)),JΛ
µ(k))

are equal. Now, by definition, the kernel and cokernel of aλ1,λ2 are supported on

GrλG∖GrλG. Hence, by Corollary 4.6.7 (and by exactness of the functor Z), the kernel
and cokernel of (4.6.11) are supported on a closed subset which does not intersect
FlG,t(µ). It follows that aλ1,λ2 and (4.6.11) induce isomorphisms

HomDb
c (FlG,k)(Z(J∗(λ, k)),J

Λ
µ(k))

∼−→
HomDb

c (FlG,k)(Z(J∗(λ1,k)) ⋆
I Z(J∗(λ2,k)),JΛ

µ(k))

and

HomDb
c (GrG,k)

(
J∗(λ, k), (jµ)∗kGrG,µ

[ℓ(t(µ))]
) ∼−→

HomDb
c (GrG,k)

(
J∗(λ1,k) ⋆GO J∗(λ2,k), (jµ)∗kGrG,µ

[ℓ(t(µ))]
)
.

In view of Lemma 4.6.11, it follows that the functor π∗ induces an isomorphism

HomDb
c (FlG,k)

(
Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k)),JΛ

µ(k)
)

∼−→ HomDb
c (GrG,k)

(
J∗(λ1,k) ⋆GO J∗(λ2,k), (jµ)∗kGrG,µ

[ℓ(t(µ))]
)
,

so that to prove the proposition it suffices to prove that the image of our diagram
under the functor π∗ commutes.
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For this, we will break the diagram up into three pieces (two of which will be
identical, modulo switching λ1 and λ2). First we will prove the commutativity of the
diagram
(4.6.12)

π∗
(
Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k))

)
π∗
(
Z(J∗(λ2,k)) ⋆I Z(J∗(λ1,k))

)
π∗Z(J∗(λ,k)),

π∗σJ∗(λ1,k),Z(J∗(λ2,k))

where both diagonal maps are images of (4.6.11) (for the pairs (λ1, λ2) and (λ2, λ1)
respectively) under the functor π∗. By definition the map on the left can be written
as a composition

π∗
(
Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k))

) π∗ϕ−−→
∼

π∗
(
Z(J∗(λ1,k) ⋆GO J∗(λ2,k))

)
π∗Z(aλ1,λ2

)
−−−−−−−−→ π∗Z(J∗(λ, k))

where we write ϕ for ϕJ∗(λ1,k),J∗(λ2,k). The map on the right in (4.6.12) has a similar
description (switching the roles of λ1 and λ2). Now the functor π∗Z(−) is isomorphic
to the identity functor by Lemma 2.5.1. Since, as discussed in §3.5.9, the following
diagram commutes:

π∗
(
Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k))

)
π∗
(
Z(J∗(λ2,k)) ⋆I Z(J∗(λ1,k))

)
π∗Z(J∗(λ1,k) ⋆GO J∗(λ2,k)) π∗Z(J∗(λ2,k) ⋆GO J∗(λ1,k))

J∗(λ1,k) ⋆GO J∗(λ2,k) J∗(λ2,k) ⋆GO J∗(λ1,k),

π∗ϕ

π∗σJ∗(λ1,k),Z(J∗(λ2,k))

π∗ϕ

≀ ≀
σCom
J∗(λ1,k),J∗(λ2,k)

the commutativity of (4.6.12) follows from Corollary 1.5.7.
Now we consider the following diagram:

(4.6.13)

π∗
(
Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k))

)
π∗Z(J∗(λ,k))

π∗(J
Λ
µ1
(k) ⋆I JΛ

µ2
(k)) π∗(J

Λ
µ(k)) (jµ)∗kGrG,µ

[ℓ(t(µ))],

π∗(f
Λ
λ1
⋆fΛλ2

) π∗f
Λ
λ

∼ ∼

where the upper line is induced by (4.6.11). The path in this diagram through the top
right corner is the morphism deduced by adjunction from the composition of natural
morphisms

(jµ)
∗π∗(Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k)))

(jµ)
∗π∗ϕ−−−−−−→ (jµ)

∗π∗(Z(J∗(λ1,k) ⋆GO J∗(λ2,k)))
Lemma 2.5.1−−−−−−−−→

∼
(jµ)

∗(J∗(λ1,k) ⋆GO J∗(λ2,k)) ∼= kGrG,µ
[ℓ(t(µ))].
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On the other hand, we have

π∗(f
Λ
λ1
⋆ fΛλ2

) = π∗(m
′)∗(f

Λ
λ1

⊠̃ fΛλ2
) = m∗ϖ∗(f

Λ
λ1

⊠̃ fΛλ2
)

where ϖ := π ×̃π : GK ×I FlG → GK ×GO GrG. Here fΛλ1
and fΛλ2

are obtained
from appropriate trivializations of (jt(µ1))

∗Z(J∗(λ1,k)) and (jt(µ2))
∗Z(J∗(λ2,k)) re-

spectively. Therefore, fΛλ1
⊠̃ fΛλ2

is deduced from the induced trivialization of the

restriction of Z(J∗(λ1,k)) ⊠̃ Z(J∗(λ2,k)) to FlG,t(µ1) ×̃FlG,t(µ2). (Here we write

FlG,t(µ1) ×̃FlG,t(µ2) for q
−1(FlG,t(µ1))×IFlG,t(µ2); similar notation will be also used for

twisted products over GO .) It is well known that the morphism Grλ1

G ×̃Grλ2

G → GrλG
restricts to an isomorphism on the preimage of GrλG. It follows that if we denote by X

the preimage of GrG,µ, then this morphism restricts to an isomorphism X
∼−→ GrG,µ,

and moreover we have ϖ(FlG,t(µ1) ×̃FlG,t(µ2)) = X. From this we obtain that the

trivialization of Z(J∗(λ1,k)) ⊠̃ Z(J∗(λ2,k)) involved in the description of fΛλ1
⊠̃ fΛλ2

is
obtained from a canonical isomorphism

(jX)∗ϖ∗(Z(J∗(λ1,k)) ⊠̃ Z(J∗(λ2,k)))
∼−→ (ϖµ1,µ2

)∗(jt(µ1) ×̃ jt(µ2))
∗(Z(J∗(λ1,k)) ⊠̃ Z(J∗(λ2,k)))

(where jX : X → GK ×GO GrG is the embedding, and ϖµ1,µ2
is the restriction of ϖ

to FlG,t(µ1) ×̃FlG,t(µ2)), together with the canonical trivialization of the restriction of

ϖ∗(Z(J∗(λ1,k)) ⊠̃ Z(J∗(λ2,k))) ∼= J∗(λ1,k) ⊠̃ J∗(λ2,k)

(see (3.4.4)) to X, as in (4.6.10). We then obtain that the path in (4.6.13) through
the bottom left corner is obtained by adjunction from the composition of natural
morphisms

(jµ)
∗π∗(Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k)))

∼−→ (jµ)
∗m∗ϖ∗(Z(J∗(λ1,k)) ⊠̃ Z(J∗(λ2,k)))

(3.4.4)−−−−→
∼

(jµ)
∗m∗(J∗(λ1,k) ⊠̃ J∗(λ2,k))

= (jµ)
∗(J∗(λ1,k) ⋆GO J∗(λ2,k)) ∼= kGrG,µ

[ℓ(t(µ))].

These two constructions coincide by Lemma 3.4.3, from which we deduce the com-
mutativity of (4.6.13).

Finally, pasting the commutative diagram (4.6.12) with two copies of (4.6.13) (one
for the pair (λ1, λ2), and one for the pair (λ2, λ1)), we obtain the commutativity of
the diagram of the proposition.

Remark 4.6.13. — The arguments in the proof above (see in particular dia-
gram (4.6.13)) show that the following diagram commutes:

Z(J∗(λ1,k)) ⋆I Z(J∗(λ2,k)) Z(J∗(λ1 + λ2,k))

JΛ
µ1
(k) ⋆I JΛ

µ2
(k) JΛ

µ1+µ2
(k).

fΛλ1
⋆fΛλ2

(4.6.11)

fΛλ1+λ2

∼
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4.7. Associated graded of the Wakimoto filtration and convolution

This section is dedicated to the study of the compatibility of the functors grΛλ or

GradΛλ with the convolution bifunctor (and the associated constraints).

4.7.1. Associated graded of a convolution. — A first difficulty that arises in
our study is that the bifunctor ⋆I is not t-exact. The situation is slightly better for
Wakimoto-filtered perverse sheaves, as shown in the following lemma.

Lemma 4.7.1. — If F ,G belong to PervΛI (FlG,k), then the object F ⋆I G is con-
centrated in nonpositive perverse degrees.

Proof. — It suffices to prove the claim when F and G are Wakimoto sheaves, in
which case it follows from Lemma 4.2.7 and Lemma 4.2.1.

Recall the bifunctor ⋆I0 defined in Remark 3.2.2. In terms of this bifunctor,
Lemma 4.7.1 has the following consequence.

Lemma 4.7.2. — For any F in PervΛI (FlG,k), the functors

F ⋆I0 (−) : Perv
Λ
I (FlG,k)→ PervI(FlG,k)

and

(−) ⋆I0 F : PervΛI (FlG,k)→ PervI(FlG,k)
are right exact.

Note also that Lemma 4.2.1 and Lemma 4.2.7 ensure that for λ, λ′ ∈ X∨ and
M,M ′ in Mofk we have

(4.7.1) JΛ
λ (M) ⋆I0 J

Λ
λ′(M ′) ∼= JΛ

λ+λ′

(
M ⊗k M

′).
It is not clear to us whether the perverse sheaf F ⋆I0G admits a Wakimoto filtration

for general F ,G in PervΛI (FlG,k), and we will not be able to go further without
assuming this is the case. Note that this property holds at least in the following cases
(which will be sufficient for our needs):

1. if GradΛλ (F ) is flat over k for any λ ∈ X∨, or if GradΛλ (G ) is flat over k for any
λ ∈ X∨, in which case we have F ⋆I0 G = F ⋆I G (see Proposition 4.7.5 below
for more details);

2. if F = Z(A ) and G = Z(B) for some A , B in PervGO (GrG,k), since in this case

we have an isomorphism ϕ0A ,B : Z(A )⋆I0 Z(B)
∼−→ Z(A ⋆GO

0 B), see Section 3.4.

Remark 4.7.3. — We mentioned in Remark 3.2.2 that the bifunctor ⋆I0 does not

seem to admit an associativity constraint. If F ,G ,H belong to PervΛI (FlG,k), and
if both F ⋆I0 G and G ⋆I0 H admit Wakimoto filtrations, then Lemma 4.7.1 implies
(as for the bifunctor ⋆GO ) that there exists a canonical isomorphism

(F ⋆I0 G ) ⋆I0 H ∼= F ⋆I0 (G ⋆I0 H ).

This allows us to define a monoidal structure on PervΛI (FlG,k) in case k is a field (but

not in the general case, since PervΛI (FlG,k) does not seem to be stable under ⋆I0).
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We fix F ,G in PervΛI (FlG,k) and λ, µ ∈ X∨. Recall the notation F⪯Λλ introduced
in (4.5.8). In the following lemma we consider the morphism

(4.7.2) F⪯Λλ ⋆
I
0 G⪯Λµ → F ⋆I0 G

induced by the embeddings F⪯Λλ ↪→ F and G⪯Λµ ↪→ G .

Lemma 4.7.4. — Assume that F ⋆I0 G admits a Wakimoto filtration. Then the
morphism (4.7.2) factors through (F ⋆I0G )⪯Λλ+µ, and there exists a unique morphism

grΛλ (F ) ⋆I0 gr
Λ
µ(G )→ grΛλ+µ(F ⋆I0 G )

such that the following diagram (where the vertical maps are the natural ones, and
the horizontal maps are induced by the morphisms considered above) commutes:

F⪯Λλ ⋆
I
0 G⪯Λµ (F ⋆I0 G )⪯Λλ+µ

grΛλ (F ) ⋆I0 gr
Λ
µ(G ) grΛλ+µ(F ⋆I0 G ).

Proof. — We consider the composition

(4.7.3) F⪯Λλ ⋆
I
0 G⪯Λµ → F ⋆I0 G ↠ (F ⋆I0 G )/(F ⋆I0 G )⪯Λλ+µ.

Here the right-hand side admits a filtration whose subquotients are of the form
JΛ
ν (Mν) with ν ̸⪯Λ λ+ µ and Mν in Mofk, and by Lemma 4.7.1 we have

HomPervI(FlG,k)(F⪯Λλ ⋆
I
0 G⪯Λµ, (F ⋆I0 G )/(F ⋆I0 G )⪯Λλ+µ)

∼= HomDb
I (FlG,k)(F⪯Λλ ⋆

I G⪯Λµ, (F ⋆I0 G )/(F ⋆I0 G )⪯Λλ+µ).

Now F⪯Λλ ⋆
I G⪯Λµ belongs to the triangulated subcategory of Db

I (FlG,k) generated
by the objects of the form JΛ

η (M) with η ⪯Λ λ+ µ (see Lemma 4.2.7), so that

HomDb
I (FlG,k)(F⪯Λλ ⋆

I G⪯Λµ, (F ⋆I0 G )/(F ⋆I0 G )⪯Λλ+µ) = 0

by Lemma 4.3.1, proving that (4.7.3) vanishes. This implies the first claim of the
lemma.

The proof of the second claim is similar: we observe that we have

HomPervI(FlG,k)(F⪯Λλ ⋆
I
0 G⪯Λµ, gr

Λ
λ+µ(F ⋆I0 G ))

∼= HomDb
I (FlG,k)(F⪯Λλ ⋆

I G⪯Λµ, gr
Λ
λ+µ(F ⋆I0 G ))

and similarly with F⪯Λλ and G⪯Λµ replaced by grΛλ (F ) and grΛµ(G ) respectively, and
that the cones of the maps

F⪯Λλ ⋆
I G⪯Λµ → grΛλ (F ) ⋆I G⪯Λµ

and

grΛλ (F ) ⋆I G⪯Λµ → grΛλ (F ) ⋆I grΛµ(G )

have no nonzero maps to grΛλ+µ(F ⋆I0 G ). Hence the composition

F⪯Λλ ⋆
I
0 G⪯Λµ → (F ⋆I0 G )⪯Λλ+µ → grΛλ+µ(F ⋆I0 G )
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must factor through a (unique) morphism

grΛλ (F ) ⋆I0 gr
Λ
µ(G )→ grΛλ+µ(F ⋆I0 G ),

which finishes the proof.

Taking direct sums of the morphisms provided by Lemma 4.7.4, we obtain for
ν ∈ X∨ a bifunctorial morphism

(4.7.4)
⊕

λ+µ=ν

grΛλ (F ) ⋆I0 gr
Λ
µ(G )→ grΛν (F ⋆I0 G )

for F , G in PervΛI (FlG,k) such that F ⋆I0 G admits a Wakimoto filtration.

Proposition 4.7.5. — Let F ,G in PervΛI (FlG,k). Assume either that GradΛη (F )

is flat over k for any η ∈ X∨, or that GradΛη (G ) is flat over k for any η ∈ X∨. Then

F ⋆I0 G = F ⋆I G , this object admits a Wakimoto filtration, and the morphism (4.7.4)
is an isomorphism for any ν ∈ X∨.

Proof. — Of course the two cases are similar; to fix notation we assume that
GradΛη (F ) is flat over k for any η ∈ X∨. We will proceed by induction on the
length of a Wakimoto filtration of F . So, we consider η ∈ X∨, a flat k-module M ,
and an exact sequence JΛ

η (M) ↪→ F ↠ F ′ where F ′ belongs to PervΛI (FlG,k) and

GradΛξ (F
′) is flat for any ξ, and assume the claim is known for the pair (F ′,G ).

Then applying the functor (−) ⋆I G we obtain a distinguished triangle

(4.7.5) JΛ
η (M) ⋆I G → F ⋆I G → F ′ ⋆I G

[1]−→ .

Here, by assumption the right-hand side is perverse and admits a Wakimoto filtration.
On the other hand, taking a Wakimoto filtration of G and applying the (triangulated)
functor JΛ

η (M) ⋆I (−) we see that the left-hand side also satisfies these properties

(because JΛ
η (M) ⋆I JΛ

ξ (M
′) is a Wakimoto sheaf for any ξ ∈ X∨ and M ′ in Mofk,

see Lemma 4.2.7). We deduce that F ⋆I G is perverse and that (4.7.5) is an exact
sequence of perverse sheaves, which implies in addition that F⋆IG admits a Wakimoto
filtration.

Then, if ν ∈ X∨, by exactness of the functor grΛν (see Remark 4.6.4) we have an
exact sequence

grΛν (J
Λ
η (M) ⋆I G ) ↪→ grΛν (F ⋆I G ) ↠ grΛν (F

′ ⋆I G ).

For any λ ∈ X∨ we also have an exact sequence

grΛλ (J
Λ
η (M)) ↪→ grΛλ (F ) ↠ grΛλ (F

′)

where all terms are of the form JΛ
λ (M

′) withM ′ flat; hence Lemma 4.2.7 ensures that
this exact sequence induces for any µ ∈ X∨ an exact sequence of perverse sheaves

grΛλ (J
Λ
η (M)) ⋆I grΛµ(G ) ↪→ grΛλ (F ) ⋆I grΛµ(G ) ↠ grΛλ (F

′) ⋆I grΛµ(G ).

The invertibility of (4.7.4) for the pair (F ,G ) then follows from that for the pair
(JΛ
η (M),G ) (which is obvious), that for the pair (F ′,G ) (which is true by assump-

tion), and the 5-lemma.
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Remark 4.7.6. — Of course, if k is a field the assumption of Proposition 4.7.5
is always satisfied. In this case, this statement implies that the functor GradΛX∨

considered in §4.7.2 below is a monoidal functor.

Corollary 4.7.7. — For any A ,B in PervGO (GrG,k), the morphism (4.7.4) is an
isomorphism when F = Z(A ) and G = Z(B).

Proof. — Recall that the existence of a Wakimoto filtration on F ⋆I0 G is auto-
matic in this setting, see the remarks preceding Lemma 4.7.4. As in [BR, proof of
Lemma 1.10.10], there exist objects A1,A2 in PervGO (GrG,k) and an exact sequence

A2 → A1 → A → 0

such that H•(GrG,A1) and H•(GrG,A2) are free over k. Then we have an exact
sequence

Z(A2)→ Z(A1)→ Z(A )→ 0,

which induces for any η ∈ X∨ an exact sequence

grΛη (Z(A2))→ grΛη (Z(A1))→ grΛη (F )→ 0,

see Remark 4.6.4, and moreover the first two terms in this sequence are of the form
JΛ
η (M) with M projective (and hence flat), see Proposition 4.5.4.
We consider the commutative diagram⊕

λ+µ=ν gr
Λ
λ

(
Z(A2)

)
⋆I0 gr

Λ
µ(G ) grΛν

(
Z(A2) ⋆

I
0 G
)

⊕
λ+µ=ν gr

Λ
λ

(
Z(A1)

)
⋆I0 gr

Λ
µ(G ) grΛν

(
Z(A1) ⋆

I
0 G
)

⊕
λ+µ=ν gr

Λ
λ (F ) ⋆I0 gr

Λ
µ(G ) grΛν (F ⋆I0 G )

0 0

where each horizontal map is induced by (4.7.4). Here the upper two arrows are
invertible by Proposition 4.7.5, the left column is exact by Lemma 4.7.2, and the
right column is exact by Lemma 4.7.2 again and Remark 4.6.4. We deduce that the
lower horizontal arrow is an isomorphism too, which finishes the proof.

4.7.2. Monoidal structure on GradΛX∨ . — In view of (4.7.1) and the full faith-

fulness of the functor GradΛλ+µ on the image of JΛ
λ+µ (see Proposition 4.2.6(1)), the

map constructed in Lemma 4.7.4 can also be seen as defining a bifunctorial morphism

(4.7.6) GradΛλ (F )⊗k GradΛµ(G )→ GradΛλ+µ(F ⋆I0 G ).

Our goal in this subsection is to give an alternative description of this morphism in
terms of equivariant cohomology.
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First, for any F1,F2 in PervΛI (FlG,k), combining the morphism (4.5.1) with the
morphism induced by the truncation map F1⋆

IF2 → F1⋆
I
0F2 we obtain a canonical

morphism of graded k-modules

(4.7.7) H•(FlG,F1)⊗H•
I (pt;k) H

•
I(FlG,F2)→ H•(FlG,F1 ⋆

I
0 F2).

Now, in the setting of Lemma 4.7.4, in view of Remark 4.5.3 we have

GradΛλ (F ) ∼= H−⟨x−1
Λ (λ),2ρ⟩(FlG,F⪯Λλ),

GradΛµ(G ) ∼= H−⟨x−1
Λ (µ),2ρ⟩(FlG,G⪯Λµ),

GradΛλ+µ(F ⋆I0 G ) ∼= H−⟨x−1
Λ (λ+µ),2ρ⟩(FlG, (F ⋆I0 G )⪯Λλ+µ).

As noted in §4.5.2 (see especially (4.5.9)), the forgetful map

H
−⟨x−1

Λ (µ),2ρ⟩
I (FlG,G⪯Λµ)→ H−⟨x−1

Λ (µ),2ρ⟩(FlG,G⪯Λµ)

is an isomorphism, so that we also have

GradΛµ(G ) ∼= H
−⟨x−1

Λ (µ),2ρ⟩
I (FlG,G⪯Λµ).

Apply (4.7.7) to obtain a canonical morphism

H−⟨x−1
Λ (λ),2ρ⟩(FlG,F⪯Λλ)⊗ H

−⟨x−1
Λ (µ),2ρ⟩

I (FlG,G⪯Λµ)

→ H−⟨x−1
Λ (λ+µ),2ρ⟩(FlG,F⪯Λλ ⋆

I
0 G⪯Λµ).

Combining this with the morphism F⪯Λλ⋆
I
0G⪯Λµ → (F ⋆I0G )⪯Λλ+µ induced by (4.7.2)

we obtain a canonical morphism

H−⟨x−1
Λ (λ),2ρ⟩(FlG,F⪯Λλ)⊗ H

−⟨x−1
Λ (µ),2ρ⟩

I (FlG,G⪯Λµ)

→ H−⟨x−1
Λ (λ+µ),2ρ⟩(FlG, (F ⋆I0 G )⪯Λλ+µ),

which coincides with (4.7.6) under the identifications considered above.
Gathering the morphisms (4.7.6) for all values of λ and µ we obtain, for any F ,G

in PervΛI (FlG,k) such that F ⋆I0G admits a Wakimoto filtration, a canonical morphism
of X∨-graded k-modules

(4.7.8) GradΛX∨(F )⊗k GradΛX∨(G )→ GradΛX∨(F ⋆I0 G ).

From this point of view, Proposition 4.7.5 and Corollary 4.7.7 say that (4.7.8) is an
isomorphism

– if either GradΛX∨(F ) or GradΛX∨(G ) is flat;
– or if F = Z(A ) and G = Z(B) for some A ,B in PervGO (GrG,k).

(In both cases, the fact that F ⋆I0 G admits a Wakimoto filtration is automatic.)

Lemma 4.7.8. — For any F ,G in PervΛI (FlG,k) such that F ⋆I0 G admits a Waki-
moto filtration the following diagram commutes, where in the left column the upper
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arrow is induced by the forgetful map from equivariant cohomology to cohomology and
the middle arrow is the natural map:

H•(FlG,F )⊗k H
•(FlG,G ) GradΛX∨(F )⊗k GradΛX∨(G )

H•(FlG,F )⊗k H
•
I(FlG,G )

H•(FlG,F )⊗H•
I (pt;k) H

•
I(FlG,G )

H•(FlG,F ⋆I0 G ) GradΛX∨(F ⋆I0 G ).

(4.5.6)

∼

(4.7.8)

(4.7.7)

(4.5.6)

∼

Proof. — By Proposition 4.5.6, in this diagram one can replace H•
I(FlG,G ) by⊕

λ∈X∨

H•
I(pt;k)⊗k H

−⟨x−1
Λ (λ),2ρ⟩

I (FlG,G⪯Λλ).

Similarly, by Proposition 4.5.4 and (4.5.4) one can replace H•(FlG,F ) by⊕
λ∈X∨

H−⟨x−1
Λ (λ),2ρ⟩(FlG,F⪯Λλ).

Then the statement exactly becomes the fact that the construction given at the
beginning of this subsection corresponds to (4.7.6) under the identification given
by (4.5.6).

4.8. Comparison of the functors Grad and F

Consider the functor

GradΛX∨ ◦ Z : PervGO (GrG,k)→ Mofk

(where we omit the forgetful functor from MofX
∨

k to Mofk.) Combining (2.5.6) and
Proposition 4.5.4 we obtain a canonical isomorphism

(4.8.1) GradΛX∨ ◦ Z ∼−→ F,

where the right-hand side is the fiber functor for the Satake category (see §1.3.2).
Our goal in this section is to show that several structures defined independently on
the left- and right-hand sides of (4.8.1) are intertwined by this isomorphism.

4.8.1. Grading. — We first consider the gradings on the left- and right-hand sides
of (4.8.1).

Lemma 4.8.1. — For any A in PervGO (GrG,k) and λ ∈ X∨, the isomor-
phism (4.8.1) induces an isomorphism

GradΛxΛw◦(λ) ◦ Z(A )
∼−→ Fλ(A ).
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Proof. — The isomorphism under consideration is the composition

(4.8.2) GradΛX∨ ◦ Z(A )
∼−→ H•(GrG,Z(A ))

∼−→ F(A )

where the first isomorphism is provided by Proposition 4.5.4, and the second one
by (2.5.6). Recall (see §1.3.2, and in particular Remark 1.3.7) that the submodule
Fλ(A ) ⊂ F(A ) is the image of the canonical (injective) morphism

H
⟨λ,2ρ⟩
(UxΛw◦ )K ·LxΛw◦(λ)

(GrG,A )→ H⟨λ,2ρ⟩(GrG,A ).

By base change, under the second isomorphism in (4.8.2), this subspace corresponds
to the image of the canonical (injective) morphism

H
⟨λ,2ρ⟩
π−1((UxΛw◦ )K ·LxΛw◦(λ))

(FlG,Z(A ))→ H⟨λ,2ρ⟩(FlG,Z(A )).

On the other hand, setting Ω := {µ ∈ X∨ | µ ⪯Λ xΛw◦(λ)}, GradΛxΛw◦(λ) ◦ Z(A )

corresponds (under the first isomorphism in (4.8.2)) to the image of the canonical
(injective) morphism

H⟨λ,2ρ⟩(FlG,Z(A )Ω)→ H⟨λ,2ρ⟩(FlG,Z(A )).

To compare these two submodules, we consider the commutative diagram

H
⟨λ,2ρ⟩
π−1((UxΛw◦ )K ·LxΛw◦(λ))

(FlG,Z(A )Ω) H
⟨λ,2ρ⟩
π−1((UxΛw◦ )K ·LxΛw◦(λ))

(FlG,Z(A ))

H⟨λ,2ρ⟩(FlG,Z(A )Ω) H⟨λ,2ρ⟩(FlG,Z(A )),

where all the maps are the natural ones. In order to prove that our two submodules
coincide, it suffices to prove that the two maps with domain the top left corner are
surjective. These morphisms are part of long exact sequences, whose next terms are

H
⟨λ,2ρ⟩
π−1((UxΛw◦ )K ·LxΛw◦(λ))

(FlG,Z(A )/Z(A )Ω)

and

H
⟨λ,2ρ⟩
FlG∖π−1((UxΛw◦ )K ·LxΛw◦(λ))

(FlG,Z(A )Ω)

respectively. It therefore suffices to prove that these k-modules vanish.
If µ ∈ X∨ and SΛ

t(µ) ⊂ π−1((UxΛw◦)K · LxΛw◦(λ)) then (UxΛw◦)K · Lµ ⊂
(UxΛw◦)K · LxΛw◦(λ), so that (as in Remark 4.5.11) we have µ ∈ Ω. Using the
formula in Remark 4.5.11 we deduce that the first module vanishes. On the
other hand, if µ ∈ Ω and ⟨x−1

Λ (µ), 2ρ⟩ = −⟨λ, 2ρ⟩ then µ = xΛw◦(λ), so that

SΛ
t(µ) ̸⊂ FlG ∖ π−1((UxΛw◦)K · LxΛw◦(λ)). Hence the same formula implies that our

second module also vanishes, which finishes the proof.
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4.8.2. Monoidal structures. — Now we turn to monoidal structures. Namely,
the left-hand side in (4.8.1) admits a monoidal structure, obtained by combining the
constructions of §4.7.2 with (3.4.3). On the other hand, the right-hand side also admits
a monoidal structure (see §1.3.4) for which we have given an alternative description
in §3.3.3 (and also in §3.3.4 under some assumption on k). These structures are
compatible in the sense of the next statement.

Proposition 4.8.2. — The isomorphism (4.8.1) is an isomorphism of monoidal
functors.

Remark 4.8.3. — Proposition 4.8.2 implies in particular that the functor GradΛX∨ ◦
Z : PervGO (GrG,k)→ Mofk is a fiber functor (i.e. a faithful k-linear monoidal functor
which intertwines the relevant commutativity constraints). This fact can be proved

directly; see e.g. [AB, §§3.6.5–3.6.6] for the fact that GradΛX∨ ◦Z intertwines the com-
mutativity constraints. By the yoga of Tannakian categories (see in particular [SR,
§II.3.2.3.2 and §II.3.4]), this implies that this functor is defined by a principal G∨

k -
bundle. If k is an algebraically closed field then this principal bundle is automatically
trivial, so that one can deduce a monoidal isomorphism between GradΛX∨ ◦ Z and F.
In the general setting, however, proving Proposition 4.8.2 is the only way we know to
prove the triviality of this principal bundle.

The proof of Proposition 4.8.2 will require a few preliminary steps. We begin with
the following lemma, which should be compared with Remark 1.3.10.

Lemma 4.8.4. — Let A ∈ PervGO (GrG,k) and F ∈ PervΛI (FlG,k), and assume

either that F(A ) is flat over k, or that GradΛX∨(F ) is flat over k. Then the complex
A ⊠Lk F is perverse. As a consequence, the complex Z(A ) ⋆I F is perverse.

Proof. — Of course it is enough to prove the claim in the case F = JΛ
λ (M) for some

λ ∈ X∨ and M ∈ Modk (assuming that F(A ) is flat in the first case, and that M
is flat in the second case). In this setting, in view of Remark 4.2.2, to prove the
first claim it suffices to prove that A ⊗Lk M is perverse. However, in the first case,

identifying complexes on GrG with complexes on GrG×GrG supported on GrG×Gr0G,
this property is a special case of the statement recalled in Remark 1.3.10. And in the
second case it is obvious.

The second claim follows from the first one, in view of Corollary 3.2.5.

In view of the definition of our two monoidal structures, in order to prove Propo-
sition 4.8.2, we need to prove that for any A ,B in PervGO (GrG,k) the following

diagram commutes (where, for brevity, we write Grad for GradΛX∨):

Grad(Z(A ⋆
GO
0 B)) H•(FlG,Z(A ⋆

GO
0 B)) F(A ⋆

GO
0 B)

Grad(Z(A ) ⋆I0 Z(B))
H•(GrG ×GrG,

pH 0(A ⊠L B))

Grad(Z(A ))⊗Grad(Z(B)) H•(FlG,Z(A ))⊗ H•(FlG,Z(B)) F(A )⊗ F(B).

(3.4.3)

(4.5.6) (2.5.6)

(3.3.3)

(4.5.6)

(4.7.8)

(2.5.6)
(1.3.7)
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Here, every map is an isomorphism. By the same arguments as in the proof of
Corollary 4.7.7, one can assume that A and B are such that F(A ) and F(B) are

k-flat, which we do from now on. (In this case the bifunctors ⋆GO
0 and ⋆I0 can be

replaced by ⋆GO and ⋆I respectively, and the 0-th perverse cohomology functor can
be omitted; see Remark 1.3.10, Corollary 3.3.3 and Lemma 4.8.4.)

We need two additional lemmas before we can prove the commutativity of the
diagram above.

Lemma 4.8.5. — Let A ∈ PervGO (GrG,k), and assume that F(A ) is flat over k.
For any F in PervΛI (FlG,k), the following diagram commutes:

Grad(Z(A ) ⋆I F ) H•(FlG,Z(A ) ⋆I F )
H•(GrG × FlG,

A ⊠L F )

Grad(Z(A ))⊗Grad(F ) H•(FlG,Z(A ))⊗k H
•(FlG,F ) F(A )⊗k H

•(FlG,F )

(4.5.6) (3.2.7)

(4.7.8)

(4.5.6) (2.5.6)

(3.2.7)

Note that both A ⊠Lk F and Z(A ) ⋆I F are perverse by Lemma 4.8.4.

Proof. — Let us enlarge the diagram by inserting two terms involving the equivariant
cohomology groups H•

I(FlG,F ):

Grad(Z(A ) ⋆I F ) H•(FlG,Z(A ) ⋆I F )
H•(GrG × FlG,

A ⊠L F )

H•(FlG,Z(A ))⊗H•
I
(pt;k) H

•
I(FlG,F )

H•(FlG,Z(A ))⊗k H
•
I(FlG,F )

Grad(Z(A ))⊗Grad(F ) H•(FlG,Z(A ))⊗k H
•(FlG,F ) F(A )⊗k H

•(FlG,F )

(4.5.6) (3.2.7)

(3.2.11)

(∗)

(4.7.8)

(4.5.6) (2.5.6)

(3.2.7) or (3.2.10)

The left half of this enlarged diagram commutes by Lemma 4.7.8, and the right half
commutes by Lemma 3.2.8. The arrow marked (∗) is surjective by Lemma 4.5.5, and
all maps in the outer rectangle (i.e., all maps in the statement of the lemma) are
isomorphisms. We conclude that the outer rectangle commutes.

Lemma 4.8.6. — Let A ,B ∈ PervGO (GrG,k) be such that F(A ) and F(B) are flat
over k. Then the following diagram commutes:

H•(FlG,Z(A ) ⋆I Z(B)) H•(A ⊠Lk Z(B)) F(A )⊗k H
•(FlG,Z(B))

F(A ⋆GO B) H•(A ⊠Lk B) F(A )⊗k F(B).

(3.2.7)

(3.4.5)

(3.2.7)

(2.5.6)

(3.3.3) (1.3.7)
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Proof. — We have

(id× π)∗(A
L
⊠k Z(B)) ∼= A

L
⊠k π∗Z(B) ∼= A

L
⊠k B,

where the second isomorphism uses Lemma 2.5.1. This isomorphism allows us to
define a vertical arrow in the middle column of our diagram. With this additional
arrow, it is easily seen that the right part of the diagram commutes. The left part of
the diagram also commutes by Remark 9.1.5(1), so that the proof is complete.

Proof of Proposition 4.8.2. — The desired commutative diagram can be assembled
from Lemmas 3.4.3, 4.8.5, and 4.8.6, as follows:

Grad(Z(A ⋆
GO
0 B)) H•(FlG,Z(A ⋆

GO
0 B)) F(A ⋆GO B)

Grad(Z(A ) ⋆I0 Z(B)) H•(FlG,Z(A ) ⋆I Z(B)) H•(A ⊠L B)

H•(A ⊠L Z(B))

F(A )⊗k H
•(FlG,Z(B))

Grad(Z(A ))⊗Grad(Z(B)) H•(FlG,Z(A ))⊗ H•(FlG,Z(B)) F(A )⊗ F(B).

(3.4.3)

(4.5.6)

(3.4.3)

(2.5.6)

(3.3.3)

(4.5.6)

(3.2.7)

(3.4.5)

Lemma 3.4.3

Lemma 4.8.6

(3.2.7)

(2.5.6)

(4.5.6)

(4.7.8) Lemma 4.8.5

(2.5.6)

(2.5.6)

(1.3.7)

Here, the unlabeled square in the upper left-hand corner commutes by the natural-
ity of (4.5.6), and the unlabeled triangle in the bottom right corner commutes by
construction.



CHAPTER 5

COMBINATORIAL ASPECTS AND VARIANT FOR
ÉTALE SHEAVES

One of the original motivations for defining and studying central sheaves was the
desire to “categorify” a description of the center of the affine Hecke algebra due to
Bernstein. In this chapter we recall this description, and explain to what extent it
is categorified by Z. To make full sense of this idea one needs to use mixed perverse
sheaves rather than ordinary perverse sheaves; in particular one should work in the
étale setting rather than the “classical” setting we have opted for so far. This variant
is considered in §5.3.1; it will also play a major role in Part II.

5.1. Bernstein’s description of the center of the affine Hecke algebra

5.1.1. Bernstein elements in the affine Hecke algebra. — This section builds
on the notions introduced in §4.1.1. The affine Hecke algebra associated with G is
the unique Z[v, v−1]-algebra H with a basis (Hw : w ∈W ) which satisfies

(Hs + v)(Hs − v−1) = 0 if s ∈ S
and

HwHy = Hwy if ℓ(wy) = ℓ(w) + ℓ(y).

(Our notational conventions are those of Soergel [So], which differ slightly from those
of Kazhdan–Lusztig [KL3].) Using these rules it is not difficult to check that each
element Hw (w ∈ W ) is invertible in H. It is clear also that if we consider Z as
a Z[v, v−1]-module with v acting as the identity, then we have a canonical algebra
isomorphism

(5.1.1) Z⊗Z[v,v−1] H
∼−→ Z[W ].

We will also denote by Hf the Z[v, v−1]-subalgebra of H spanned by the elements
(Hw : w ∈ Wf). This subalgebra identifies with the Hecke algebra of the Coxeter
system (Wf , Sf).

As in §4.1.1 we fix a closed Weyl chamber, and denote by Λ its intersection with
X∨. For λ ∈ X∨, we choose some µ ∈ Λλ, and set

θΛλ := (−1)⟨λ,2ρ⟩ ·Ht(µ) ·H−1
t(µ−λ).
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These elements were introduced (in the special case when Λ is the dominant Weyl
chamber) by Bernstein. The proofs of their main properties (some of which are
reproduced below) first appeared in [Lu1].

Lemma 5.1.1. — For any λ ∈ X∨, the element θΛλ does not depend on the choice
of µ ∈ Λλ. Moreover, for λ, λ′ ∈ X∨ we have

θΛλ+λ′ = θΛλ · θΛλ′ .

Proof. — Let λ ∈ X∨ and µ1, µ2 ∈ Λλ. Then in view of Lemma 4.1.2(1) we have

Ht(µ1−λ)Ht(µ2−λ) = Ht(µ1+µ2−2λ) = Ht(µ2−λ)Ht(µ1−λ).

Similarly we have

Ht(µ1)Ht(µ2−λ) = Ht(µ2)Ht(µ1−λ).

Multiplying on the right by H−1
t(µ1−λ)H

−1
t(µ2−λ) = H−1

t(µ2−λ)H
−1
t(µ1−λ), we deduce that θ

Λ
λ

indeed does not depend on the choice of µ.
Similarly, for λ, λ′ ∈ X∨, choose µ ∈ Λλ and µ′ ∈ Λλ′ , and observe that

Ht(µ)H
−1
t(µ−λ)Ht(µ′)H

−1
t(µ′−λ′) =

Ht(µ)Ht(µ′)H
−1
t(µ−λ)H

−1
t(µ′−λ′) = Ht(µ+µ′) ·H−1

t(µ+µ′−λ−λ′),

which proves that θΛλ θ
Λ
λ′ = θΛλ+λ′ since µ+ µ′ ∈ Λλ+λ′ .

Example 5.1.2. — In case G = PGL(2), we have an identification X∨ = Z, under
which 1 ∈ Z corresponds to the coweight

t 7→
[
t 0
0 1

]
.

If B is chosen as the Borel subgroup of lower triangular matrices, then under this
identification we have X∨

+ = Z≥0. The set S has two elements: the “finite” simple re-
flection s, which belongs toWf , and the “affine” simple reflection s◦. These reflections
satisfy s◦s = t(2). We also have Ω = {e, ω}, where ω := t(1)s, and ωsω = s◦.

If Λ corresponds to the dominant Weyl chamber, then we have:

θΛ1 = −Hωs, θΛ−1 = −Hsω + (v−1 − v)Hω,

θΛ2 = Hs◦s, θΛ−2 = Hss◦ + (v − v−1)Hs + (v − v−1)Hs◦ + (v2 + v−2 − 2)He.

If Λ corresponds to the antidominant Weyl chamber, then we have

θΛ1 = −Hωs + (v−1 − v)Hω, θΛ−1 = −Hsω,

θΛ2 = Hs◦s + (v − v−1)Hs + (v − v−1)Hs◦ + (v2 + v−2 − 2)He, θΛ−2 = Hss◦ .

For the proof of the following lemma, we refer to [Lu1, Lemma 7.1].

Lemma 5.1.3. — In the special case Λ = X∨
+, for any λ ∈ X∨ and s ∈ S ∩Wf we

have

Hs · (θ
X∨

+

λ + θ
X∨

+

s(λ)) = (θ
X∨

+

λ + θ
X∨

+

s(λ)) ·Hs.
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Once this lemma is proved, one obtains that for any Wf -orbit o ⊂ X∨, the element∑
λ∈o θ

X∨
+

λ commutes with all elements in Hf .

The elements (θΛλ : λ ∈ X∨) depend on the choice of Λ, as shown in Example 5.1.2.
However, their Wf -invariant linear combinations do not depend on this choice, as
shown in the following lemma.

Lemma 5.1.4. — For any Wf-orbit o ⊂ X∨, the element∑
λ∈o

θΛλ

is independent of Λ.

Proof. — We will first prove that for any simple reflection s ∈ S ∩Wf , any Λ and
any λ ∈ X∨ we have

θsΛsλ =

{
Hs · θΛλ ·H−1

s if ℓ(sxΛ) > ℓ(xΛ);

H−1
s · θΛλ ·Hs otherwise.

Here xsΛ = sxΛ, so the two cases are equivalent upon replacing Λ by sΛ.
So, we fix Λ and s as above, and assume that ℓ(sxΛ) > ℓ(xΛ). Let α be the simple

root such that s = sα. Then, for any µ ∈ Λ, we have ⟨µ, α⟩ ≥ 0, so that in view
of (4.1.1) we have

(5.1.2) ℓ(st(µ)) = ℓ(t(µ)) + 1.

We then consider λ ∈ X∨, and µ ∈ Λ such that µ− λ ∈ Λ, so that

θΛλ = (−1)⟨λ,2ρ⟩ ·Ht(µ) ·H−1
t(µ−λ).

We have

sµ ∈ sΛ, sµ− sλ ∈ sΛ, (−1)⟨sλ,2ρ⟩ = (−1)⟨λ,2ρ⟩,
so

θsΛsλ = (−1)⟨λ,2ρ⟩ ·Ht(sµ) ·H−1
t(sµ−sλ).

Now as observed above we have xsΛ = sxΛ, and using (5.1.2) we have

HsHt(µ) = Hst(µ) = Ht(sµ)s = Ht(sµ)Hs

since ℓ(t(sµ)) = ℓ(t(µ)), see (4.1.5). Similarly we have

HsHt(µ−λ) = Ht(sµ−sλ)Hs,

from which we obtain that

θsΛsλ = (−1)⟨λ,2ρ⟩ · (HsHt(µ)H
−1
s ) · (HsHt(µ−λ)H

−1
s )−1 = Hsθ

Λ
λH

−1
s ,

as desired.
We now prove by induction on ℓ(xΛ) that for any Wf -orbit o ⊂ X∨ we have∑

λ∈o

θΛλ =
∑
λ∈o

θ
X∨

+

λ ,
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which will finish the proof. If ℓ(xΛ) = 0 then Λ = X∨
+, and there is nothing to prove.

Assume now that ℓ(xΛ) > 0, and let s ∈ S ∩Wf be such that ℓ(sxΛ) < ℓ(xΛ). We
have sxΛ = xsΛ, so that by induction we have∑

λ∈o

θsΛλ =
∑
λ∈o

θ
X∨

+

λ .

We deduce that∑
λ∈o

θΛλ = Hs ·

(∑
λ∈o

θsΛsλ

)
·H−1

s = Hs ·

(∑
λ∈o

θ
X∨

+

λ

)
·H−1

s =
∑
λ∈o

θ
X∨

+

λ

since
∑
λ∈o θ

X∨
+

λ commutes with Hs by Lemma 5.1.3.

5.1.2. The center of the affine Hecke algebra. — We now denote by BΛ the
Z[v, v−1]-subalgebra of H spanned by the elements (θΛλ : λ ∈ X∨). The following

statement, due to Bernstein(1) (see e.g. [Lu1]), summarizes the main properties of
this subalgebra.

Theorem 5.1.5. — 1. Multiplication induces isomorphisms of Z[v, v−1]-modules

BΛ ⊗Z[v,v−1] Hf
∼−→ H and Hf ⊗Z[v,v−1] BΛ

∼−→ H.

2. The elements (θΛλ : λ ∈ X∨) are linearly independent; therefore the assignment
λ 7→ θΛλ extends to a Z[v, v−1]-algebra isomorphism

θΛ : Z[v, v−1][X∨]
∼−→ BΛ.

3. The isomorphism θΛ restricts to an isomorphism

Z[v, v−1][X∨]Wf
∼−→ Z(H),

where on the left-hand side Wf acts on Z[v, v−1][X∨] via its action on X∨, and
the right-hand side denotes the center of H.

Consider now the trivial module triv for Hf , i.e. the module equal to Z[v, v−1],
with the action such that Hs acts by multiplication by v−1 for s ∈ Sf . The spherical
(left) module for H is the induced module

Msph := H⊗Hf
triv.

We have a canonical surjective morphism H → Msph induced by the action on the
element 1⊗ 1. Theorem 5.1.5(1) implies that this morphism induces an isomorphism

of BΛ-modules BΛ ∼−→ Msph, and then Theorem 5.1.5(3) says in particular that the
restriction of this map to Z(H) is injective. In other words, a central element in H is
uniquely determined by its image inMsph.

(1)As noted above, in [Lu1] only the case Λ = X∨
+ is considered; the general case however follows

using Lemma 5.1.4 and its proof.
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5.1.3. Relation with Kazhdan–Lusztig combinatorics. — Recall that the
Kazhdan–Lusztig involution of H is the unique Z-algebra involution sending v to v−1

and Hw to (Hw−1)−1 for any w ∈ W . Then, as proved in [KL1] (see also [So]), for
any w ∈ W there exists a unique element Hw stable under the Kazhdan–Lusztig
involution and which belongs to

Hw +
∑
y∈W

vZ[v]Hy.

(It is a standard fact that in fact Hw ∈
∑
y<w vZ[v]Hy; but this property is not

needed for the characterization above.) Moreover, the collection (Hw : w ∈ W ) is a
Z[v, v−1]-basis of H, called the Kazhdan–Lusztig basis.

Let (as in §1.5.1) w◦ ∈Wf be the longest element. Then it is well known that

Hw◦
=
∑
w∈Wf

vℓ(w◦)−ℓ(w)Hw,

see e.g. [So, Proposition 2.9]. This element satisfies Hs · Hw◦
= v−1Hw◦

for any
s ∈ Sf . Therefore, there exists a (unique) morphism of H-modules

ζ :Msph → H
sending 1⊗1 to Hw◦

. It is not difficult to check that this morphism is injective, which

allows us to regardMsph as a sub-H-module of the regular module H.
Now, consider the Langlands dual complex reductive group G∨

C . For λ ∈ X∨
+,

one can consider the simple G∨
C-module LC(λ) with highest weight λ. For µ ∈ X∨,

the dimension of the µ-weight space of this representation will be denoted dµ(λ).
(These dimensions have been the subject of intense study; they can be expressed
combinatorially, e.g. via the Weyl character formula or via the Kostant formula for
weight multiplicities; see [Hu1, §24] for details.) The following result is due to Lusztig
(see [Lu1, Theorem 6.12 and Proposition 8.6]).

Theorem 5.1.6. — For any λ ∈ X∨
+, if nλ is the longest element in the double coset

Wft(λ)Wf we have

Hnλ
= (−1)ℓ(nλ)−ℓ(w◦) ·Hw◦

·

 ∑
µ∈X∨

dµ(λ) · θΛµ

 .

Example 5.1.7. — Continuing with the notation of Example 5.1.2, we have n1 =
ωs◦s and n2 = ss◦s. In these cases the formula of Theorem 5.1.6 becomes

Hωs◦s = −Hs ·
(
−Hωs −Hsω + (v−1 − v)Hω

)
and

Hss◦s
= Hs ·

(
Hs◦s +He +Hss◦ + (v − v−1)Hs + (v − v−1)Hs◦ + (v2 + v−2 − 2)He

)
.

These formulas can be checked directly using the fact that

Hωs◦s
= Hωs◦s + vHωs◦ + vHωs + v2Hω

and
Hss◦s

= Hss◦s + vHss◦ + vHs◦s + v2Hs + v2Hs◦ + v3He.
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5.2. Combinatorics of central sheaves

In this section we assume that k is a field.

5.2.1. Description of the Grothendieck group of Db
I (FlG,k). — Recall that

the category Db
I (FlG,k) has a natural monoidal structure, with monoidal product

⋆I . As a consequence, its Grothendieck group [Db
I (FlG,k)] acquires a ring structure.

Recall also that all simple perverse sheaves in Db
I (FlG,k) are stable under Verdier

duality; it follows that this functor induces the identity on [Db
I (FlG,k)], and hence in

particular that

(5.2.1) [∆w(k)] = [∇w(k)]
for any w ∈W .

The reason why the combinatorics of the affine Hecke algebra can be used to
describe some aspects of the study of Db

I (FlG,k) is provided by the following standard
result.

Lemma 5.2.1. — There exists a canonical algebra isomorphism

(5.2.2) Z⊗Z[v,v−1] H
∼−→ [Db

I (FlG,k)]

such that the image of (−1)ℓ(w) · (1⊗Hw) is the class of ∇w(k).

Proof. — Recall that the left-hand side identifies with Z[W ], see (5.1.1). We define a
map from Z[W ] to [Db

I (FlG,k)] by sending w to (−1)ℓ(w) · [∇w(k)]. It is well known
(and easy to check) that the objects (∇w(k) : w ∈ W ) generate Db

I (FlG,k) as a
triangulated category, so that this map is surjective. On the other hand, consider the
set of maps

φw : [Db
I (FlG,k)]→ Z given by φw([F ]) =

∑
n∈Z

(−1)n dimk H
n(FlG,w, j

!
wF )

(where jw : FlG,w ↪→ FlG is the embedding, as in §4.1.2). These maps satisfy

φw([∇x(k)]) = (−1)ℓ(w) · δx,w,
which implies that the classes ([∇w(k)] : w ∈W ) are linearly independent. Hence our
map is injective, and thus an isomorphism of Z-modules.

It remains to check that our map is an algebra homomorphism, i.e., that

(−1)ℓ(w1)+ℓ(w2)[∇w1
(k)][∇w2

(k)] = (−1)ℓ(w1w2)[∇w1w2
(k)]

for any w1, w2 ∈ W . By induction on the length of w2, one can reduce to the
cases where w2 ∈ Ω or w2 ∈ S. If w2 ∈ Ω, or if w2 ∈ S and ℓ(w1w2) = ℓ(w1) +
1, then the claim follows from Lemma 4.1.4. The remaining case is that in which
w2 ∈ S and ℓ(w1w2) = ℓ(w1) − 1. In this case, by the case treated above we have
(−1)ℓ(w1w2)+1[∇w1w2

(k)][∇w2
(k)] = (−1)ℓ(w1)[∇w1

(k)], so using (5.2.1), we obtain

(−1)ℓ(w1)+ℓ(w2)[∇w1(k)][∇w2(k)] = (−1)ℓ(w1w2)[∇w1w2(k)][∇w2(k)][∆w2(k)]

= (−1)ℓ(w1w2)[∇w1w2
(k)],

where the last equality again follows from Lemma 4.1.4.
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In §5.1.2 we introduced the H-module Msph. The same arguments as for
Lemma 5.2.1 prove the following.

Lemma 5.2.2. — There exists a unique isomorphism of Z-modules

(5.2.3) Z⊗Z[v,v−1]Msph ∼−→ [Db
I (GrG,k)]

such that the following diagram commutes (where the left vertical arrow is induced by
the canonical map H →Msph):

Z⊗Z[v,v−1] H [Db
I (FlG,k)]

Z⊗Z[v,v−1]Msph [Db
I (GrG,k)].

(5.2.2)

[π∗]

(5.2.3)

Moreover this isomorphism intertwines the action of Z ⊗Z[v,v−1] H on Z ⊗Z[v,v−1]

Msph and the action of [Db
I (FlG,k)] on [Db

I (GrG,k)] by convolution, via the isomor-
phism (5.2.2).

The functor

π∗ : Db
I (GrG,k)→ Db

I (FlG,k)
intertwines the actions of Db

I (FlG,k) on Db
I (GrG,k) and Db

I (FlG,k) by convolution.
Therefore, the induced map

[π∗] : [Db
I (GrG,k)]→ [Db

I (FlG,k)]

is a homomorphism of [Db
I (FlG,k)]-modules. Since this map sends the skyscraper

sheaf at the origin of GrG to kFlG,w◦
, whose class has preimage 1⊗Hw◦

under (5.2.2),

it follows that the following diagram commutes, where ζ is as in §5.1.3:

(5.2.4)

Z⊗Z[v,v−1] H [Db
I (FlG,k)]

Z⊗Z[v,v−1]Msph [Db
I (GrG,k)].

(5.2.2)

(5.2.3)

Z⊗ζ [π∗]

Recall from §4.1.2 that for w ∈ W we denote by IC I
w the intermediate extension

of the constant sheaf along jw, i.e. the image of the unique (up to scalar) nonzero
morphism ∆w(k) → ∇w(k). Below we will also use the following result, due to
Kazhdan–Lusztig [KL2] (see also [Sp1]).

Theorem 5.2.3. — Assume that char(k) = 0. Then, for any w ∈ W , the isomor-
phism (5.2.2) sends (−1)ℓ(w) · (1⊗Hw) to [IC I

w].

Remark 5.2.4. — In the notation of [KL1], the basis (Hw : w ∈ W ) considered
above is denoted by (C ′

w : w ∈ W ). In [KL1] the authors also consider another
“canonical” basis, denoted (Cw : w ∈ W ), which differs from the previous one by
the replacement of v by v−1 (see also [So, Theorem 2.7 and Remark 2.8]). The
elements Cw can also be related to perverse sheaves via the isomorphism (5.2.2):
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they correspond up to sign to the tilting objects in the category of I-constructible
perverse sheaves on FlG. For more on this description, see [Yun].

5.2.2. Classes of central sheaves. — We can now identify the classes of central
sheaves in the Grothendieck group.

Proposition 5.2.5. — For any F in PervGO (GrG,k), and for any choice of Λ, the
preimage under the isomorphism (5.2.2) of the class [Z(F )] is

1⊗

( ∑
λ∈X∨

dim(S(F )λ) · θΛλ

)
,

and this element lies in the center of Z⊗Z[v,v−1] H.

Proof. — From the definition and (4.5.3) we see that the isomorphism of Lemma 5.2.1

sends 1 ⊗ θΛλ to [JΛ
λ (k)], for any λ ∈ X∨. (Note that here we have (−1)⟨x

−1
Λ (λ),2ρ⟩ =

(−1)⟨λ,2ρ⟩ for any λ.) The formula for [Z(F )] then follows from Theorem 4.4.5 and
Lemma 4.8.1, since dim(S(F )w◦x

−1
Λ (λ)) = dim(S(F )λ) for any λ ∈ X∨. The last

assertion in the proposition follows from Theorem 5.1.5.

Remark 5.2.6. — Assume that F is supported on a connected component of GrG.
Then all the Wakimoto sheaves JΛ

λ (k) appearing in a Wakimoto filtration of Z(F ) are
supported on the same connected component of FlG. If ω ∈ Ω is the unique element
such that FlG,ω is in this component, then in view of Remark 4.2.4 the simple perverse
sheaf IC I

ω is a composition factor of JΛ
λ (k) with multiplicity 1 for any λ ∈ X∨ such

that S(F )λ ̸= 0. Hence Proposition 5.2.5 implies that

[Z(F ) : IC I
ω ] = dim

(
S(F )

)
.

This provides an extension for general coefficients of [GH, Corollary 1.2].

Since π∗◦Z = id (see Lemma 2.5.1), Proposition 5.2.5 also allows us to describe the
classes of the objects of PervGO (GrG,k) in terms of the isomorphism of Lemma 5.2.2.

Corollary 5.2.7. — For any F in PervGO (GrG,k), and for any choice of Λ, the
preimage under the isomorphism (5.2.3) of the class [F ] is

1⊗

( ∑
λ∈X∨

dim(S(F )λ) · θΛλ ⊗ 1

)
.

Using the commutative diagram (5.2.4), from this corollary we obtain that for any
F in PervGO (GrG,k) the preimage under (5.2.2) of the class [π∗F ] is

(5.2.5) 1⊗

( ∑
λ∈X∨

dim(S(F )λ) · θΛλ

)
·Hw◦

= 1⊗Hw◦
·

( ∑
λ∈X∨

dim(S(F )λ) · θΛλ

)
.

Assume now that k = C and that F is simple, i.e. that F = J!∗(λ,C) for some
λ ∈ X∨

+. Then S(F ) = LC(λ), and since π is a smooth morphism we have π∗F ∼=
IC I

nλ
[−ℓ(w◦)], see [BBDG, §§4.2.5–4.2.6] or [Ac3, Corollary 3.6.9]. In view of The-

orem 5.2.3, this implies that the preimage under (5.2.2) of [π∗F ] is (−1)ℓ(nλ)−ℓ(w◦) ·
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Hnλ
. Comparing with (5.2.5), this provides a geometric proof of the specialization at

v = 1 of the formula in Theorem 5.1.6.

5.3. Combinatorics of mixed central sheaves

The formulas considered in §5.2.2 have the drawback of only involving the special-
izations of H andMsph at v = 1. In order to obtain formulas in H orMsph one needs
to use mixed Qℓ-sheaves over versions of GrG and FlG over a finite field. One of our
goals in this chapter is to explain these formulas. (These results will be required in
a technical proof in Chapter 6.) As preparation, we first explain how to make sense
of variants of the results of Chapters 2 and 3 for étale sheaves (for various choices of
coefficients). These variants will play an important role in Chapters 6 and 8.

5.3.1. Étale central sheaves. — We consider an algebraically closed field F of
characteristic p > 0, and a connected reductive algebraic group G over F, with a
choice of Borel subgroup B ⊂ G and of maximal torus T contained in B. Then one
can consider the affine Grassmannian GrG and the affine flag variety FlG associated
with G. All the ind-schemes considered in Chapter 2 have obvious counterparts over
F, which will be denoted similarly, and all the properties proved in that chapter remain
true in this setting. Thus, if k is one of the coefficient rings considered in §9.5.1, one
can consider the constructible derived categories Db

c (GrG,k) and Db
c (FlG,k) of étale

k-sheaves, and the “central” functor

Z : Db
c (GrG,k)→ Db

c (FlG,k)

defined in terms of nearby cycles (in the sense recalled in Section 9.5) as in the complex
setting. The proofs in Chapters 3 and 4 rely only on formal properties of the nearby
cycles functor (see Chapter 9) and of the various ind-schemes considered in Chapter 2.
Since the étale nearby cycles functor has the same formal properties as its complex
counterpart (see §9.5.2 for details), these proofs go through with no change in the
étale setting. (The geometric Satake equivalence also holds in this setting, see [BR,
§1.1.4] for some remarks.)

Remark 5.3.1. — In the étale setting, when k = Qℓ, an alternative proof of Propo-
sition 2.4.6(1) was given by Gaitsgory [G1], see also [GH, Theorem 5.7]. This proof
uses the comparison with the affine Hecke algebra and Bernstein’s results (see Sec-
tions 5.1–5.2) in a crucial way.

5.3.2. Mixed complexes. — From now on we assume that F is the algebraic clo-
sure of a finite field Fp. We choose a prime number ℓ different from p, and restrict to

the case when k = Qℓ. We also fix once and for all a square root Qℓ( 12 ) of the Tate

module Qℓ(1).
We will assume (as we may) that G (resp. B, resp. T ) is obtained by base change

from a split reductive group scheme G◦ over Fp (resp. a Borel subgroup B◦ of G◦,
resp. a split maximal torus T◦ contained in B◦). Then the affine Grassmannian GrG
and the affine flag variety FlG over F are obtained by base change from ind-schemes
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GrG,◦ and FlG,◦ over Fp. We can therefore consider the Iwahori-equivariant derived
category

Dmix
I,◦ (GrG,◦,Qℓ)

of mixed Qℓ-complexes on GrG,◦ in the sense of [BBDG, §5.1.5], and its counterpart

Dmix
I,◦ (FlG,◦,Qℓ)

for FlG,◦. The Schubert cells FlG,w (w ∈W ) also have counterparts over Fp, denoted
FlG,◦,w. We will again denote by jw : FlG,◦,w → FlG,◦ the embedding, and set

∇mix
w := (jw)∗QℓFlG,w

[ℓ(w)]( ℓ(w)
2 ), ∆mix

w := (jw)!QℓFlG,w
[ℓ(w)]( ℓ(w)

2 ).

Then ∇mix
w and ∆mix

w are mixed perverse sheaves, and the image ICmix
w of the unique

(up to scalar) nonzero morphim ∆mix
w → ∇mix

w is simple and pure of weight 0.
Let us denote by R the Grothendieck group of the category of mixed complexes

over Spec(Fp). Then R has a natural ring structure, induced by tensor product of
complexes. Moreover, there exists a natural algebra morphism Z[v, v−1]→ R, where
v is sent to the class of Qℓ(− 1

2 ).
The following lemma provides analogues of Lemmas 5.2.1 and 5.2.2. Its proof is

similar to that of those statements.

Lemma 5.3.2. — 1. There exists a canonical algebra isomorphism

(5.3.1) R⊗Z[v,v−1] H
∼−→ [Dmix

I,◦ (FlG,◦,Qℓ)]

such that the image of (−1)ℓ(w) · (1⊗Hw) is the class of ∇mix
w .

2. There exists a unique isomorphism of R-modules

(5.3.2) R⊗Z[v,v−1]Msph ∼−→ [Dmix
I,◦ (GrG,◦,Qℓ)]

such that the following diagram commutes (where the left vertical arrow is in-
duced by the canonical morphism H →Msph):

R⊗Z[v,v−1] H [Dmix
I,◦ (FlG,◦,Qℓ)]

R⊗Z[v,v−1]Msph [Dmix
I,◦ (GrG,◦,Qℓ)].

(5.2.2)

[π∗]

(5.2.3)

Moreover this isomorphism intertwines the action of R⊗Z[v,v−1]H on R⊗Z[v,v−1]

Msph and the action of [Dmix
I,◦ (FlG,◦,Qℓ)] on [Dmix

I,◦ (GrG,◦,Qℓ)] by convolution,

via the isomorphism (5.3.1).

Here the inverse of the isomorphism (5.3.1) sends the class of a complex F to∑
w∈W

[j!wF (− ℓ(w)
2 )] ·Hw,

where, for any w ∈W , jw : Spec(Fp)→ FlG,◦,w is the inclusion of a chosen point.
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Remark 5.3.3. — In the mixed setting, it is no longer true that standard and
costandard perverse sheaves have the same image in the Grothendieck group. In fact,
since [∆mix

w ] is inverse to [∇mix
w−1 ] (by a mixed analogue of Lemma 4.1.4), it must be

the image of (−1)ℓ(w) · (1⊗ (Hw−1)−1) under (5.3.1).

We also have the following analogue of Theorem 5.2.3, which follows from the
results of [KL2] together with [BGS, Corollary 4.4.3].

Theorem 5.3.4. — For any w ∈ W , the preimage of [ICmix
w ] under (5.3.1) is

(−1)ℓ(w) · (1⊗Hw).

5.3.3. Associated graded of the weight filtration. — Recall from [BBDG,
Théorème 5.3.5] that any mixed perverse sheaf on Spec(Fp) has a canonical weight
filtration. Taking the associated graded of the weight filtration, and then extending
scalars from Fp to F, we obtain an exact functor from mixed perverse sheaves on
Spec(Fp) to graded perverse sheaves on Spec(F). At the level of Grothendieck groups,
this functor gives rise to a ring homomorphism

R→ Z[v, v−1]

that is a left inverse to the ring homomorphism Z[v, v−1] → R considered above.
More concretely, if we denote by κ the functor of base change to Spec(F), and identi-
fying perverse sheaves on Spec(F) with finite-dimensional Qℓ-vector spaces, then our
morphism sends a perverse sheaf F to∑

i∈Z
vi dim(κ(grWi (F ))),

where grWi (F ) is the i-th part of the associated graded of the weight filtration on F .
In particular, in view of (5.3.1) and (5.3.2) we obtain a canonical surjective algebra

homomorphism

(5.3.3) [Dmix
I,◦ (FlG,◦,Qℓ)]→ H

and a canonical surjective map

(5.3.4) [Dmix
I,◦ (GrG,◦,Qℓ)]→Msph

which intertwines the actions of [Dmix
I,◦ (FlG,◦,Qℓ)] and H via (5.3.3). Concretely,

denoting again by κ the functor of base change to F, the morphism (5.3.3) sends the
class of a mixed perverse sheaf F to∑

w∈W
(−1)ℓ(w) ·

(∑
i∈Z

vi[κ(grWi (F )) : IC I
w] ·Hw

)
.

5.3.4. Mixed central sheaves. — The ind-schemes considered in Chapter 2 also
have natural analogues over Fp. Using the nearby cycles functor for étale sheaves in
this setting (see in particular §9.5.4) we obtain a functor

Zmix : Pervmix
GO,◦(GrG,◦,Qℓ)→ Pervmix

I,◦ (FlG,◦,Qℓ),
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where Pervmix
GO,◦(GrG,◦,Qℓ) is the category of mixed (G◦)O-equivariant perverse

sheaves on GrG,◦ and Pervmix
I,◦ (FlG,◦,Qℓ) is the heart of the perverse t-structure on

Dmix
I,◦ (FlG,◦,Qℓ).
For λ ∈ X∨

+, we denote by Jmix
!∗ (λ,Qℓ) the canonical lift of the perverse sheaf

J!∗(λ,Qℓ) to a pure perverse sheaf of weight 0. The “mixed” version of Proposi-
tion 5.2.5 is the following claim.

Proposition 5.3.5. — For any λ ∈ X∨
+, the image of the class of the mixed perverse

sheaf Zmix(Jmix
!∗ (λ,Qℓ)) under (5.3.3) is∑

µ∈X∨

dµ(λ) · θΛµ .

Proof. — All the constructions considered in Chapter 3 can be done over Fp, and
from this we deduce that the class [Zmix(Jmix

!∗ (λ,Qℓ))] belongs to the center of

[Dmix
I,◦ (FlG,◦,Qℓ)], and then that its image cλ under (5.3.3) belongs to the center

of H. Now Lemma 2.5.1 also holds over Fp, which implies that the image of cλ in

Msph is the image under (5.3.4) of the class of Jmix
!∗ (λ,Qℓ).

If we set Q :=
∑
w∈Wf

v2ℓ(w), by the projection formula we have

[π∗π
∗Jmix

!∗ (λ,Qℓ)] = Q · [Jmix
!∗ (λ,Qℓ)].

On the other hand, by the same arguments as in the non-mixed setting (see §5.2.2)
we have π∗Jmix

!∗ (λ,Qℓ)[ℓ(w◦)](
ℓ(w◦)

2 ) ∼= ICmix
nλ

(where nλ is as in Theorem 5.1.6), so
that

[π∗π
∗Jmix

!∗ (λ,Qℓ)] = (−v)ℓ(w◦) · [π∗ICmix
nλ

].

In view of Theorem 5.3.4, comparing these equalities we obtain that the image of
[Jmix

!∗ (λ,Qℓ)] under (5.3.4) is
1

Q
· (−1)ℓ(nλ)−ℓ(w◦) · vℓ(w◦) · (Hnλ

⊗ 1).

Using Theorem 5.1.6 and the observation that Q is equal to the image of vℓ(w◦)Hw◦

under the natural map H →Msph, we rewrite the expression above as ∑
µ∈X∨

dµ(λ) · θΛµ

⊗ 1.

Since a central element in H is uniquely determined by its image inMsph (see §5.1.2),
the desired equality follows.

Proposition 5.3.5 should be seen as a combinatorial recipe for computing the
composition factors of each piece of the associated graded of the weight filtration
on Zmix(Jmix

!∗ (λ,Qℓ)). Namely, in view of the formula for the morphism (5.3.3)
given at the end of §5.3.3, to determine these data one should consider the element∑
µ∈X∨ dµ(λ)·θΛµ ∈ H, and decompose it in the Kazhdan–Lusztig basis (Hw : w ∈W );

the required multiplicities are then obtained from the coefficients in this decomposi-
tion.
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CHAPTER 6

THE CHARACTERISTIC-0
ARKHIPOV–BEZRUKAVNIKOV EQUIVALENCE

The goal of this chapter is to review the construction of an equivalence of categories
(due to Arkhipov–Bezrukavnikov [AB]) relating the category of Iwahori-equivariant
Qℓ-perverse sheaves on FlG and the category of G∨-equivariant coherent sheaves on
the Springer resolution of G∨ (taken with respect to k = Qℓ). The construction of
this equivalence is based in an essential way on the results from Part I.

This equivalence can be seen as an important advance in the local geometric Lang-
lands program, and is a key step in the proof of Bezrukavnikov’s equivalence [Be5],
which gives a categorical upgrade of an isomorphism between two different geometric
realizations of the group ring Z[W ] (see §6.1.1 for more context). It also has impor-
tant applications in representation theory (e.g. in [Be3] and [BM]), which will not
be reviewed here.

6.1. Overview of the chapter

In this section, we explain the ideas behind the construction of the equivalence,
and outline the main steps that will be carried out in this chapter.

6.1.1. Categorifying the affine Weyl group and its antispherical module.

— Let Ñ denote the Springer resolution for G∨ (see §6.2.2 for more discussion), and
let

St := Ñ ×g∨ Ñ
be the Steinberg variety. The group G∨ acts on both Ñ and St, and we can consider

their respective derived categories of equivariant coherent sheaves, DbCohG
∨
(Ñ ) and

DbCohG
∨
(St). It is a classical fact that the Grothendieck groups of Db

I (FlG,Qℓ) and
DbCohG

∨
(St) are described by

(6.1.1) [Db
I (FlG,Qℓ)] ∼= Z[W ] ∼= [DbCohG

∨
(St)].

The first isomorphism above goes back to work of Iwahori–Matsumoto [IM] (and has
been treated above in Lemma 5.2.1); the second is due to Kazhdan–Lusztig [KL3]
and Ginzburg [CG].
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There is a similar story involving the (right) antispherical module Masph, defined
as follows: let Zsgn denote the group Z made into a right Z[Wf ]-module by letting

w ∈Wf act by multiplication by (−1)ℓ(w), and then set

Masph := Zsgn ⊗Z[Wf ] Z[W ].

This module also arises as the Grothendieck group of various geometric categories.
Three such incarnations will be relevant to us.

The first involves coherent sheaves on the Springer resolution: we have

(6.1.2) [DbCohG
∨
(Ñ )] ∼=Masph.

This isomorphism can be obtained by using the affine braid group action considered

in [BeR1] to make the Grothendieck group [DbCohG
∨
(Ñ )] into a right Z[W ]-module.

The second incarnation involves perverse sheaves on FlG. The kernel of the natural
map Z[W ]→Masph is spanned by Kazhdan–Lusztig basis elements whose label w ∈
W is not of minimal length in Wfw. In view of the first isomorphism in (6.1.1), this
suggests considering the Serre quotient

Pasph
I := PervI(FlG,Qℓ)/(the Serre subcategory

generated by {IC I
w : w not minimal in Wfw}).

We then have

(6.1.3) [Pasph
I ] ∼= [DbPasph

I ] ∼=Masph.

Finally, the third incarnation originates in the theory of p-adic groups. Let q be
a power of p, and let Fq be a finite field with q elements. Assume (as we may) that
our group G, resp. the Borel subgroups B and B+, is obtained by base change from a
split reductive group G◦ over Fq, resp. Borel subgroups B◦ and B+

◦ of G◦. Taking the
preimage of B◦(Fq) (resp. B+

◦ (Fq)) in G◦
(
Fq[[x]]

)
provides “Iwahori subgroups” I◦ and

I+◦ in G◦
(
Fq((x))

)
. In terms of these data, the algebra Hq := H ⊗Z[v,v−1] Qℓ (where

Qℓ is viewed as a Z[v, v−1]-algebra with v acting as multiplication by a fixed square
root of q−1) can be realized as the convolution algebra of I◦-biinvariant functions
G◦
(
Fq((x))

)
→ Qℓ supported on finitely many double cosets.

Fix a nontrivial homomorphism ψ : Fq → Q×
ℓ . Denoting by U+

◦ the unipotent
radical of B+

◦ , and choosing a trivialization of each root subgroup of U+
◦ corresponding

to a simple root, we obtain a group homomorphism

U+
◦
(
Fq((x))

)
→

∏
α simple root

Fq((x)).

Then, composing with the morphism (fα)α 7→ ψ(Res(
∑
α fα)) (where the residue is

defined by Res(
∑
i∈Z aix

i) = a−1) we obtain a homomorphism χ : U+
◦
(
Fq((x))

)
→ Q×

ℓ .

The Hq-module of functions f : G◦
(
Fq((x))

)
→ Qℓ satisfying

f(ngh) = χ(n)f(g) for all n ∈ U+
◦
(
Fq((x))

)
, g ∈ G◦

(
Fq((x))

)
and h ∈ I◦

(and supported on finitely many cosets) provides a “q-version”Masph
q ofMasph. Mod-

ules constructed in such a way are called “Whittaker modules.”
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Translating this construction into the language of perverse sheaves turns out to
be difficult, because the U+

◦
(
Fq((x))

)
-orbits on G◦

(
Fq((x))

)
/I◦ are ind-schemes rather

rather schemes.(1) But this construction has a “baby” (or “Iwahori–Whittaker”) ver-
sion, as follows. Instead of considering the group U+

◦
(
Fq((x))

)
, one considers the

pro-unipotent radical I+u,◦ of I+◦ . A similar construction as above (involving the sur-

jection I+u,◦ → U+
◦ (Fq) and the map U+

◦ (Fq) → Q×
ℓ induced by ψ) provides a group

homomorphism χ′ : I+u,◦ → Qℓ. The Hq-module of functions f : G◦
(
Fq((x))

)
→ Qℓ

satisfying

f(ngh) = χ′(n)f(g) for all n ∈ I+u,◦, g ∈ G◦
(
Fq((x))

)
and h ∈ I◦

is also isomorphic toMasph
q . Now the I+u,◦-orbits on G◦

(
Fq((x))

)
/I◦ have much better

geometric properties, and this space of “Iwahori–Whittaker” functions has a geometric
counterpart which will be called the category of Iwahori–Whittaker perverse sheaves
on FlG. This category, denoted by PervIW(FlG,Qℓ), satisfies

(6.1.4) [PervIW(FlG,Qℓ)] ∼= [DbPervIW(FlG,Qℓ)] ∼=Masph.

The main result of [AB] (and therefore of this chapter) gives a categorical upgrade
of the isomorphisms in (6.1.2), (6.1.3), and (6.1.4): it asserts that we have equivalences
of categories

DbCohG
∨
(Ñ ) ∼= DbPasph

I
∼= DbPervIW(FlG,Qℓ).

See Theorem 6.6.1 and Corollary 6.6.2 for precise statements. These equivalences are
an easier counterpart of (and a preliminary step towards) Bezrukavikov’s categorical
upgrade of (6.1.1) in [Be5].

6.1.2. Outline of the chapter. — We begin in Section 6.2 by trying to reconstruct

the derived category DbCohG
∨
(Ñ ) in terms of the following objects:

(6.1.5)

{
sheaves of the form V ⊗ OÑ with V ∈ Rep(G∨), and

line bundles OÑ (λ), where λ ∈ X∨.

It is straightforward to show that these objects generate DbCohG
∨
(Ñ ) as a triangu-

lated category, but our goal of “reconstructing” the category entails also “describing
the relations”—which is much more subtle! The most important statement in this

section is Proposition 6.2.10, which describes DbCohG
∨
(Ñ ) as a (Verdier) quotient of

a triangulated category built in terms of the objects considered above.
Next, Section 6.3 gives the construction of a functor

(6.1.6) F : DbCohG
∨
(Ñ )→ DbPervI(FlG,Qℓ).

The rough idea is first define F on the generating objects (6.1.5) by

sheaves of the form V ⊗ OÑ 7→ central sheaves,

line bundles 7→Wakimoto sheaves.

(1)See [Ras] for a solution to this problem, which is however not relevant for our considerations

below.
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To show that this assignment determines a well-defined functor as in (6.1.6), we will
use the theory developed in Section 6.2, along with results from previous chapters on
central and Wakimoto sheaves.

In Section 6.4 we define the categories Pasph
I and PervIW(FlG,Qℓ) that were men-

tioned above. We also construct an exact functor

(6.1.7) Pasph
I → PervIW(FlG,Qℓ),

and prove that this functor is fully faithful.
Next, in Section 6.5 we prove a statement that is vital for the rest of the proofs

in this chapter, but which is also interesting in its own right, namely that the images
in PervIW(FlG,Qℓ) of central sheaves are tilting objects for the natural structure of
highest weight category on PervIW(FlG,Qℓ). The idea of this proof is this: one
proves the claim for central sheaves corresponding to certain “small” orbits in GrG,
and then checks that it can be propagated to all central sheaves using convolution.
The latter fact is not difficult to establish. The “small” orbits one has to consider
are those corresponding to minuscule and quasi-minuscule coweights. The claim in
the minuscule case is not so difficult to prove (see §6.5.5); the case of quasi-minuscule
coweights is however much more delicate, and requires investigating the Serre quotient
of PI by the subcategory generated by simple objects corresponding to all elements
in W of positive length.

Finally, in Section 6.6 we conclude by proving that the composition

DbCohG
∨
(Ñ )

F−→ DbPervI(FlG,Qℓ)→ DbPasph
I

(6.1.7)−−−−→ DbPervIW(FlG,Qℓ)

is an equivalence of categories. This proof relies in particular on the tilting property
of the images of central sheaves explained above. From this one deduces that the
functor (6.1.7) is essentially surjective, and hence an equivalence of categories, which
completes our program.

The construction presented in this chapter closely follows that of [AB], and most of
the proofs are taken from that reference. We have however made a few simplifications
and clarifications; see in particular Remarks 6.2.11 and 6.4.9, and §6.5.8.

6.1.3. Conventions. — Let F be an algebraic closure of Fp. In this chapter, we
always assume that G is a connected reductive group over F. We then have the affine
Grassmannian GrG and the affine flag variety FlG defined over F, and given ℓ ̸= p one
can consider the derived categories of étale Qℓ-sheaves on GrG and FlG. As explained
in §5.3.1, all the constructions of the previous chapters have obvious counterparts
in this setting. For simplicity, we will use the same notation for these categories
or functors as for their classical counterparts. (The reason for working in the étale
setting is that the theory of Iwahori–Whittaker perverse sheaves has no convenient
counterpart in the classical topology.)

All constructible complexes or perverse sheaves will have coefficients in Qℓ, and
so from Section 6.3 on, the symbol “k” will be almost never be used. Varieties
that were labeled with a subscript “k” in previous chapters will usually have the
subscript omitted in this chapter; such varieties should be understood to be over Qℓ.
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In particular, as we have already done above, we denote various groups by G∨, B∨,
etc., instead of by G∨

Qℓ
, B∨

Qℓ
, etc.

6.2. Coherent sheaves on the Springer resolution

In this section we denote by k an algebraically closed field of characteristic 0. (The
results presented below will only be used in the case k = Qℓ. However, since they do
not require any special property of the field Qℓ, we prefer presenting them in a more
general setting.)

6.2.1. The basic affine space and its affine completion. — Before proceding,
we note that in this chapter we will consider various categories of equivariant coher-
ent sheaves (for an affine algebraic k-group H) on some k-varieties; for this notion we
refer e.g. to [Bri1, §2] (where these objects are called “linearized sheaves” instead).
An important property we will use is that for a k-algebraic group H acting on a
k-variety X, for any F ,G in DbCohH(X) the k-vector space HomDbCoh(X)(F ,G ) ad-
mits a natural structure of a (not necessarily finite-dimensional) algebraic H-module.
Moreover, if H is reductive then we have

(6.2.1) HomDbCohH(X)(F ,G ) =
(
HomDbCoh(X)(F ,G )

)H
.

(This fact uses the property that the functor of H-fixed points is exact on algebraic
H-modules. For a study of equivariant quasi-coherent sheaves in a much more general
setting, and further references, we refer the reader to [MR1, Appendix A].)

Recall the (negative) Borel subgroup B∨ ⊂ G∨; its unipotent radical will be de-
noted U∨. The basic affine space is the quotient G∨/U∨, with its natural action of
G∨. This variety is also equipped with a (right) action of T∨, given by

t · gU∨ = gt−1U∨.

We then obtain an isomorphism of G∨ × T∨-varieties

(6.2.2) (G∨ × T∨)/B∨ ∼−→ G∨/U∨

where the embedding B∨ ⊂ G∨ × T∨ is the product of the embedding B∨ ⊂ G∨ and
the projection B∨ → B∨/U∨ ∼= T∨.

The T∨-action on G∨/U∨ induces a T∨-action on O(G∨/U∨), for which the λ-
weight space identifies with the representation denoted N(−λ) in §1.5.1; we therefore
obtain a canonical isomorphism of G∨ × T∨-modules

(6.2.3) O(G∨/U∨) ∼=
⊕
λ∈X∨

N(λ)⊗ kT∨(−λ)

(where kT∨(η) denotes the 1-dimensional T∨-module associated with η, or in other
words the restriction of kB∨(η) to T∨). Here the module N(λ) vanishes unless λ ∈ X∨

+,
and in this case it has highest weight λ (see [J1, Proposition II.2.6]).

In view of (6.2.2) and [Bri1, Lemma 2], we have a canonical equivalence of cate-
gories

(6.2.4) CohG
∨×T∨

(G∨/U∨) ∼= Rep(B∨),
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where the right-hand side denotes the category of finite-dimensional B∨-modules. Un-
der this equivalence, the B∨-module kB∨(λ) corresponds to the equivariant coherent
sheaf OG∨/U∨ ⊗ kT∨(λ). In more geometric terms, one can consider the flag variety
B := G∨/B∨ of G∨. Then the pullback under the Zariski locally trivial principal
T∨-bundle G∨/U∨ → G∨/B∨ induces a canonical equivalence of categories

CohG
∨
(B) ∼−→ CohG

∨×T∨
(G∨/U∨)

(whose quasi-inverse is the T∨-invariant pushforward). Under this equivalence, the
object OG∨/U∨ ⊗ kT∨(λ) corresponds to the line bundle OB(λ) naturally associated
with λ, for any λ ∈ X∨. (In our conventions we have N(λ) = Γ(B,OB(λ)).)

Recall the morphisms aλ,µ defined in §1.5.2. We will denote similarly the induced
morphism of G∨ × T∨-modules(

N(λ)⊗ kT∨(−λ)
)
⊗
(
N(µ)⊗ kT∨(−µ)

)
→ N(λ+ µ)⊗ kT∨(−λ− µ).

Lemma 6.2.1. — The multiplication morphism

O(G∨/U∨)⊗k O(G∨/U∨)→ O(G∨/U∨)

identifies, via (6.2.3), with
⊕

λ,µ aλ,µ.

Proof. — The multiplication morphism O(G∨/U∨) ⊗k O(G∨/U∨) → O(G∨/U∨) is
T∨-equivariant, so it must decompose as a direct sum of morphisms of G∨ × T∨-
modules(

N(λ)⊗ kT∨(−λ)
)
⊗
(
N(µ)⊗ kT∨(−µ)

)
→ N(λ+ µ)⊗ kT∨(−λ− µ).

By Frobenius reciprocity such a morphism is uniquely determined by its action on
T∨-weight spaces (for the action of T∨ ⊂ G∨) of weight λ + µ. Now if vλ ∈ N(λ)λ,
resp. vµ ∈ N(µ)µ, is the unique vector of weight λ such that fλ(vλ) = 1, resp. the
unique vector of weight µ such that fµ(vµ) = 1, then vλ and vµ can be considered
as certain functions on G∨ whose value at 1 ∈ G∨ is 1 ∈ k. Hence the image of
(vλ ⊗ 1)⊗ (vµ ⊗ 1) must be a function of weight λ+ µ in N(λ+ µ) whose value at 1
is 1, i.e. it must equal aλ,µ(vλ ⊗ vµ)⊗ 1.

In particular, it follows from Lemma 6.2.1 (and the surjectivity of the maps aλ,µ,
see Remark 1.5.6(2)) that the k-algebra O(G∨/U∨) is finitely generated (in fact,
generated by the weight spaces corresponding to any family of generators of the
monoid X+) so that we can consider the “affine completion”

X := Spec(O(G∨/U∨)),

an affine k-variety endowed with a natural action of G∨ × T∨.
Evaluation at the “base point” U∨ ∈ G∨/U∨ defines an algebra homomorphism

O(G∨/U∨)→ k, and hence a point in X . Since G∨/U∨ is quasi-affine (see e.g. [Sp2,
Exercise 5.5.9(2)]), the stabilizer of this point in G∨ is U∨; we deduce a canonical
map

(6.2.5) G∨/U∨ → X .
Since the induced morphism O(X ) → O(G∨/U∨) is injective (in fact, an isomor-
phism), this morphism is dominant. And since G∨/U∨ is open in its closure (as



6.2. COHERENT SHEAVES ON THE SPRINGER RESOLUTION 209

an orbit of an action of G∨), we deduce that (6.2.5) is an open embedding. The
complement of its image (a closed subset of X ) will be denoted by ∂X .

The proof of the following claim was explained to one of us by R. Bezrukavnikov.

Lemma 6.2.2. — 1. For any x ∈ ∂X , there exists a simple root α of G∨ such
that x is fixed by the action of the cocharacter α∨ (via the action of T∨ =
{1} × T∨ ⊂ G∨ × T∨).

2. If λ ∈ X∨
+ is strictly dominant (i.e. if ⟨λ, α⟩ > 0 for any simple root α of G),

any function in N(λ)⊗ kT∨(−λ) ⊂ O(X ) vanishes on ∂X .

Proof. — (1) Choose a finite central isogeny p : H → G∨ where H is a product of a
semisimple, simply-connected algebraic groups and a torus. Then if BH = p−1(B∨),
BH is a Borel subgroup of H, whose unipotent radical will be denoted UH . We have
a natural map H/UH → G∨/U∨ which is a principal bundle for the finite abelian
group Z = ker(p). This morphism induces an embedding O(G∨/U∨) ↪→ O(H/UH)
which identifies O(G∨/U∨) with the subspace of Z-fixed points in O(H/UH). We
deduce a morphism Spec(O(H/UH)) → X which identifies X with the quotient of
the affine variety Spec(O(H/UH)) by the action of the finite group Z. In particular
this morphism is surjective, and sends H/UH into G∨/U∨. This construction reduces
the proof of the claim for G∨ to the proof of the analogous claim for H. Of course
the torus factor does not play any role in this story, so we can assume that G∨ is
semisimple and simply-connected.

In this case, let V be the B∨-module which is the direct sum of the 1-dimensional
modules associated with the negatives of the fundamental weights of G∨, and set
Y := G∨ ×B∨

V . We will consider V as a B∨ × T∨-module, where T∨ acts via the
composition of the restriction of the action of B∨ to T∨ with the map t 7→ t−1; in
this way Y becomes a G∨ × T∨-variety. The action on the vector (1, · · · , 1) defines
a B∨ × T∨-equivariant open embedding T∨ = B∨/U∨ ↪→ V , which then provides a

G∨× T∨-equivariant open embedding G∨/U∨ = G∨×B∨
B∨/U∨ ↪→ Y. Moreover we

have a canonical isomorphism

O(Y) = IndG
∨

B∨(O(V )) = IndG
∨

B∨

 ⊕
λ∈X∨

+

kλ

 = O(X ).

Hence the open embedding G∨/U∨ ↪→ X factors through a G∨ × T∨-equivariant
morphism f : Y → X .

We claim that f is surjective. In fact, since this morphism restricts to an isomor-
phism on G∨/U∨ (and hence, in particular, is birational), it suffices to prove that it
is proper. This morphism can be written as a composition

(6.2.6) Y → X × B → X ,

where the first morphism is the product of f with the canonical projection Y → B,
and the second one is the projection on the first factor. This second morphism
is clearly proper, and the first one can be written, via the canonical isomorphism
G∨ ×B∨ X ∼−→ X × B, as G∨ ×B∨

f|V . Now, at the level of coordinate rings, the
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restriction of f to V corresponds to the surjection⊕
λ∈X∨

+

fλ : O(X )→
⊕
λ∈X∨

+

kλ = O(V ).

Thus, f|V is a closed embedding, and hence so is the first map in (6.2.6). This
completes the proof that f is proper.

Now we can conclude: any point in ∂X is the image of a point [g : v] ∈ G∨ ×B∨
V

where at least one of the coordinates of v vanishes. If α is a simple root corresponding
to one of these vanishing coordinates, then [g : v] is stable under the action of α∨,
and hence so is our initial point.

(2) If λ ∈ X∨ is strictly dominant and α is a simple root of G (i.e. a simple coroot
of G∨), any function g ∈ N(λ) ⊗ kT∨(−λ) satisfies g(α(z) · x) = z−⟨λ,α⟩x, where
−⟨λ, α⟩ ̸= 0. Thus g vanishes on any point fixed by α, and in particular (in view
of (1)) on all of ∂X .

Remark 6.2.3. — Let O(X )+ ⊂ O(X ) be the ideal consisting of the direct sum
of the subspaces N(λ)⊗ kT∨(−λ) where λ runs over the strictly dominant coweights.
Lemma 6.2.2(2) implies that the closed subset ∂X ⊂ X consists of the vanishing locus
of O(X )+. In fact this statement shows that ∂X is contained in this vanishing locus.
Since this locus is stable under the action of G∨ it cannot intersect the open orbit
G∨/U∨, which implies our claim. This claim can be used to define a scheme structure
on ∂X .

6.2.2. The Springer resolution and some variants. — We will be interested
in the “Springer resolution”

Ñ := G∨ ×B
∨
n∨,

where n∨ is the Lie algebra of U∨. This variety is (in a natural way) a vector bundle

over B; indeed, the morphism [g : x] 7→ (g ·x, gB∨) defines an embedding Ñ ↪→ g∨×B
as a sub-vector bundle. (Here g∨ is the Lie algebra of G∨, with the natural adjoint

action of G∨.) For λ ∈ X∨, the pullback of OB(λ) to Ñ will be denoted OÑ (λ).
By [Bri1, Lemma 2] we have a canonical equivalence of categories

CohG
∨
(Ñ )

∼−→ CohB
∨
(n∨);

under this equivalence the line bundle OÑ (λ) corresponds to On∨ ⊗ kB∨(λ).

We will denote by N̂ the preimage of Ñ under the map g∨ × G∨/U∨ → g∨ × B
induced by the projection G∨/U∨ → B; then N̂ is a vector bundle over G∨/U∨, and

identifies with the induced variety G∨×U∨
n∨. We will denote by eN̂ the “base point”

of N̂ , i.e. the point [1 : 0] ∈ G∨ ×U∨
n∨.

We have a natural free action of T∨ on N̂ (induced by the action on G∨/U∨) such

that N̂/T∨ = Ñ ; as for G∨/U∨ in §6.2.1 we deduce an equivalence of categories

(6.2.7) CohG
∨
(Ñ )

∼−→ CohG
∨×T∨

(N̂ ).

Note that for any λ ∈ X∨ we have

(6.2.8) O(N̂ )−λ = Γ(Ñ ,OÑ (λ)),
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where the left-hand side means the (−λ)-weight space (for the action of T∨ = {1} ×
T∨). In other words, under the equivalence (6.2.7) the object ON̂ ⊗ kT∨(λ) is sent to
OÑ (λ), for any λ ∈ X∨.

The variety N̂ can also be described as a special case of the following construction.
Consider an algebraic k-group H, and a smooth k-variety X endowed with an action
of H. Then differentiating the H-action morphism we obtain a canonical morphism
of Lie algebras h→ Γ(X,TX), where h is the Lie algebra of H and TX is the tangent
bundle of X. Any vector field on X defines a derivation of the sheaf of algebras
OX ; therefore this morphism provides an action of h on OX by derivations. We then
consider the derivation of the sheaf of rings O(h)⊗k OX defined as the composition

(6.2.9) O(h)⊗k OX → O(h)⊗k h
∗ ⊗k h⊗k OX → O(h)⊗k OX ,

where the first map sends f ⊗ g to f ⊗ idh ⊗ g (here idh is seen as a vector in
End(h) ∼= h∗⊗ h) and the second one sends f ⊗ ξ⊗ x⊗ g to (fξ)⊗ (x · g). We denote
by JH,X ⊂ Oh×X the sheaf of ideals whose pushforward under the (affine) projection
h × X → X is the sheaf of ideals generated by the image of (6.2.9). We can then
define the infinitesimal universal stabilizer for this action as the closed subscheme of
h×X defined by the ideal JH,X . The same procedure can also be performed in case
X is affine but not necessarily smooth: in this case we consider the h-action on O(X)
obtained by differentiating the H-action induced by the action on X.

It can easily be seen from the definition that the infinitesimal universal stabilizer

for the G∨-action on G∨/U∨ is the subvariety N̂ ⊂ g∨ × G∨/U∨. We define N̂X as

the infinitesimal universal stabilizer for the G∨-action on X . Then N̂X is a closed
subscheme of g∨ ×X , and we have

(6.2.10) N̂X ∩ (g∨ ×G∨/U∨) = N̂ ;

in particular, N̂ is an open (but not dense) subvariety in N̂X . Concretely, we have

O(g∨ ×X ) =
⊕
λ∈X∨

O(g∨)⊗ N(λ),

see (6.2.3). For λ ∈ X∨
+, differentiating the G∨-action on N(λ) we obtain an action of

g∨. Then the ideal of definition of N̂X is generated by the images of the compositions

(6.2.11) N(λ)
v 7→1⊗v−−−−−→ O(g∨)⊗ N(λ)→ O(g∨)⊗ N(λ) ↪→ O(g∨ ×X )

(where the second map is defined similarly to (6.2.9)) for all λ ∈ X∨
+.

The proof of the following lemma is a corrected version of an earlier wrong proof.
This error was pointed to us by J. Lourenço, who also provided the main ingredients
to correct it.

Lemma 6.2.4. — There exists N ∈ Z≥0 such that, for any λ ∈ X∨ such that
⟨λ, α∨⟩ ≥ N for any simple root α, the morphism

O(N̂X )−λ → O(N̂ )−λ

induced by restriction is an isomorphism.
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Proof. — We first establish surjectivity of the morphism under consideration, for
any λ ∈ X∨ which satisfies the following condition: for any distinct negative roots
α1, . . . , αr (with r ≥ 0), the weight λ +

∑
i αi is dominant. For that it suffices to

prove that, for such λ, the morphism

(6.2.12) O(g∨ ×X )−λ → O(N̂ )−λ

induced by restriction is surjective.
Consider the Koszul resolution ∧•((g∨/n∨)∗)⊗O(g∨) for O(n∨) as a module over

O(g∨). Tensoring with kB∨(λ) and using the natural equivalence

CohB
∨
(g∨) ∼= CohG

∨
(g∨ × B)

(which is again an application of [Bri1, Lemma 2]) we obtain a complex (F •, d•) of
coherent sheaves on g∨ × B, concentrated in degrees between −dim(g∨/n∨) and 0,
and a quasi-isomorphism f• : F • → OÑ (λ), such that F 0 = Og∨×B(λ) and each F i

admits a filtration with subquotients of the form Og∨×B(λ + µ) where µ is a sum of
distinct negative roots. (Here, for ν ∈ X∨ we denote by Og∨×B(ν) the pullback of
OB(ν) to g∨ × B, and still write OÑ (λ) for the pushforward of the sheaf denoted in
this way to g∨ × B.)

Our assumption ensures that H>0(g∨×B,F i) = 0 for any i by Kempf’s vanishing

theorem (see [J1, Proposition II.4.5]). Starting from ker(d− dim(g∨/n∨)) = 0 and
using the short exact sequences ker(di) ↪→ F i ↠ ker(di+1) (valid for i ≤ −2), we
deduce that H>0(g∨ × B, ker(di)) = 0 for i ≤ −1. Next, using the exact sequence
ker(d−1) ↪→ F 0 ↠ ker(f0), we find that H>0(g∨ × B, ker(f0)) = 0. Finally, from the
exact sequence ker(f0) ↪→ F 0 ↠ OÑ (λ) we obtain a short exact sequence

Γ(g∨ × B, ker(f0)) ↪→ Γ(g∨ × B,F 0) ↠ Γ(Ñ ,OÑ (λ)).

Now we have Γ(Ñ ,OÑ (λ)) ∼= O(N̂ )−λ (see (6.2.8)) and

Γ(g∨ × B,F 0) = O(g∨)⊗ Γ(B,OB(λ)) = O(g∨ ×X )−λ
(see §6.2.1), and the morphism in our exact sequence identifies with the mor-
phism (6.2.12), so that our claim is proved.

Now we prove that there exists N ∈ Z≥0 such that our map is injective for any
λ which satisfies ⟨λ, α⟩ ≥ N for any simple root α. As in Lemma 6.2.2(1) we can
assume that G∨ is semisimple and simply connected. In this case, the condition that
⟨λ, α⟩ ≥ N for any simple root α is equivalent to the condition that λ is a sum of N
strictly dominant weights.

Denote by O(N̂X )+ ⊂ O(N̂X ) the ideal consisting of the direct sum of the subspaces

O(N̂X )−λ where λ runs over the strictly dominant coweights. By Remark 6.2.3, the

underlying closed subspace of the closed subscheme of N̂X defined by O(N̂X )+ is the

complement of N̂ . Consider now the restriction morphism

O(N̂X )→ O(N̂ ).

Its kernel K is an ideal of the noetherian algebra O(N̂X ), and hence is generated by
finitely many homogeneous elements (mi : i ∈ I), of degrees (for the action of T∨)
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denoted (µi : i ∈ I). Each of these elements is annihilated by a power of O(N̂X )+;

we can therefore choose M ∈ Z≥0 such that each mi is annihilated by (O(N̂X )+)M .
With this notation, we claim that injectivity holds for any λ which satisfies

⟨λ, α⟩ ≥ −⟨µi, α⟩+M

for any i and any α. In fact, to check this it suffices to check that K has no nonzero
element of degree −λ for such a λ. Now if m ∈ K has degree −λ, we can write

m =
∑
i

aimi

where ai ∈ O(N̂X ) has degree −λ − µi for any i. For any i ∈ I, by assumption we
have ⟨λ+ µi, α⟩ ≥M for any simple root α, hence λ+ µi can be written as a sum of
M strictly dominant weights. Using Remark 1.5.6(2), we deduce that ai belongs to

(O(N̂X )+)M . Hence aimi = 0, which implies that m = 0 and finishes the proof.

Remark 6.2.5. — The considerations in the first step of the proof of Lemma 6.2.4
show that, if λ ∈ X∨ is such that λ+µ is dominant for any sum µ of distinct negative

roots, we have H>0(Ñ ,OÑ (λ)) = 0. For a more general (and much more subtle)
study of this question, the reader might consult [Bro].

6.2.3. Koszul complexes. — Let us consider a k-vector space V of dimension d
and a surjective morphism V ↠ V ′ with V ′ ̸= 0. We then have an associated “Koszul
complex,” defined as the graded symmetric algebra of the complex of vector spaces

· · · → 0→ V → V ′ → 0→ · · ·

where V is in degree −1 and V ′ in degree 0. We “extract” from this complex the
summand

(6.2.13) · · · → 0→ ∧d(V )⊗ S0(V ′)→ ∧d−1(V )⊗ S1(V ′)→ · · ·

→ ∧1(V )⊗ Sd−1(V ′)→ ∧0(V )⊗ Sd(V ′)→ 0→ · · ·

(Here, the nonzero terms are in degrees between −d and 0.)

Lemma 6.2.6. — The complex (6.2.13) is acyclic.

Proof. — The “usual” Koszul complex, corresponding to the case V ′ = V , is well
known to be a free resolution of the trivial S(V )-module k. The Koszul complex
considered above is obtained by tensoring this complex with S(V ′) over S(V ); its
image in the derived category of vector spaces is therefore

k
L
⊗S(V ) S(V

′) ∼= ∧•(V ′′),

where V ′′ = ker(V → V ′). If we consider our Koszul complex as a complex of graded
vector spaces, where V and V ′ are in internal degree 1, then (6.2.13) is the part of
this complex of internal degree d. Since the cohomology of this complex is in internal
degrees < d (because dim(V ′′) < d), the latter complex must then be acyclic.
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Now let λ ∈ X∨
+, and consider the G∨-module N(λ) as a (G∨ × T∨)-module with

trivial action of T∨. We then have an associated G∨ × T∨-equivariant O(X )-module
N(λ) ⊗k O(X ). In view of (6.2.2), multiplication in O(X ) induces a canonical mor-
phism

(6.2.14) N(λ)⊗k O(X )→ kT∨(λ)⊗k O(X ),
where in the right-hand side kT∨(λ) is viewed as a G∨×T∨-module with trivial action
of G∨. More precisely, this morphism is obtained by taking global sections of the mor-
phism of G∨ × T∨-equivariant coherent sheaves N(λ)⊗OG∨/U∨ → kT∨(λ)⊗OG∨/U∨

which is the image of the morphism fλ from §1.5.1 under the equivalence (6.2.4).
Applying the construction considered above for the morphism fλ, then taking the

image of the complex so obtained under the equivalence (6.2.4), and finally taking
global sections, we obtain a “Koszul complex”

(6.2.15) · · · → 0→ ∧dλ(N(λ))⊗ O(X )→ ∧dλ−1(N(λ))⊗ kT∨(λ)⊗ O(X )→ · · ·
→ ∧1(N(λ))⊗ kT∨((dλ − 1) · λ)⊗ O(X )→ kT∨(dλ · λ)⊗ O(X )→ 0→ · · ·

where dλ = dim(N(λ)). (This complex can also be described more directly using an
extension of the construction above for morphisms of free modules over a ring, applied
to (6.2.14).) This complex can be regarded as a complex of G∨ × T∨-equivariant

coherent sheaves on X ; the pullback under the projection morphism N̂X → X of its
tensor product with kT∨(−dλ · λ) will be denoted Kλ.

Lemma 6.2.7. — For any λ ∈ X∨
+, the restriction of the complex Kλ to N̂ is

acyclic.

Proof. — By construction, the restriction of Kλ to N̂ is the pullback of the restric-
tion of (6.2.15) to G∨/U∨. The latter restriction is acyclic by construction and

Lemma 6.2.6, which implies the lemma since the morphism N̂ → G∨/U∨ is smooth,
and hence flat.

6.2.4. Equivariant coherent sheaves on Ñ . — The following claims are well
known.

Lemma 6.2.8. — The category DbCohG
∨
(Ñ ) is generated (as a triangulated cate-

gory) by the following classes of objects:

1. the line bundles OÑ (λ), for λ ∈ X∨;
2. the objects of the form V ⊗ OÑ (λ) where V ∈ Rep(G∨) and λ ∈ X∨

+.

Proof. — (1) The proof of this property is adapted from that of its “graded” analogue
in [Ac1, Lemma 5.7]. Namely, by [Bri1, Lemma 2] again, we have an equivalence

(6.2.16) CohG
∨
(Ñ )

∼−→ CohB
∨
(n∨)

induced by restriction to {1}× n∨ ⊂ Ñ , and CohB
∨
(n∨) is equivalent to the category

of B∨-equivariant O(n∨)-modules which are of finite type over O(n∨). Therefore, to
prove the claim it suffices to show that the bounded derived category of the latter
category is generated, as a triangulated category, by the modules of the form kB∨(λ)⊗
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O(n∨), or equivalently (as any B∨-module has a filtration with subquotients of the
form kB∨(λ)) by the modules of the form V ⊗ O(n∨) with V a finite-dimensional
B∨-module.

Let 2ρ be the sum of the positive roots of G, or of the positive coroots of G∨. This
is a cocharacter 2ρ : Gm → T∨. Via this cocharacter, we can regard any T∨- or B∨-
module as a graded vector space. In particular, we use this cocharacter to regard any
B∨-equivariant O(n∨)-module as a graded O(n∨)-module. (Note that although the
subspace (n∨)∗ ⊂ O(n∨) is not homogeneous, it is spanned by homogeneous elements
of strictly positive even degrees.)

Clearly, any B∨-equivariant O(n∨)-module of finite type M admits a resolution

· · · → P−2 → P−1 → P 0 →M → 0

where each P j is of the form V ⊗ O(n∨) with V a finite-dimensional B∨-module.
Regard this as a sequence of graded O(n∨)-modules as in the preceding paragraph.
Setting m := dim(n∨), the Hilbert Syzygy Theorem (in the form stated e.g. in [Ei,
Corollary 19.7]) implies that ker(P−m → P−m+1) is finitely generated and free as a
graded O(n∨)-module.

To finish the proof it suffices to show that any finitely generated B∨-equivariant
O(n∨)-module that is free over O(n∨) admits a filtration (as a B∨-equivariant O(n∨)-
module) with subquotients of the form V ⊗ O(n∨) with V a finite-dimensional B∨-
module. This is proved by induction on rk(M). Indeed, by assumption M admits a
homogeneous basis. If k is the smallest degree of a vector in this basis, and if V is
the subspace of M spanned by the basis vectors of degree k, then V is also the k-th
graded component of M , and is stable under the B∨-action. It is easily seen that the
morphism V ⊗O(n∨)→M induced by the O(n∨)-module structure is an embedding
of B∨-equivariant O(n∨)-modules, whose cokernel is again free over O(n∨), of rank
rk(M)− dim(V ). We conclude using the induction hypothesis.

(2) In view of (1), it suffices to prove that for any µ ∈ X∨ the line bundle OÑ (µ)
belongs to the triangulated subcategory generated by the objects V ⊗ OÑ (λ) with
V ∈ Rep(G∨) and λ ∈ X∨

+. If λ ∈ X∨
+, then taking the Koszul complex associated

with the surjection fλ (see (6.2.13)) we obtain a complex of B∨-modules

(6.2.17) · · · → 0→ ∧dλ(N(λ))→ ∧dλ−1(N(λ))⊗ kB∨(λ)→ · · ·
→ ∧1(N(λ))⊗ kB∨((dλ − 1) · λ)→ kB∨(dλ · λ)→ 0→ · · · ,

which is acyclic by Lemma 6.2.6. (Here, as in (6.2.15), we set dλ = dimN(λ).) Then,
tensoring with On∨ and using the equivalence (6.2.16) we obtain an acyclic complex

· · · → 0→ ∧dλ(N(λ))⊗ OÑ → ∧
dλ−1(N(λ))⊗ OÑ (λ)→ · · ·

→ ∧1(N(λ))⊗ OÑ ((dλ − 1) · λ)→ OÑ (dλ · λ)→ 0→ · · ·

in DbCohG
∨
(Ñ ). Tensoring with OÑ (µ)⊗ (∧dλ(N(λ)))∗ and choosing (as we may) λ

such that µ+λ is dominant, then this complex shows that OÑ (µ) does indeed belong
to the desired triangulated subcategory.

The following lemma will be needed in Section 6.6 below.
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Lemma 6.2.9. — For any λ ∈ X∨ there exists V ∈ Rep(G∨) and an embedding of
G∨-equivariant coherent sheaves OÑ (λ) ↪→ V ⊗ OÑ .

Proof. — For α a simple root of (G∨, T∨), we denote by n∨(α) the Lie algebra of the

unipotent radical of the parabolic subgroup of G∨ containing B∨ associated with

the subset {α} of the set of simple roots. Then we have an embedding Ñ(α) :=

G∨ ×B∨
n∨(α) ⊂ Ñ , and an associated exact sequence of coherent sheaves

OÑ (α) ↪→ OÑ ↠ OÑ(α)
.

In particular, using repeatedly the first map in this sequence, and tensoring, we obtain
an embedding OÑ (ν) ↪→ OÑ for any ν in Z≥0R

∨
+.

Going back to our problem, we choose ν in Z≥0R
∨
+ such that λ− ν ∈ −X∨

+. Then,
tensoring the above embedding by OÑ (λ − ν) we obtain an embedding OÑ (λ) ↪→
OÑ (λ− ν). Now since λ− ν is antidominant, we have an embedding of B∨-modules
kB∨(λ− ν) ↪→ N(w◦(λ− ν)). Tensoring with On∨ and inducing to G∨ (see (6.2.16))
we obtain an embedding OÑ (λ−ν) ↪→ N(w◦(λ−ν))⊗OÑ . Composing the two maps
we have constructed we obtain the desired embedding.

6.2.5. Equivariant coherent sheaves on Ñ as a quotient. — Let us denote by

CohG
∨×T∨

fr (N̂X )

the full additive subcategory of CohG
∨×T∨

(N̂X ) whose objects are the “free” coherent
sheaves, i.e. those of the form V ⊗ON̂X

with V a finite-dimensional G∨×T∨-module.
We will consider the composition

(6.2.18) KbCohG
∨×T∨

fr (N̂X )→ DbCohG
∨×T∨

(N̂X )

→ DbCohG
∨×T∨

(N̂ )
(6.2.7)−−−−→

∼
DbCohG

∨
(Ñ ),

where the first arrow is the obvious functor, and the second one is pullback under the

open embedding N̂ ⊂ N̂X (see (6.2.10)). We will denote by KbCohG
∨×T∨

fr (N̂X )∂X the

kernel of this functor, i.e. the full subcategory of KbCohG
∨×T∨

fr (N̂X ) whose objects
are those killed by this functor (in other words, those whose cohomology is supported
set-theoretically(2) on the preimage of ∂X ).

In the next statement we will consider a Verdier quotient of a triangulated cate-
gory; for that notion we refer to [SP, Tag 05RA]. By the universal property of this
construction (see [SP, Tag 05RJ]), our functor (6.2.18) factors uniquely through a
triangulated functor

(6.2.19) KbCohG
∨×T∨

fr (N̂X )/KbCohG
∨×T∨

fr (N̂X )∂X → DbCohG
∨
(Ñ ).

(2)Recall that a quasi-coherent sheaf F on a scheme X is said to be set-theoretically supported on a

closed subscheme Y ⊂ X if its restriction to the open complement vanishes. If X is noetherian and
F is coherent, then this condition is equivalent to requiring that the ideal I ⊂ OX defining Y acts

nilpotently on F .

https://stacks.math.columbia.edu/tag/05RA
https://stacks.math.columbia.edu/tag/05RJ
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Proposition 6.2.10. — The functor (6.2.19) is an equivalence of triangulated cat-
egories.

Proof. — By construction, the category on the left-hand side is generated (as a trian-
gulated category) by the objects of the form V ⊗kT∨(µ)⊗ON̂X

where V is in Rep(G∨)

and µ ∈ X∨. Since the images of these objects generate the category DbCohG
∨
(Ñ )

(see Lemma 6.2.8), by Bĕılinson’s lemma (as formulated e.g. in [ABG, Lemma 3.9.3]),
to prove the proposition it will suffice to prove that for any V1, V2 in Rep(G∨), any
µ1, µ2 ∈ X∨, and any n ∈ Z, our functor induces an isomorphism from

Hom
KbCohG

∨×T∨
fr (N̂X )/KbCohG

∨×T∨
fr (N̂X )∂X

(V1⊗kT∨(µ1)⊗ON̂X
, V2⊗kT∨(µ2)⊗ON̂X

[n])

to
HomDbCohG

∨
(Ñ )(V1 ⊗ OÑ (µ1), V2 ⊗ OÑ (µ2)[n]).

Easy arguments show that we can in fact assume that V2 = k and µ2 = 0. We will
then write V for V1 and µ for µ1.

We will first prove that our map is injective. A morphism from V ⊗kT∨(µ)⊗ON̂X
to

ON̂X
[n] inKbCohG

∨×T∨

fr (N̂X )/KbCohG
∨×T∨

fr (N̂X )∂X can be represented by a diagram

(6.2.20) V ⊗ kT∨(µ)⊗ ON̂X

f←− F
g−→ ON̂X

[n]

where F is an object of KbCohG
∨×T∨

fr (N̂X ), and the cone of f belongs to the sub-

category KbCohG
∨×T∨

fr (N̂X )∂X . Saying that the image of this morphism vanishes is
equivalent to saying that the image of g under (6.2.18) vanishes.

Now choose λ ∈ X∨
+, and recall the complex Kλ from §6.2.3. This complex is the

cone of a morphism of complexes

(6.2.21) Gλ → ON̂X

where each component in Gλ is of the form M ⊗ kT∨(−i · λ) ⊗ ON̂X
for some M

in Rep(G∨) and some i ∈ Z>0. Lemma 6.2.7 says that the cone of (6.2.21) is

supported on N̂X ∖ N̂ ; hence the same will be true for the induced morphism
F ⊗ON̂X

Gλ → F . In other words, this morphism is an isomorphism in the quo-

tient category KbCohG
∨×T∨

fr (N̂X )/KbCohG
∨×T∨

fr (N̂X )∂X . If N is as in Lemma 6.2.4,
this argument shows that in the diagram (6.2.20) we can assume that the terms of F
are all direct sums of objects of the form M ⊗ kT∨(−η) ⊗ ON̂X

with M in Rep(G∨)

and η ∈ X∨
+ which satisfies ⟨η, α⟩ ≥ N for any simple root α.

For such M and η we have

Hom
KbCohG

∨×T∨
fr (N̂X )

(M ⊗ kT∨(−η)⊗ ON̂X
,ON̂X

[n])

=

{(
M∗ ⊗ O(N̂X )−η

)G∨

if n = 0;

0 otherwise

and

HomDbCohG
∨
(Ñ )(M ⊗ OÑ (−η),OÑ [n]) =

{(
M∗ ⊗ Γ(Ñ ,OÑ (η))

)G∨

if n = 0;

0 otherwise
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(see (6.2.1) and Remark 6.2.5). In view of these isomorphisms and (6.2.8),
Lemma 6.2.4 says that the functor (6.2.18) induces an isomorphism between
these Hom-spaces. By the 5-lemma, it then follows that this functor induces an
isomorphism

Hom
KbCohG

∨×T∨
fr (N̂X )

(G ,ON̂X
[n])

∼−→ HomDbCohG
∨
(Ñ )(G

′,OÑ [n])

for any complex G whose components are direct sums of objects of this form (where
G ′ is the image of G ). In particular, this property holds for the complex F considered
above, which finishes the proof of injectivity.

The proof of surjectivity will use similar tools. Namely, consider a morphism

f : V ⊗ OÑ (µ) → OÑ [n] in DbCohG
∨
(Ñ ). Choose λ ∈ X∨

+ such that λ − µ satisfies
⟨η, α⟩ ≥ N for any simple root α. Then if Gλ is as above and G ′

λ is its image
under (6.2.18), the arguments above show that the composition

V ⊗ OÑ (µ)⊗ G ′
λ → V ⊗ OÑ (µ)⊗ OÑ

f−→ OÑ [n]

(where the first map is induced by (6.2.21)) is the image of a morphism

V ⊗ kT∨(µ)⊗ Gλ → ON̂X
[n]

in KbCohG
∨×T∨

fr (N̂X ). Hence f is the image of the morphism represented by the
diagram

V ⊗ kT∨(µ)⊗ ON̂X
← V ⊗ kT∨(µ)⊗ Gλ → ON̂X

[n],

which finishes the proof.

Remark 6.2.11. — In [AB, Lemma 20], the authors prove that the category

KbCohG
∨×T∨

fr (N̂X )∂X is the smallest full subcategory of KbCohG
∨×T∨

fr (N̂X ) which
contains the objects Kλ (for λ ∈ X∨

+) and is stable under tensoring with objects of
Rep(G∨ × T∨), taking cones, applying cohomological shifts, and taking direct sum-
mands. It turns out that this statement is not strictly needed for the proof of the
main result of this chapter. We will therefore not review its proof.

6.3. Construction of the functor

For the remainder of this chapter, we work with k = Qℓ.

6.3.1. Equivariant perverse sheaves on FlG. — As in §5.3.1 we will consider
Qℓ-sheaves on FlG. More specifically we will denote by Db

I (FlG,Qℓ) the I-equivariant
derived category of such sheaves, and will consider its monoidal product ⋆I . We will
choose once and for all a trivialization of the sheaf Zℓ(1) on Spec(F), and use it to
omit Tate twists in all our constructions below. For brevity, we introduce the notation

PI := PervI(FlG,Qℓ) ⊂ Db
I (FlG,Qℓ)

and
Z := Z ◦ S−1 : Rep(G∨)→ PI .

Our construction will use the Wakimoto sheaves from Section 4.2. We will only
use these perverse sheaves in the case where the closed Weyl chamber is the dominant
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one, so that Λ = X∨
+. For simplicity we will sometimes omit “X∨

+” in some notation.

Recall the exact category Perv
X∨

+

I (FlG,Qℓ) of I-equivariant perverse sheaves admitting
a Wakimoto filtration, see §4.3.2. Here, since we are working with field coefficients,
this category is stable under the convolution product ⋆I , and hence admits a natural
structure of a monoidal category. Moreover, the convolution product is exact in each
variable.

We are now ready to explain the construction of a functor

(6.3.1) F : DbCohG
∨
(Ñ )→ DbPI .

6.3.2. “Extension” of a restriction functor. — Before proceeding, we explain
a general construction on which we will rely. Suppose we are given an algebraically
closed field k, a k-algebraic group H, a subgroupK ⊂ H, and commutative k-algebras
A,A′ endowed with algebraic actions of K and H respectively. The question we con-
sider is as follows. We denote by A-modK the category of K-equivariant A-modules
which are finitely generated over A, and consider the exact symmetric monoidal func-
tor

(6.3.2) Rep(H)→ A-modK

sending V to V|K⊗A (endowed with the diagonal action of K, and the natural action

of A). (The symmetric monoidal structure on A-modK we consider here is that

provided by tensor product over A.) We also denote by A′-modHfr the full subcategory
of the category of H-equivariant A′-modules whose objects are the “free” modules,
i.e. those of the form V ⊗ A′ with V in Rep(H). (As above, here the H-action is
the diagonal action, and the A′-module structure is the natural one.) We want to

consider the question of “extending” the functor (6.3.2) to A′-modHfr , i.e. to define a
k-linear symmetric monoidal functor

A′-modHfr → A-modK

whose composition with the natural functor Rep(H) → A′-modHfr (defined by V 7→
V ⊗ A′) is (6.3.2). We have no choice for the definition of this functor on objects: it
must send V ⊗ A′ to V|K ⊗ A. The monoidal structure is also determined. But we
have to understand what this functor does on morphisms.

We claim that the datum of such an extension is equivalent to the datum of a
K-equivariant algebra morphism A′ → A. Indeed, one direction is easy: given
a morphism A′ → A, the tensor product A ⊗A′ − defines the wished-for functor
A′-modHfr → A-modK . On the other hand, suppose we are given an extension of (6.3.2)
to a symmetric monoidal functor

(6.3.3) A′-modHfr → A-modK .

Then the H-module O(H) (with respect to multiplication of H on itself on the left)
defines in a natural way an ind-object(3) in Rep(H). Tensoring with A′ we obtain an

(3)For the general theory of ind-objects in categories, we refer to [KS2]. The category of ind-objects

in a category A will be denoted Ind(A).
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ind-object O(H)⊗A′ in A′-modHfr , which satisfies

HomInd(A′-modHfr )
(A′,O(H)⊗A′) = A′

by Frobenius reciprocity. In fact this identification is even an algebra isomorphism,
if the left-hand side is endowed with the product defined as follows: given φ : A′ →
O(H)⊗A′ and ψ : A′ → O(H)⊗A′, the product φ · ψ is the composition

A′ φ−→ O(H)⊗A′ id⊗ψ−−−→ O(H)⊗ O(H)⊗A′ → O(H)⊗A′,

where the rightmost map is induced by the product morphism in the algebra O(H).
This identification is alsoH-equivariant, for theH-action on the left-hand side induced
by the right multiplication action of H on O(H).

The extension of our functor (6.3.3) to ind-objects provides an H-equivariant al-
gebra morphism

HomInd(A′-modHfr )
(A′,O(H)⊗A′)→ HomInd(A-modK)(A,O(H)⊗A),

where the product and the H-action on the right-hand side are defined as above. Now
HomInd(A-modK)(A,O(H)⊗A) identifies with

(O(H)⊗A)K ,

and using the restriction morphism O(H)→ O(K) we obtain a K-equivariant algebra
morphism

(O(H)⊗A)K → (O(K)⊗A)K = A.

Composing these two constructions we obtain the wished-for K-equivariant algebra
morphism A′ → A.

It is an easy exercise to check that these two constructions are inverse to each
other.

Example 6.3.1. — One case we will encounter in particular is when A′ = O(h) for

h the Lie algebra of H. In this case the category A′-modHfr identifies with the full

subcategory CohHfr (h) of the category of H-equivariant coherent sheaves on h whose
objects are of the form V ⊗ Oh for some V in Rep(H). Note that the datum of a
K-equivariant algebra morphism O(h)→ A is equivalent to the datum of a morphism
of K-modules h∗ → A, i.e. of a K-invariant element in h⊗A.

In this case, the correspondence between extensions of the functor (6.3.2) to

CohHfr (h) and K-invariant elements in h ⊗ A admits another equivalent formulation,
as follows. Note that for any V in Rep(H), the object V ⊗ Oh admits a canonical

endomorphism fcanV (as an object of CohHfr (h)) defined at the level of global sections
as the composition

V ⊗ O(h)→ V ⊗ h⊗ h∗ ⊗ O(h)→ V ⊗ O(h)

where the first map sends v ⊗ f to v ⊗ idh ⊗ f (here idh is regarded as an element
in Endk(h) ∼= h ⊗ h∗) and the second map sends v ⊗ x ⊗ ξ ⊗ f to (x · v) ⊗ (ξf).
(Here in the first factor we consider the action of h on V obtained from the H-
action by differentiation, and in the second factor we consider the multiplication in
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O(h) = S(h∗). This construction is very similar to that encountered in (6.2.9).) It is
easily seen that for V1, V2 in Rep(H) we have

fcanV1⊗V2
= fcanV1

⊗ idV2⊗Oh
+ idV1⊗Oh

⊗ fcanV2
.

Therefore, given an extension of the functor (6.3.2) to CohHfr (h), by taking the images
of these morphisms we obtain, for any V in Rep(H), a K-equivariant endomorphism
fV of V ⊗A, this collection satisfying

fV1⊗V2
= fV1

⊗A idV2⊗A + idV1⊗A ⊗A fV2

for V1, V2 in Rep(H). Forgetting the K-equivariance, Tannakian formalism ensures
that such a datum determines an element in h⊗A, see e.g. [YZ, p. 361]. The fact that
each fV isK-equivariant is equivalent to the property that this element isK-invariant.

We leave it to the reader to check that the element in (h⊗ A)K described by this
procedure is the same as the one produced by the more general considerations of the
present subsection. In this way we obtain that the data of the following structures
are equivalent:

1. an extension of the functor V 7→ V ⊗ A to a k-linear (symmetric) monoidal

functor CohHfr (h)→ A-modK ;
2. a K-equivariant algebra morphism O(h)→ A;
3. a K-invariant element in h⊗A;
4. for any V in Rep(H), aK-equivariant endomorphism fV of V ⊗A, this collection

satisfying

fV1⊗V2 = fV1 ⊗A idV2⊗A + idV1⊗A ⊗A fV2

for V1, V2 in Rep(H).

Under this correspondence, the collection (fV : V ∈ Rep(H)) attached to an extension

φ : CohHfr (h)→ A-modK is given by fV = φ(fcanV ).

6.3.3. Starting point: central and Wakimoto sheaves. — We start with the
functor

F : Rep(G∨ × T∨)→ Perv
X∨

+

I (FlG,Qℓ)
defined as follows. Any object V in Rep(G∨ × T∨) can be written canonically as a
direct sum of tensor products

(6.3.4) V =
⊕
λ∈X∨

V λ ⊗QℓT∨(λ)

for some V λ ∈ Rep(G∨) (with only finitely many nonzero terms). Our functor then
sends V to ⊕

λ

Z (V λ) ⋆I Jλ(Qℓ).

One defines a monoidal structure on this functor as follows: given V1 and V2 in
Rep(G∨ × T∨), with canonical decompositions (6.3.4)

V1 =
⊕
λ∈X∨

V λ1 ⊗QℓT∨(λ) and V2 =
⊕
λ∈X∨

V λ2 ⊗QℓT∨(λ),
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we have

V1 ⊗ V2 =
⊕
λ

 ⊕
µ,ν

µ+ν=λ

V µ1 ⊗ V ν2

⊗QℓT∨(λ).

We define the isomorphism

(6.3.5) F (V1 ⊗ V2)
∼−→ F (V1) ⋆

I F (V2)

as the isomorphism

⊕
λ

 ⊕
µ,ν

µ+ν=λ

Z (V µ1 ⊗ V ν2 )

 ⋆I Jλ(Qℓ)

∼−→

(⊕
λ′

Z (V λ
′

1 ) ⋆I Jλ′(Qℓ)

)
⋆I

(⊕
λ′′

Z (V λ
′′

2 ) ⋆I Jλ′′(Qℓ)

)
induced by the “centrality” isomorphism (σS−1(V λ′′

2 ),Jλ′ (Qℓ)
)−1, the “monoidality” iso-

morphism ϕS−1(V λ′
1 ),S−1(V λ′′

2 ), and the canonical isomorphism Jλ′(Qℓ) ⋆I Jλ′′(Qℓ)
∼−→

Jλ′+λ′′(Qℓ) (see Lemma 4.2.7).
Given V1, V2 in Rep(G∨ × T∨), there exists a canonical isomorphism

(6.3.6) F (V1) ⋆
I F (V2)

∼−→ F (V2) ⋆
I F (V1)

induced by the appropriate centrality isomorphisms and the composition of canon-
ical isomorphisms Jλ′(Qℓ) ⋆I Jλ′′(Qℓ)

∼−→ Jλ′+λ′′(Qℓ)
∼−→ Jλ′′(Qℓ) ⋆I Jλ′(Qℓ) for

λ′, λ′′ ∈ X∨. Using Theorem 3.5.1, one can check that this morphism identifies,
via the appropriate monoidality isomorphisms, with the image under F of the obvi-
ous commutativity isomorphism V1 ⊗ V2

∼−→ V2 ⊗ V1. In particular, its inverse is the
similar morphism for the pair (V2, V1).

From the results of Section 4.8 we see that, identifying the category VectX
∨

Qℓ
of

finite-dimensional X∨-graded Qℓ-vector spaces with the category of finite-dimensional
algebraic T∨-modules, the composition GradX∨ ◦ F (see §4.7.2) identifies with the
restriction functor associated with the diagonal embedding T∨ ↪→ G∨ × T∨.

6.3.4. Extending the functor to free coherent sheaves on N̂X , I. — Our
next goal is to “extend” the functor F to a monoidal functor

F̃ : CohG
∨×T∨

fr (N̂X )→ Perv
X∨

+

I (FlG,Qℓ),

where the category CohG
∨×T∨

fr (N̂X ) is as in §6.2.5 (in the special case k = Qℓ). This
will be done in two steps, carried out in this and the next subsection.

The first step is motivated by the following observation: the source category for

our desired functor F̃ (and also for the functor F ) is a symmetric monoidal cate-
gory, while the target category is not symmetric. We will remedy this by replacing

Perv
X∨

+

I (FlG,Qℓ) by a (non-full!) subcategory which is “forced” to be symmetric.
Namely, we denote by C the category with
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– objects: those of Rep(G∨ × T∨);
– morphisms: for V , V ′ in Rep(G∨ × T∨), the space HomC (V, V ′) consists of

the morphisms φ : F (V ) → F (V ′) in Perv
X∨

+

I (FlG,Qℓ) such that for any V ′′ in
Rep(G∨ × T∨) the diagram

F (V ′′) ⋆I F (V ) F (V ′′) ⋆I F (V ′)

F (V ) ⋆I F (V ′′) F (V ′) ⋆I F (V ′′)

idF (V ′′)⋆
Iφ

(6.3.6) ≀ (6.3.6)≀
φ⋆I idF (V ′′)

commutes.

Remark 6.3.2. — To check that a given morphism F (V ) → F (V ′) belongs to
C , we a priori need to check the commutativity of the diagram above for all V ′′ in
Rep(G∨×T∨). However, using the decomposition (6.3.4) we see that it suffices to do
so in the following two special cases:

1. when V ′′ is a G∨-module (with trivial T∨-action);
2. when V ′′ = QℓT∨(λ) for some λ ∈ X∨.

Moreover, in the former case the commutativity is automatic by the functoriality of
the isomorphism σ−,− in the second variable. Hence only the objects V ′′ = QℓT∨(λ)
(with λ ∈ X∨) need to be considered. In fact, since any such module is isomorphic
to a tensor product of a module with λ dominant and the inverse of such a module,
it even suffices to consider the case λ ∈ X∨

+.

By definition, C is a monoidal category (with monoidal product denoted ⋆, which
coincides with the tensor product ⊗Qℓ

on objects), and there exists a canonical faithful

monoidal functor

(6.3.7) C → Perv
X∨

+

I (FlG,Qℓ).

Moreover, by construction F factors through a monoidal functor

F : Rep(G∨ × T∨)→ C .

We claimed above that C is symmetric; we are now ready to prove this claim.

Lemma 6.3.3. — The obvious commutativity constraint on Rep(G∨×T∨) provides
a commutativity constraint on the monoidal category C .

Proof. — The only property which requires a proof is the fact that our isomorphism
V1 ⋆ V2

∼−→ V2 ⋆ V1 is bifunctorial. For this we consider morphisms f : V1 → V ′
1 and

g : V2 → V ′
2 in C ; what we need to prove is that the diagram

F (V1) ⋆
I F (V2) F (V2) ⋆

I F (V1)

F (V ′
1) ⋆

I F (V ′
2) F (V ′

2) ⋆
I F (V ′

1)

(6.3.6)

∼

f⋆g g⋆f

(6.3.6)

∼
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commutes. However this square can be decomposed into two smaller squares as fol-
lows:

F (V1) ⋆
I F (V2) F (V2) ⋆

I F (V1)

F (V1) ⋆
I F (V ′

2) F (V ′
2) ⋆

I F (V1)

F (V ′
1) ⋆

I F (V ′
2) F (V ′

2) ⋆
I F (V ′

1).

(6.3.6)

∼

f⋆id id⋆f

(6.3.6)

∼

id⋆g g⋆id

(6.3.6)

∼

Here the upper (resp. lower) square commutes because f (resp. g) is a morphism in
C ; hence the outer square commutes as well.

Below we will also require the following easy claim.

Lemma 6.3.4. — For any V in Rep(G∨ × T∨), the functor V ∗ ⋆ (−) : C → C is
right adjoint to the functor V ⋆ (−) : C → C .

Proof. — To prove that these functors are adjoint, we need to construct morphisms
of functors

V ⋆ V ∗ ⋆ (−)→ id and id→ V ∗ ⋆ V ⋆ (−),
and check that these morphisms satisfy the zigzag condition. In fact these morphisms
can be chosen as those induced by the natural morphisms of G∨ × T∨-modules V ⊗
V ∗ → Qℓ and Qℓ → V ∗ ⊗ V .

We now consider the category Ind(C ) of ind-objects in C . Since the regular repre-
sentation O(G∨ × T∨) (with the action induced by left multiplication in G∨ × T∨) is
in a natural way an ind-object in the category Rep(G∨ × T∨), applying F we obtain
an object F (O(G∨ × T∨)) in Ind(C ). We set

A := HomInd(C )(1C , F (O(G∨ × T∨))).

More concretely we have

A = lim−→
V

HomC (1C , F (V ))

where V runs over the set of finite-dimensional (G∨×T∨)-submodules of O(G∨×T∨)
(ordered by inclusion), and if V ⊂ V ′ the induced map

HomC (1C , F (V ))→ HomC (1C , F (V
′))

is injective, since the same is true for the map

Hom
Perv

X∨
+

I (FlG,Qℓ)
(1C , F (V ))→ Hom

Perv
X∨

+
I (FlG,Qℓ)

(1C , F (V
′)).

We endow A with an associative product as follows. Given morphisms φ : 1C →
F (V ) and ψ : 1C → F (V ′) (where V and V ′ are finite-dimensional submodules of
O(G∨ × T∨)), we define the product φ · ψ as the composition

1C = 1C ⋆ 1C
φ⋆ψ−−−→ F (V ) ⋆ F (V ′)→ F (O(G∨ × T∨)),
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where the rightmost morphism is induced by the multiplication morphism V ⊗ V ′ →
O(G∨ × T∨). Using the symmetry of C , it is not difficult to check that this product
endows A with the structure of a commutativeQℓ-algebra. A very similar construction
provides, for any V in C , a structure of an A-module on

HomInd(C )(1C , F (V ) ⋆ F (O(G∨ × T∨))).

Since O(G∨ × T∨) admits a second G∨ × T∨-module structure (induced by right
multiplication inG∨×T∨), A also admits aG∨×T∨-action by algebra automorphisms,
which is easily seen (e.g. by reasoning in terms of comodules) to be algebraic. The
same construction provides, for any V in C , a G∨ × T∨-action on the A-module
HomInd(C )(1C , F (V ) ⋆ F (O(G∨ × T∨))), which makes it a G∨ × T∨-equivariant A-
module.

As in §6.3.2, we will denote by

A-modG
∨×T∨

fr

the full monoidal subcategory of the category of G∨ × T∨-equivariant A-modules
whose objects are those of the form V ⊗A with V in Rep(G∨ × T∨).

Proposition 6.3.5. — There is an equivalence of symmetric monoidal categories

H : C
∼−→ A-modG

∨×T∨

fr given by the formula

H(V ) = HomInd(C )(1C , F (V ) ⋆ F (O(G∨ × T∨))).

Proof. — Let V ∈ Rep(G∨ × T∨). In this proof, we consider four different actions of
G∨ × T∨ on the vector space V ⊗ O(G∨ × T∨)

1. the “default” action, in which G∨ × T∨ acts by the given action on V , and by
left multiplication on O(G∨ × T∨);

2. the “left-only” action, in which G∨ × T∨ acts trivially on V , and by left multi-
plication on O(G∨ × T∨);

3. the “right-only” action, in which G∨ × T∨ acts trivially on V , and by right
multiplication on O(G∨ × T∨);

4. the “mixed” action, in which G∨ × T∨ acts by the given action on V , and by
right multiplication on O(G∨ × T∨).

Recall that V ⊗ O(G∨ × T∨) identifies canonically with the space of algebraic maps
G∨ × T∨ → V . From this perspective, the four actions are given by the following
formulas (here g ∈ G∨ × T∨, and f : G∨ × T∨ → V is an algebraic map):

default: (g ·def f)(x) = gf(g−1x),

left-only: (g ·l-o f)(x) = f(g−1x),

right-only: (g ·r-o f)(x) = f(xg),

mixed: (g ·mix f)(x) = gf(xg).

There is a vector space automorphism

φ : V ⊗ O(G∨ × T∨)→ V ⊗ O(G∨ × T∨) given by φ(f)(x) = x−1f(x)
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for f ∈ V ⊗O(G∨ × T∨) and x ∈ G∨ × T∨. This map has the following intertwining
properties:

φ(g ·def f) = g ·l-o φ(f), φ(g ·r-o f) = g ·mix φ(f).

In the formula for H(V ), we regard O(G∨ × T∨) as a G∨ × T∨-module under left
multiplication. By monoidality of F , we have

(6.3.8) H(V ) = HomInd(C )(1C , F (V ) ⋆ F (O(G∨ × T∨)))

∼= HomInd(C )(1C , F (V ⊗ O(G∨ × T∨))),

where on the right-hand side we use the default action on V ⊗ O(G∨ × T∨). Now
apply φ: we have

(6.3.9) HomInd(C )(1C , F (V ⊗ O(G∨ × T∨)))
φ−→
∼

HomInd(C )(1C , F (V ⊗ O(G∨ × T∨)))

∼= V ⊗HomInd(C )(1C , F (O(G∨ × T∨))) ∼= V ⊗A.

In the second term, V ⊗ O(G∨ × T∨) carries the left-only action. In particular, V
is a trivial G∨ × T∨-representation, so it can be brought outside the Hom-group as
shown in the third term. Combining (6.3.8) and (6.3.9), we obtain an isomorphism
of A-modules

(6.3.10) H(V ) ∼= V ⊗A.

Recall that the G∨ × T∨-action on A, resp. on HomInd(C )(1C , F (V ) ⋆ F (O(G∨ ×
T∨))), is induced by the right multiplication action on O(G∨ × T∨), resp. the right-
only action on V ⊗O(G∨×T∨). Since the first isomorphism in (6.3.9) intertwines the
right-only action with the mixed action, we see that (6.3.10) is in fact an isomorphism
of G∨ × T∨-equivariant A-modules. We then conclude that the functor H is well

defined (i.e. that it indeed takes values in A-modG
∨×T∨

fr ), and essentially surjective.
Given V, V ′ in C we have a natural morphism H(V )⊗H(V ′)→ H(V ⋆ V ′), or

(6.3.11) HomInd(C )(1C , F (V ) ⋆ F (O(G∨ × T∨)))⊗
HomInd(C )(1C , F (V

′) ⋆ F (O(G∨ × T∨)))

→ HomInd(C )(1C , F (V ⊗ V ′) ⋆ F (O(G∨ × T∨))),

defined as follows: the image of φ⊗ ψ ∈ H(V )⊗H(V ′) is the composition

1C
φ⋆ψ−−−→ F (V ) ⋆ F (O(G∨ × T∨)) ⋆ F (V ′) ⋆ F (O(G∨ × T∨))

∼= F (V ) ⋆ F (V ′) ⋆ F (O(G∨ × T∨)) ⋆ F (O(G∨ × T∨))

→ F (V ⊗ V ′) ⋆ F (O(G∨ × T∨)),

where the last arrow is induced by the monoidal structure on F and the product
morphism O(G∨×T∨)⊗O(G∨×T∨)→ O(G∨×T∨). Combining (6.3.11) with (two
instances of) the isomorphism (6.3.10), we obtain a monoidal structure on H.
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To conclude, what we have to check is that H is also fully faithful, or in other
words that for any V, V ′ in C the induced morphism

(6.3.12) HomC (V ′, V )→ Hom
A-modG∨×T∨

fr

(V ′ ⊗A, V ⊗A)

is an isomorphism. In view of Lemma 6.3.4, we can assume that V ′ = Qℓ = 1C ; then

the right-hand side identifies with (V ⊗ A)G∨×T∨
, where G∨ × T∨ acts diagonally.

Now we consider the extension of H to ind-objects, and take V to be the ind-object
O(G∨ × T∨). In this setting, the left-hand side in (6.3.12) identifies (by definition)
with A, and in the right-hand side we find

(O(G∨ × T∨)⊗A)G
∨×T∨

= A.

It is easily seen that under these identifications the map (6.3.12) identifies with idA,
and hence is an isomorphism. Since any object in Rep(G∨×T∨) is a direct summand
in a direct sum of copies of O(G∨ × T∨), it follows that (6.3.12) is an isomorphism
for any V in Rep(G∨ × T∨), which finishes the proof.

6.3.5. Extending the functor to free coherent sheaves on N̂X , II. — From

the proof of Proposition 6.3.5 we see that, identifying C with A-modG
∨×T∨

fr through
the equivalence of this statement, the functor F identifies with V 7→ V ⊗ A. We are
thus in the setting of §6.3.2 (with H = K = G∨ × T∨), and now want to extend our
functor to a symmetric monoidal functor

CohG
∨×T∨

fr (N̂X )→ A-modG
∨×T∨

fr .

For this we need to construct a morphism of G∨ × T∨-equivariant algebras

O(N̂X )→ A.

Here the left-hand side is by definition a quotient of O(g∨ × X ) = O(g∨) ⊗ O(X );
therefore we start by defining equivariant algebra morphisms O(g∨)→ A and O(X )→
A.

We recall that for any V in Rep(G∨) we have the logarithm of monodromy endo-
morphism nZ (V ) of Z (V ) = F (V ⊗ QℓT∨(0)) (see §9.5.4), which in this chapter we
will denote for simplicity by nV . By an analogue of Proposition 3.4.2 we have

(6.3.13) nV⊗V ′ = nV ⋆
I idZ (V ′) + idZ (V ) ⋆

I nV ′ .

As explained in Example 6.3.1, the datum of such a collection of endomorphisms
determines a G∨-equivariant algebra morphism O(g∨)→ A. In fact, since for any V
our automorphism of V ⊗ A is G∨ × T∨-equivariant, this algebra morphism is even
G∨ × T∨-equivariant (where T∨ acts trivially on O(g∨)).

Next, we turn to the construction of the G∨ × T∨-equivariant algebra morphism
O(X )→ A. In view of (6.2.3), to define a morphism of G∨×T∨-modules O(X )→ A
we need to define, for any λ ∈ X∨

+, a morphism of G∨ × T∨-modules

(6.3.14) N(λ)⊗QℓT∨(−λ)→ A.
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Recall that in §4.6.3 (see also Lemma 1.5.2) we have considered, for any λ ∈ X∨
+, a

canonical surjective morphism

fλ : Z (N(λ))→ Jλ(Qℓ)

in Perv
X∨

+

I (FlG,Qℓ). Here the left-hand side identifies with F (N(λ)⊗QℓT∨(0)), and the

right-hand side with F (Qℓ⊗QℓT∨(λ)), where here Qℓ denotes the trivial G∨-module.

Lemma 6.3.6. — The morphism fλ is a morphism in C .

Proof. — In view of Remark 6.3.2, what we have to prove is that for any µ ∈ X∨
+

the following diagram commutes, where the right-hand vertical maps are the isomor-
phisms provided by Lemma 4.2.7:

Jµ(Qℓ) ⋆I Z(J∗(λ,Qℓ)) Jµ(Qℓ) ⋆I Jλ(Qℓ)

Jλ+µ(Qℓ)

Z(J∗(λ,Qℓ)) ⋆I Jµ(Qℓ) Jλ(Qℓ) ⋆I Jµ(Qℓ).

(σJ∗(λ,Qℓ),Jµ(Qℓ)
)−1

id⋆I fλ

≀

≀

fλ⋆
I id

To do this it suffices to check that the compositions of the two maps considered here
with the surjective morphism

fµ ⋆
I id : Z(J∗(µ,Qℓ)) ⋆I Z(J∗(λ,Qℓ))→ Jµ(Qℓ) ⋆I Z(J∗(λ,Qℓ))

coincide. This is exactly the content of Proposition 4.6.12.

Applying the equivalence of Proposition 6.3.5 to fλ we obtain a canonical morphism

N(λ)⊗A→ QℓT∨(λ)⊗A.
Restricting to N(λ)⊗1 and then tensoring with QℓT∨(−λ), we deduce the sought-after
morphism (6.3.14). Then Lemma 1.5.5, Remark 4.6.13 and Lemma 6.2.1 imply that
the morphism O(X )→ A so constructed is an algebra morphism.

Combining the two constructions above we obtain a G∨ × T∨-equivariant algebra
morphism

(6.3.15) O(g∨ ×X )→ A.

Lemma 6.3.7. — The morphism (6.3.15) factors (uniquely) through a G∨ × T∨-
equivariant algebra morphism

O(N̂X )→ A.

Proof. — By definition (see §6.2.2), the algebra O(N̂X ) is the quotient of O(g∨×X )
by the ideal generated by the images of the maps (6.2.11) for all λ ∈ X∨

+. Now, recall
from Lemma 4.6.9 (see also the comments at the end of §4.6.3) that we have

fλ ◦mN(λ) = fλ,

so that
fλ ◦ nN(λ) = 0.
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Applying the equivalence of Proposition 6.3.5 (see also Example 6.3.1), this shows
that the composition of (6.2.11) with (6.3.15) vanishes, which implies our lemma.

Finally, we can define the monoidal functor

F̃ : CohG
∨×T∨

fr (N̂X )→ Perv
X∨

+

I (FlG,Qℓ)

as the composition

CohG
∨×T∨

fr (N̂X )→ A-modG
∨×T∨

fr
∼−→ C

(6.3.7)−−−−→ Perv
X∨

+

I (FlG,Qℓ)

where the first arrow is given by tensor product with A (with respect to the morphism
of Lemma 6.3.7) and the second one is the inverse of the equivalence of Lemma 6.3.5.
By construction, for any V in Rep(G∨) and λ ∈ X∨ we have

(6.3.16) F̃ (V ⊗ ON̂X
) = Z (V ), F̃ (QℓT∨(λ)⊗ ON̂X

) = Jλ(Qℓ).

Moreover, for any λ ∈ X∨
+, the image of the canonical morphism N(λ) ⊗ ON̂X

→
QℓT∨(λ)⊗ON̂X

obtained from the multiplication map N(λ)⊗O(X )→ QℓT∨(λ)⊗O(X )
(see (6.2.3)) is fλ.

For the next statement, recall the “base point” eN̂ ∈ N̂ from §6.2.2. This point is
stabilized by the diagonal copy of T∨ in G∨ × T∨. As a consequence, restriction to
this point defines a functor

(6.3.17) CohG
∨×T∨

fr (N̂X )→ Rep(T∨).

Lemma 6.3.8. — The composition

GradX∨ ◦ F̃ : CohG
∨×T∨

fr (N̂X )→ Rep(T∨)

is isomorphic to (6.3.17).

Proof. — As explained in §6.3.3, the composition of F̃ with the natural functor

Rep(G∨×T∨)→ CohG
∨×T∨

fr (N̂X ) is the restriction functor associated with the diago-
nal embedding T∨ ↪→ G∨×T∨. We are thus again in the setting considered in §6.3.2,
now with H = G∨×T∨ and K = T∨ (embedded diagonally). The functor GradX∨ ◦F̃
must be induced by a T∨-equivariant algebra morphism O(N̂X ) → Qℓ, which itself
is determined by the datum of a suitable endomorphism of the composition of the
restriction to Rep(G∨) with the forgetful functor Rep(T∨) → VectQℓ

(which will de-

fine an algebra morphism O(g∨) → Qℓ), and of suitable morphisms of T∨-modules
N(λ)⊗QℓT∨(−λ)→ Qℓ (which will define an algebra morphism O(X )→ Qℓ). In the
present setting the first datum is the trivial endomorphism (by Lemma 4.6.9) and the
second datum is induced by the projection N(λ)→ N(λ)λ on the highest weight line

(see §4.6.3). Therefore the associated morphism O(N̂X ) → Qℓ is evaluation at eN̂ ,
and the desired claim follows.
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6.3.6. Factorization through coherent sheaves on Ñ . — Now that we have

the functor F̃ , to deduce the desired functor (6.3.1) we will use the description of the

category DbCohG
∨
(Ñ ) provided by Proposition 6.2.10.

Proposition 6.3.9. — There exists a unique triangulated functor

F : DbCohG
∨
(Ñ )→ DbPI

such that the following diagram (where the left vertical arrow is induced by restriction

to the open subset N̂ followed by the equivalence (6.2.7), and the right vertical arrow
is the obvious functor) commutes up to isomorphism:

KbCohG
∨×T∨

fr (N̂X ) KbPI

DbCohG
∨
(Ñ ) DbPI .

Kb(F̃ )

F

Proof. — By Proposition 6.2.10 and the universal property of Verdier quotients

(see [SP, Tag 05RJ]), what we have to prove is that the composition of Kb(F̃ )
with the canonical functor KbPI → DbPI vanishes on the triangulated subcategory

KbCohG
∨×T∨

fr (N̂X )∂X , or in other words that for any F in KbCohG
∨×T∨

fr (N̂X )∂X the

complex Kb(F̃ )(F ) is acyclic. Now, recall that F̃ takes values in the subcategory

Perv
X∨

+

I (FlG,Qℓ). By Proposition 4.6.1, to finish the proof, it suffices to show that

for any F in KbCohG
∨×T∨

fr (N̂X )∂X the complex Kb(GradX∨ ◦ F̃ )(F ) is acyclic.

However, in view of Lemma 6.3.8, the complex Kb(GradX∨ ◦ F̃ )(F ) is the pullback

of F under the embedding {eN̂ } ↪→ N̂X . Denoting (temporarily) this map by f ,

since any object in CohG
∨×T∨

fr (N̂X ) is flat over ON̂X
we have a commutative diagram

KbCohG
∨×T∨

fr (N̂X ) KbRep(T∨) KbVectQℓ

DbCohG
∨×T∨

(N̂X ) D−VectQℓ
,

Kb(f∗) ForT
∨

Lf∗

where the vertical arrows are the obvious functors. Now the bottom arrow fac-
tors through the restriction functor DbCohG

∨×T∨
(N̂X ) → DbCohG

∨×T∨
(N̂ ), which

kills all objects in KbCohG
∨×T∨

fr (N̂X )∂X . We deduce, as desired, that for any F in

KbCohG
∨×T∨

fr (N̂X )∂X the complex Kb(GradX∨ ◦ F̃ )(F ) is acyclic.

From (6.3.16) we obtain that for any V in Rep(G∨) and λ ∈ X∨ we have

(6.3.18) F (V ⊗ OÑ ) = Z (V ), F (OÑ (λ)) = Jλ(Qℓ).

Remark 6.3.10. — 1. Below we will not really work with the functor F , but
rather with its composition with the realization functor

(6.3.19) real : DbPI → Db
I (FlG,Qℓ).
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BothDbCohG
∨
(Ñ ) andDb

I (FlG,Qℓ) are monoidal categories (where the product

on DbCohG
∨
(Ñ ) is the derived tensor product over OÑ ). We claim that real◦F

is canonically equipped with the structure of a monoidal functor. To see this, we
must recall some details of the construction of the realization functor (see [Bĕı1];

see also [Rd] and [AMRW, §2.5]). One first considers a filtered version D̃ of
Db
I (FlG,Qℓ), constructed e.g. using appropriate filtered complexes on acyclic

resolutions of FlG in the sense of [BL]. Then the convolution bifunctor ⋆I in-

duces a similar bifunctor on D̃ such that the forgetful functor D̃ → Db
I (FlG,Qℓ)

is monoidal. One considers the full subcategory Ã ⊂ D̃ whose objects are the
complexes F such that gri(F ) ∈ PI [−i] for all i ∈ Z. Then one observes that

Ã is canonically equivalent to CbPI , and that the composition

CbPI
∼←− Ã ↪→ D̃ → Db

I (FlG,Qℓ)

factors through DbPI , giving rise to (6.3.19). One can similarly consider the

subcategory Ã′ ⊂ D̃ whose objects are the complexes F such that gri(F ) ∈
Perv

X∨
+

I (FlG,Qℓ)[−i] for all i ∈ Z. Then Ã′ is canonically isomorphic to the

category CbPerv
X∨

+

I (FlG,Qℓ), and the composition

CbPerv
X∨

+

I (FlG,Qℓ)
∼←− Ã′ ↪→ D̃ → Db

I (FlG,Qℓ)

factors through a functor KbPerv
X∨

+

I (FlG,Qℓ) → Db
I (FlG,Qℓ), which coincides

with the composition of (6.3.19) with the natural functorKbPerv
X∨

+

I (FlG,Qℓ)→
DbPI . In this variant, since Perv

X∨
+

I (FlG,Qℓ) is stable under convolution, the

subcategory Ã′ is stable under the convolution product on D̃, and it is not

difficult to check that the resulting functor KbPerv
X∨

+

I (FlG,Qℓ)→ Db
I (FlG,Qℓ)

is monoidal. Hence its composition with the monoidal functor Kb(F̃ ) is
also monoidal. Then, by construction of F , we deduce that the composition
of (6.3.19) with F is monoidal.

2. Let us sketch a slightly different construction of the functor F , which does
not rely on Proposition 6.2.10. Since the functor of taking (G∨ × T∨)-fixed

points is exact, any object of CohG
∨×T∨

fr (N̂X ) is projective in the category

CohG
∨×T∨

(N̂X ). Moreover, any object F of CohG
∨×T∨

(N̂X ) is a quotient of

an object of CohG
∨×T∨

fr (N̂X ): in fact it is a quotient of V ⊗ ON̂X
where V is

any finite-dimensional (G∨ × T∨)-stable generating subspace of Γ(N̂X ,F ) (as

a module over O(N̂X )). As a consequence, the natural functor

K−CohG
∨×T∨

fr (N̂X )→ D−CohG
∨×T∨

(N̂X )

is an equivalence of categories. Using this equivalence, from F̃ we obtain a
functor

D−CohG
∨×T∨

(N̂X )→ K−Perv
X∨

+

I (FlG,Qℓ),

which we can then restrict to DbCohG
∨×T∨

(N̂X ).
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Consider the full subcategory DbCohG
∨×T∨

(N̂X )∂X ⊂ DbCohG
∨×T∨

(N̂X ) of
objects supported set-theoretically on the preimage of ∂X . The arguments in
the proof of Proposition 6.3.9 show that the functor so obtained sends any object

of DbCohG
∨×T∨

(N̂X )∂X to a complex whose image under the associated graded
functor is acyclic, hence which is acyclic by Remark 4.6.3. Hence it factors

through the Verdier quotient DbCohG
∨×T∨

(N̂X )/DbCohG
∨×T∨

(N̂X )∂X . Now
by [AriB, Remark after Lemma 2.12], restriction induces an equivalence

DbCohG
∨×T∨

(N̂X )/DbCohG
∨×T∨

(N̂X )∂X
∼−→ DbCohG

∨×T∨
(N̂ ) ∼= DbCohG

∨
(Ñ ).

Using this equivalence we obtain a functor

DbCohG
∨
(Ñ )→ D−PI .

Since this functor sends the line bundles OÑ (λ) to bounded complexes, in view

of Lemma 6.2.8 it takes values in DbPI .

6.4. Antispherical and Iwahori–Whittaker categories

6.4.1. The antispherical category. — Since the I-orbits on FlG are parametrized
by W , so are the simple objects in PI . More precisely, recall that for any w ∈ W
we have the standard and costandard perverse sheaves ∆I

w(Qℓ) and ∇Iw(Qℓ). (In this
chapter, for simplicity we will rather denote these objects by ∆I

w and∇Iw respectively.)
Then there exists, up to scalar, a unique nonzero morphism ∆I

w → ∇Iw; its image is
simple, and denoted IC I

w (see §4.1.2). Then the assignment w 7→ IC I
w induces a

bijection between W and the set of isomorphism classes of simple objects in PI .
We will denote by fW ⊂ W the subset of elements w which are minimal in Wfw.

(Here, “minimal” means that the element w is minimal in the Bruhat order among
the elements in Wfw. The general theory of Coxeter systems guarantees that there
exists one such element in each Wf -coset, and that this element is also characterized
as the unique element of minimal length in Wfw.)

In this section, what we call the “antispherical category” is the Serre quotient Pasph
I

of the abelian category PI by the Serre subcategory generated by the simple objects

IC I
w with w /∈ fW . The quotient functor PI → Pasph

I will be denoted Πasph. (For
the construction and main properties of Serre quotients of abelian categories, we refer
to [Gab].)

6.4.2. The Iwahori–Whittaker category. — Recall the Borel subgroup B+ ⊂ G
opposite to B, and denote by I+ ⊂ GO the corresponding Iwahori subgroup. We
also let I+u be the pro-unipotent radical of I+, i.e. the preimage of the unipotent
radical U+ of B+ under the natural map I+ → B+. We choose, for each simple
root α, an isomorphism between the root subgroup of U+ associated with α and the
additive group Ga,F. We then denote by χ′ the group homomorphism obtained as the
composition

U+ → U+/(U+, U+) ∼=
∏

α simple root

Uα ∼=
∏

α simple root

Ga,F → Ga,F
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where the last arrow is the sum map. We will also denote by χ the composition of χ′

with the projection I+u → U+.
We fix an Artin–Schreier local system LAS on Ga,F. Recall that, concretely, this

means that we choose a primitive p-th root of unity ζ in Qℓ, and denote by LAS

the summand of the pushforward of the constant sheaf under the Galois covering
Ga,F → Ga,F defined by x 7→ xp − x on which the Galois group Z/pZ acts via the
character n 7→ ζn. The essential property of this local system is that it satisfies

(6.4.1) H•(Ga,F,LAS) = H•
c(Ga,F,LAS) = 0.

We then define the derived category Db
IW(FlG,Qℓ) of Iwahori–Whittaker sheaves

on FlG as the (I+u , χ
∗(LAS))-equivariant derived category of Qℓ-sheaves on FlG. Con-

cretely, this category will be an inductive limit of subcategories of sheaves on each
closed finite union of I+u -orbits in FlG. Given such a union X of orbits, there exists a
normal subgroup K ⊂ I+u contained in ker(χ) (so that χ factors through a morphism
χK : I+u /K → Ga,F) such that I+u /K is of finite type, and such that the I+u -action
on X factors through an action of I+u /K. (These considerations are similar to those
encountered in [BR, §1.16.4].) Then Db

IW(X,Qℓ) is defined as the full subcategory

of the derived category of Qℓ-sheaves on X whose objects are the complexes F whose
pullback under the action morphism I+u /K×X → X is isomorphic to χ∗

K(LAS)⊠F .
(It is easily checked that this category does not depend on the choice of K up to
canonical equivalence.)

Even though this is not clear from the definition recalled above, it turns out that
the subcategory Db

IW(FlG,Qℓ) of the derived category of Qℓ-sheaves on FlG is tri-
angulated; see [AR1, Appendix A] for some details. It is then easily seen that the
perverse t-structure on the derived category of Qℓ-sheaves on FlG restricts to a t-
structure on Db

IW(FlG,Qℓ) (still called the perverse t-structure). The heart of this
t-structure will be denoted PIW .

Note that the same constructions as for the convolution product ⋆I on Db
I (FlG,k)

can be used to define a bifunctor

(−) ⋆I (−) : Db
IW(FlG,Qℓ)×Db

I (FlG,Qℓ)→ Db
IW(FlG,Qℓ)

which makes Db
IW(FlG,Qℓ) into a right module category over the monoidal category

(Db
I (FlG,Qℓ), ⋆I).

6.4.3. Statement. — The I+u -orbits on FlG are parametrized in the standard way
by W . Those which support a nonzero (I+u , χ

∗(LAS))-equivariant local system are
those corresponding to elements in the subset fW ⊂W . For any λ ∈ X we will denote
by wλ the minimal length element in Wf · t(λ), by FlIWG,λ the corresponding orbit, and

by Lχ,λ the unique rank-1 (I+u , χ
∗(LAS))-equivariant local system on FlIWG,λ. We also

denote by jIWλ : FlIWG,λ → FlG the embedding, and set

∆IW
λ := (jIWλ )!Lχ,λ[dim(FlIWG,λ)], ∇IW

λ := (jIWλ )∗Lχ,λ[dim(FlIWG,λ)].
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(These objects are perverse sheaves by [BBDG, Corollaire 4.1.3], since jIWλ is an
affine morphism.) As usual we have

(6.4.2) HomDb
IW(FlG,Qℓ)

(∆IW
λ ,∇IW

µ [n]) ∼=

{
Qℓ if λ = µ and n = 0;

0 otherwise.

Moreover, the image of any nonzero morphism ∆IW
λ → ∇IW

λ is simple; this simple
object will be denoted IC IW

λ . It is well known (and follows from the techniques
of [BGS, §§3.2–3.3]) that the category PIW has a natural structure of a highest
weight category (in the sense considered in [BR, §1.12.3]), with weight poset X (for

the order defined by λ ⪯ µ iff FlIWG,λ ⊂ FlIWG,µ) and standard, resp. costandard, objects

(∆IW
λ : λ ∈ X), resp. (∇IW

λ : λ ∈ X).

Remark 6.4.1. — For any λ ∈ X∨, the orbit FlIWG,λ is dense in the GO-orbit GO ·
zλI/I. Therefore, the inclusion relations among these orbits is closely related to the
inclusion relations among I-orbits in GrG, which is discussed e.g. in [AR2, §9.4]. In

particular, according to [AR2, Lemma 9.12], if FlIWG,λ ⊂ FlIWG,µ, then:

1. either µ− λ ∈ ZR, and λ belongs to the convex hull of Wf(µ) but not to Wf(µ)
2. or λ ∈Wf(µ), and if ν is the unique dominant weight in Wf(µ) and if x, y ∈Wf

are the unique elements of minimal length such that λ = x(ν) and µ = y(ν)
respectively, we have y ≤Bru x.

It also follows from [AR2, Lemma 9.12] that in the case where µ ∈ X∨
+, the coweights

λ such that FlIWG,λ ⊂ FlIWG,µ are exactly those such that N(µ)λ ̸= 0.

Note that since the closure FlIWG,0 = GO/I ∼= G/B does not contain any orbit FlIWG,λ
with λ ̸= 0, the natural morphism ∆IW

0 → ∇IW
0 is an isomorphism. We can then

consider the functor

AvIW : Db
I (FlG,Qℓ)→ Db

IW(FlG,Qℓ)

defined by

AvIW(F ) = ∆IW
0 ⋆I F .

The main result of the present section is the following statement.

Theorem 6.4.2. — 1. The functor AvIW is t-exact with respect to the perverse
t-structures on Db

I (FlG,Qℓ) and Db
IW(FlG,Qℓ).

2. The restriction of this functor to the hearts of these t-structures factors through

a fully faithful functor Pasph
I → PIW .

Remark 6.4.3. — We will see much later (see Corollary 6.6.2) that the functor

Pasph
I → PIW in Theorem 6.4.2(2) is in fact an equivalence of categories.



6.4. ANTISPHERICAL AND IWAHORI–WHITTAKER CATEGORIES 235

6.4.4. Some preliminaries. — In order to prove Theorem 6.4.2 we will need some
preparation. We begin with the following lemma.

Lemma 6.4.4. — For w ∈W we have AvIW(IC I
w) = 0 unless w ∈ fW .

Proof. — By definition we have AvIW(IC I
w) = ∆IW

0 ⋆I IC I
w. Now if w /∈ fW ,

there exists a simple reflection s in Wf such that sw < w. Let Js ⊂ GO denote
the corresponding “parahoric” subgroup; i.e., the preimage under GO → G of the
parabolic subgroup of G containing B and associated with the subset {s} of the
simple reflections. Then the perverse sheaf IC I

w is Js-equivariant. In particular,

there exists a complex F in Db
Js
(FlG,Qℓ) such that IC I

w = ForJsI (F ). (Here, ForJsI :

Db
Js
(FlG,Qℓ) → Db

I (FlG,Qℓ) is the natural forgetful functor.) Then by standard
properties of the convolution construction we have

∆IW
0 ⋆I IC I

w
∼= ((πs)∗∆

IW
0 ) ⋆Js F

where πs : FlG → GK /Js is the quotient morphism and ⋆Js is the convolution product
of complexes on GK /Js with Js-equivariant complexes on FlG. Now using (6.4.1) one
can check that (πs)∗∆

IW
0 = 0, which finishes the proof.

Lemma 6.4.5. — For any w ∈W we have

AvIW(∆I
w)
∼= ∆IW

λ and AvIW(∇Iw) ∼= ∇IW
λ ,

where λ ∈ X is the unique element such that Wf · w = Wf · wλ (or equivalently
Wf · w =Wf · t(λ)).

Proof. — When w ∈ fW , the claim follows (using arguments similar to those encoun-
tered in the proof of Lemma 4.1.4) from the observation that the multiplication map

induces an isomorphism FlIWG,0 ×̃FlG,w
∼−→ FlIWG,λ (where w = wλ), together with the

fact that ∆IW
0
∼= ∇IW

0 . (Here, following the same conventions as in §1.3.1, we write

FlIWG,0 ×̃FlG,w for (pGr)
−1(FlIWG,0 )×GO FlG,w.)

To deduce the first isomorphism in the general case, one proves that there exists
a morphism ∆I

wλ
→ ∆I

w whose cone is killed by AvIW . Indeed, write w = xwλ with

x ∈Wf . By Lemma 4.1.3, there exists an embedding IC I
e ↪→ ∆I

x whose cokernel has
only composition factors of the form IC I

y with y ∈Wf∖{e}. Convolving on the right

with ∆I
wλ

and using Lemma 4.1.4(1) we obtain a morphism ∆I
wλ
→ ∆I

w whose cone

belongs to the triangulated subcategory of Db
I (FlG,Qℓ) generated by the objects of

the form IC I
y ⋆

I ∆I
wλ

with y ∈Wf . Hence, to prove that this cone is indeed killed by

AvIW , we only have to note that in view of Lemma 6.4.4 we have AvIW(IC I
y ) = 0

for such y; it follows that

AvIW(IC I
y ⋆

I ∆I
wλ

) = AvIW(IC I
y ) ⋆

I ∆I
wλ

= 0,

which implies our claim.
The proof of the second isomorphism is similar.

Remark 6.4.6. — It is not difficult to show that the morphism ∆I
wλ
→ ∆I

w con-
sidered in the proof of Lemma 6.4.5 is in fact an embedding of perverse sheaves (but
this fact will not be needed here).
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Corollary 6.4.7. — The functor AvIW is t-exact. Moreover, for any λ ∈ X we
have

AvIW(IC I
wλ

) ∼= IC IW
λ .

Proof. — The first claim follows from Lemma 6.4.5 and the fact that the nonpositive,
resp. nonnegative, part of the perverse t-structure on Db

I (FlG,Qℓ) is the subcategory
generated under extensions by objects of the form ∆I

w[n] with w ∈ W and n ∈ Z≥0,
resp. by the objects of the form ∇Iw[n] with w ∈W and n ∈ Z≤0.

Once this fact is known, we observe that IC I
wλ

is the image of any nonzero mor-

phism f : ∆I
wλ
→ ∇Iwλ

; hence its image under AvIW is the image of AvIW(f).

By Lemma 6.4.5 this morphism identifies with a morphism ∆IW
λ → ∇IW

λ , and

by considering its restriction to FlIWG,λ we see that AvIW(f) ̸= 0. It follows that

AvIW(IC I
wλ

) ∼= IC IW
λ , as desired.

6.4.5. Proof of Theorem 6.4.2. — By Lemma 6.4.4 and the universal property
of Serre quotients, the restriction of AvIW to the hearts of the perverse t-structures
factors through an exact functor

AvasphIW : Pasph
I → PIW .

The only thing that remains to be seen is that AvasphIW is fully faithful.
For this, denote by I0 the intersection of I and I+u , or in other words the kernel of

the natural map GO → G. We consider the associated equivariant derived category
Db
I0
(FlG,Qℓ), and the induction functor

∗IndII0 : Db
I0(FlG,Qℓ)→ Db

I (FlG,Qℓ)

sending a complex F to a∗(Qℓ⊠̃F ), where a : I×I0FlG → FlG is the action morphism

and Qℓ ⊠̃ F is the unique complex whose pullback to I × FlG is Qℓ ⊠ F .

Lemma 6.4.8. — There exists a morphism

IC I
e → ∗IndII0(∆

IW
0 )[−dim(T )]

whose cone belongs to the subcategory of Db
I (FlG,Qℓ) generated under extensions by

the objects of the form IC I
w[n] with (w, n) ∈ Wf × Z≤0 and either n < 0 or n = 0

and w ̸= e.

Proof. — The GO-action on the base point of FlG induces an isomorphism between
FlG,w◦ and the flag variety G/B, which induces equivalences of categories

Db
I (FlG,w◦ ,Qℓ) ∼= Db

B(G/B,Qℓ),

Db
(I+u ,χ∗(LAS))

(FlG,w◦ ,Qℓ) ∼= Db
(U+,(χ′)∗(LAS))

(G/B,Qℓ).

Using these equivalences, we can apply [BeR2, Lemma 12.1 and Remark 12.2(1)],

which implies that the complex ∗IndII0(∆
IW
0 ) is concentrated in perverse degrees ≥

−dim(T ), and that moreover we have

pH − dim(T )
(
∗IndII0(∆

IW
0 )

)
∼= ∆I

w◦
.
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The claim follows, since by Lemma 4.1.3 there exists an embedding IC I
e ↪→ ∆I

w◦

whose cokernel has all of its composition factors of the form IC I
w with ℓ(w) > 0.

Remark 6.4.9. — The proof of this lemma in [AB] is incomplete. Filling this gap
was one of the motivations for the work performed in [BeR2].

Now we set

Ξ := Πasph ◦ pH 0
(∗IndII0(−)[−dim(T )]

)
: PIW → Pasph

I ,

where we omit the forgetful functor PIW → Db
I0
(FlG,Qℓ).

Lemma 6.4.10. — There exists an isomorphism of functors Ξ ◦ AvasphIW
∼= id.

Proof. — The proof will exploit the following observation. Let A be an abelian
category, let B ⊂ A be a Serre subcategory, and let C be another category. Denote
by Π : A → A /B the quotient functor. Given functors X1, X2 : A /B → C ,
then defining a morphism of functors X1 → X2 is equivalent to defining a morphism
of functors X1 ◦ Π → X2 ◦ Π. In fact, given a morphism X1 → X2 we obtain a
morphism X1 ◦Π→ X2 ◦Π by composing with Π. And conversely, given a morphism
φ : X1◦Π→ X2◦Π, since the objects in A /B are the same as those of A we can obtain
a morphism of functors X1 → X2 by declaring that the morphism X1(A) → X2(A)
is the morphism φ(A) : X1 ◦ Π(A) → X2 ◦ Π(A) for any A in A /B, where in the
latter case A is regarded as an object in A . (It is left to the reader to check that this
indeed defines a morphism of functors X1 → X2, and that these two constructions
are inverse to each other.)

From this remark we deduce that to prove the lemma it suffices to construct an

isomorphism of functors Πasph
∼−→ Ξ ◦ AvasphIW ◦Πasph.

By definition, and since the functor ∗IndII0 commutes with convolution on the right,
for F in PI we have

Ξ ◦ AvasphIW (Πasph(F )) = Πasph ◦ pH 0
(∗IndII0(∆IW

0 ⋆I F )[−dim(T )]
)

∼= Πasph ◦ pH 0
(∗IndII0(∆IW

0 ) ⋆I F [−dim(T )]
)
.

Now we claim that if G belongs to the subcategory of Db
I (FlG,Qℓ) generated under

extensions by objects of the form IC I
w[n] with (w, n) ∈ Wf × Z≤0 and either n < 0

or n = 0 and w ̸= e, then we have

Πasph ◦ pH −1(G ⋆I F ) = Πasph ◦ pH 0(G ⋆I F ) = 0.

Indeed, to prove this we can assume that G = IC I
w[n] with (w, n) as above. If w ̸= e,

and if s ∈ Sf is a simple reflection such that sw < w, then G belongs to the essential
image of the forgetful functorDb

Js
(FlG,Qℓ)→ Db

I (FlG,Qℓ), where Js is as in the proof

of Lemma 6.4.4. Hence the same property holds for G ⋆I F , and then for its perverse
cohomology objects, which implies that Πasph ◦ pH m(G ⋆I F ) = 0 for any m ∈ Z.
Now if w = e then n < 0, so that Πasph ◦ pH m(G ⋆I F ) = Πasph ◦ pH n+m(F ) = 0
for m ∈ {0,−1} (and even for any m ∈ Z≤0).
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Now we consider a morphism IC I
e → ∗IndII0(∆

IW
0 )[−dim(T )] as in Lemma 6.4.8,

and denote its cone by G . Convolving with F on the right we obtain a distinguished
triangle

F → ∗IndII0(∆
IW
0 ) ⋆I F [−dim(T )]→ G ⋆I F

[1]−→,
and then applying the cohomological functor Πasph ◦ pH 0 and using the claim of the
previous paragraph we deduce a functorial isomorphism

Πasph(F )
∼−→ Ξ ◦ AvasphIW (Πasph(F )),

which finishes the proof.

Corollary 6.4.11. — For any X,Y in Pasph
I the morphism

Ext1
Pasph
I

(X,Y )→ Ext1PIW
(AvasphIW (X),AvasphIW (Y ))

induced by AvasphIW is injective.

Proof. — A nonzero element in Ext1
Pasph
I

(X,Y ) corresponds to a nonsplit exact se-

quence Y ↪→ Z ↠ X, and its image under AvasphIW is the class of the exact sequence

AvasphIW (Y ) ↪→ AvasphIW (Z) ↠ AvasphIW (X). The latter exact sequence cannot split, since
any choice of splitting would provide, by applying Ξ and using Lemma 6.4.10, a
splitting of the original exact squence.

We can finally finish the proof of Theorem 6.4.2.

Proof of Theorem 6.4.2. — Recall that what we have to prove is that the functor

AvasphIW is fully faithful, or in other words that for any X,Y in Pasph
I the induced

morphism

HomPasph
I

(X,Y )→ HomPIW (AvasphIW (X),AvasphIW (Y ))

is an isomorphism. We prove this by induction on the sum of the lengths of X and Y .
If X and Y are simple then these objects are images of simple objects in PI , sowor
AvasphIW (X) and AvasphIW (Y ) are also simple by Corollary 6.4.7, and moreover they are
isomorphic iff X and Y are; so the claim is clear in this case. The general case follows
using Corollary 6.4.11 and the 5-lemma.

6.5. Central sheaves and tilting Iwahori–Whittaker perverse sheaves

6.5.1. Statement. — We now introduce the notation

Z IW := AvIW ◦Z : Rep(G∨)→ PIW .

Recall (see §6.4.3) that the category PIW has a natural structure of a highest weight
category. In such a category one can consider the tilting objects, i.e. those which
possess both a filtration whose subquotients are standard objects, and a filtration
whose subquotients are costandard objects. By the general theory of highest weight
categories, if F is a tilting object, then the number of occurrences of a given standard
object ∆IW

λ , resp. of a given costandard object ∇IW
λ , in a filtration with standard
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subquotients, resp. with costandard subquotients, does not depend on the choice of
filtration; it will be denoted

(F : ∆IW
λ ), resp. (F : ∇IW

λ ).

In fact we have

dimHomDb
IW(FlG,Qℓ)

(∆IW
λ ,F ) = (F : ∇IW

λ );(6.5.1)

dimHomDb
IW(FlG,Qℓ)

(F ,∇IW
λ ) = (F : ∆IW

λ ).(6.5.2)

Another general property that will be needed below is that a direct summand of a
tilting object is again tilting.

The following lemma is easy to check (see [BBM] for the origin of these ideas).

Lemma 6.5.1. — Let F in Db
IW(FlG,Qℓ). Then F is a tilting object in PIW iff

for any λ ∈ X∨ the complexes (jIWλ )∗F and (jIWλ )!F are concentrated in degree

−dim(FlIWG,λ).

The main result of the present section plays a key role in proving the main equiva-
lence, but it is also interesting in its own right: it stipulates that the perverse sheaves
Z IW(V ) are tilting for all V in Rep(G∨).

Theorem 6.5.2. — For any V in Rep(G∨), the perverse sheaf Z IW(V ) is tilting.
Moreover, for any λ ∈ X∨ we have

(6.5.3) (Z IW(V ) : ∆IW
λ ) = (Z IW(V ) : ∇IW

λ ) = dim(Vλ).

The strategy of proof of this theorem will be to first prove it “by hand” for some
“explicit enough” representations, and then propagate this result by taking tensor
products.

Remark 6.5.3. — 1. It is natural to ask whether the perverse sheaf Z IW(V )
is indecomposable if V is simple. We will see that this is indeed the case
(see §6.6.4), but only after the Arkhipov–Bezrukavnikov equivalence is proved.

2. Theorem 6.5.2 should be seen as a statement which is “Koszul dual” to
Lemma 2.5.1. Namely, one can define a “Koszul duality” autoequivalence of a
certain category closely related with the category of I-constructible Qℓ-sheaves
on FlG, see [BeY]. This construction has a “parabolic–singular” analogue
relating I-constructible sheaves on GrG and Iwahori–Whittaker sheaves on FlG,
and these equivalences intertwine the functor π∗ and a certain “averaging”
functor similar to AvIW . It was suggested by M. Finkelberg (see [AB, Footnote
on p. 174]) that the appropriate lifts of the central sheaves Z (V ) should be fixed
by Koszul duality. Combining all these considerations, one sees Theorem 6.5.2
as the mirror of Lemma 2.5.1 under Koszul duality.

6.5.2. Computing multiplicities. — We start by explaining how to deduce the
equalities (6.5.3) from the fact that Z IW(V ) is tilting. The argument will be based
on the following proposition.
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Proposition 6.5.4. — For any V in Rep(G∨) and any µ ∈ X∨ we have∑
i≥0

(−1)i · dim
(
HomDb

IW(FlG,Qℓ)
(∆IW

µ ,Z IW(V )[i])
)
= dim(Vµ),∑

i≥0

(−1)i · dim
(
HomDb

IW(FlG,Qℓ)
(Z IW(V ),∇IW

µ [i])
)
= dim(Vµ).

Proof. — We prove the first equality; the second one can be justified similarly. It
is clear that the assignment F 7→

∑
i≥0(−1)i · dim

(
HomDb

IW(FlG,Qℓ)
(∆IW

µ ,F [i])
)

factors through the Grothendieck group of Db
IW(FlG,Qℓ). Now by Lemma 4.8.1, in

the Grothendieck group of PI we have

[Z (V )] =
∑
λ∈X∨

dim(Vw◦(λ)) · [Jλ(Qℓ)] =
∑
λ∈X∨

dim(Vλ) · [Jλ(Qℓ)].

In view of Lemma 4.1.9, this implies that

[Z (V )] =
∑
λ∈X∨

dim(Vλ) · [∇It(λ)],

and then (using Lemma 6.4.5) that

[Z IW(V )] =
∑
λ∈X∨

dim(Vλ) · [∇IW
λ ].

The claim follows, since we have∑
i≥0

(−1)i · dim
(
HomDb

IW(FlG,Qℓ)
(∆IW

µ ,∇IW
λ [i])

)
= δλ,µ

by (6.4.2).

Remark 6.5.5. — By the same arguments as in the proof of Lemma 4.1.9, Propo-
sition 6.5.4 implies that for any λ ∈ X∨

+ the perverse sheaf Z IW(N(λ)) is supported

on FlIWG,λ. (Moreover, for µ ∈ X∨, this closure contains the orbit FlIWG,µ iff N(λ)µ ̸= 0:
see Remark 6.4.1.)

Corollary 6.5.6. — Let V in Rep(G∨), and assume that Z IW(V ) is tilting. Then
for any λ ∈ X∨ we have

(Z IW(V ) : ∆IW
λ ) = (Z IW(V ) : ∇IW

λ ) = dim(Vλ).

Proof. — From (6.4.2) we deduce that under our assumption we have

HomDb
IW(FlG,Qℓ)

(∆IW
λ ,Z IW(V )[i]) = HomDb

IW(FlG,Qℓ)
(Z IW(V ),∇IW

λ [i]) = 0

for any i > 0. Moreover, by (6.5.1)–(6.5.2) we have

dimHomDb
IW(FlG,Qℓ)

(∆IW
λ ,Z IW(V )) = (Z IW(V ) : ∇IW

λ );

dimHomDb
IW(FlG,Qℓ)

(Z IW(V ),∇IW
λ ) = (Z IW(V ) : ∆IW

λ ).

Then the claim follows from Proposition 6.5.4.
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Once this corollary is proved, to complete the proof of Theorem 6.5.2 it suffices to
prove that Z IW(V ) is tilting for all V in Rep(G∨).

6.5.3. Propagation through tensor products. — The following proposition is
the key fact that will allow us to reduce the proof of the first claim in Theorem 6.5.2
to certain special cases.

Proposition 6.5.7. — If V, V ′ are objects in Rep(G∨) such that Z IW(V ) and
Z IW(V ′) are tilting, then Z IW(V ⊗ V ′) is tilting.

Before proving this proposition, we start with the following well-known result.

Lemma 6.5.8. — For any x, y ∈ W , the object ∆I
x ⋆

I ∆I
y belongs to the full sub-

category of Db
I (FlG,Qℓ) generated under extensions by the objects of the form ∆I

z[n]
with z ∈W and n ≤ 0.

Dually, for any x, y ∈ W , the object ∇Ix ⋆I ∇Iy belongs to the full subcategory of

Db
I (FlG,Qℓ) generated under extensions by the objects of the form ∇Iz[n] with z ∈W

and n ≥ 0.

Proof. — We prove the first claim; the second one can be obtained similarly. The
proof proceeds by induction on ℓ(y). If ℓ(y) = 0 then we have ∆I

x ⋆
I ∆I

y
∼= ∆I

xy by
Lemma 4.1.4(1), so that the claim is clear. Otherwise, choose s ∈ S such that sy < y;
then we have ∆I

y
∼= ∆I

s ⋆
I ∆I

sy again by Lemma 4.1.4(1), so that

∆I
x ⋆

I ∆I
y
∼= (∆I

x ⋆
I ∆I

s) ⋆
I ∆I

sy.

If xs > x then we have ∆I
x ⋆

I ∆I
s
∼= ∆I

xs (once again by Lemma 4.1.4(1)), and the
desired claim follows by induction. Otherwise, using the exact sequences of perverse
sheaves

IC I
e ↪→ ∆I

s ↠ IC I
s and IC I

s ↪→ ∇Is ↠ IC I
e

on FlG,s ∼= P1 and the fact that ∆I
x⋆

I∇Is ∼= ∆I
xs (as follows from Lemma 4.1.4(1)–(3)),

we obtain distinguished triangles

∆I
x → ∆I

x ⋆
I ∆I

s → ∆I
x ⋆

I IC I
s

[1]−→ and ∆I
x ⋆

I IC I
s → ∆I

xs → ∆I
x

[1]−→ .

These triangles show that ∆I
x ⋆

I ∆I
s belongs to the full subcategory of Db

I (FlG,Qℓ)
generated under extensions by the objects of the form ∆I

z[n] with z ∈ W and n ≤ 0.
Once again, we deduce the same property for ∆I

x ⋆
I ∆I

y using induction.

Proof of Proposition 6.5.7. — In view of Lemma 6.5.1, what we have to prove is that
for any λ ∈ X∨ the restriction and the corestriction of AvIW(Z (V ⊗ V ′)) to FlIWG,λ
are both concentrated in perverse degree 0. First, since this object is perverse its
restriction is concentrated in degrees ≤ 0, and its corestriction in degrees ≥ 0.

Now, by assumption AvIW(Z (V )) admits a filtration with subquotients of the form
∆IW
µ ; therefore AvIW(Z (V ⊗ V ′)) ∼= AvIW(Z (V )) ⋆I Z (V ′) admits a filtration (in

the sense of triangulated categories(4)) with subquotients of the form ∆IW
µ ⋆I Z (V ′).

(4)We say that an object admits “a filtration in the sense of triangulated categories with subquotients

in a set C” if it lies in the smallest additive subcategory that contains C and is closed under extensions.
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We observe that

∆IW
µ ⋆I Z (V ′) ∼= ∆IW

0 ⋆I ∆I
wµ

⋆I Z (V ′)

∼= ∆IW
0 ⋆I Z (V ′) ⋆I ∆I

wµ
∼= AvIW(Z (V ′)) ⋆I ∆I

wµ
,

where the first isomorphism comes from Lemma 6.4.5, and the second one from
the fact that Z (V ′) is central (see Theorem 3.2.3). Now, again by assumption
AvIW(Z (V ′)) admits a filtration with subquotients of the form ∆IW

ν ; therefore
∆IW
µ ⋆I Z (V ′) admits a filtration (again in the sense of triangulated categories) with

subquotients of the form ∆IW
ν ⋆I ∆I

wµ
∼= AvIW(∆I

wν
⋆I ∆I

wµ
). Finally, Lemma 6.4.5

and Lemma 6.5.8 imply that the restriction of each AvIW(∆I
wν

⋆I ∆I
wµ

) to FlIWG,λ is

concentrated in degrees ≥ 0. Hence the same is true for AvIW(Z (V ⊗ V ′)).

Dual arguments show that the corestriction of this object to FlIWG,λ is concentrated
in degrees ≤ 0, and the proof is complete.

6.5.4. Minuscule and quasi-minuscule coweights. — Now we want to show
that Z IW(V ) is tilting for any V in Rep(G∨). If H = Z(G)◦, then the natural mor-
phism GrG → GrG/H is surjective, and restricts to a universal homeomorphism on
each connected component of GrG. (To justify this property, one may invoke [PR,
§6.a and Proposition 6.6]; see also [BR, Footnote on p. 3].) Moreover, the pushfor-
ward under this map corresponds, under the Satake equivalences for G and G/H, to
restriction along the natural embedding (G/H)∨ ↪→ G∨ (see [BR, p. 118]). From
these remarks we conclude that it suffices to prove the desired claim in the case when
G is semisimple.

Assume that G is semisimple, and recall (see §1.2.1.6 or [NP, Lemme 1.1]) that a
dominant coweight λ ∈ X∨

+ is called minuscule if for all α ∈ R we have |⟨λ, α⟩| ≤ 1,

and that in this case the orbit GrλG is closed. On the other hand, λ ∈ X∨
+ ∖ {0}

is called quasi-minuscule if it is minimal in X∨
+ ∖ {0} (for the order such that µ is

smaller than ν iff ν − µ is a sum of positive roots) and not minuscule; in this case
there exists a unique root γ such that ⟨λ, γ⟩ ≥ 2, and λ = γ∨; moreover we have

GrλG = GrλG ⊔Gr0G.
In the following subsections we will prove the following claim. (More precisely, the

case of minuscule coweights will be treated in §6.5.5, and the case of quasi-minuscule
coweights will be treated in §6.5.10.)

Proposition 6.5.9. — Assume that G is semisimple. If V is a simple G∨-module
whose highest weight is either minuscule or quasi-minuscule, then Z IW(V ) is tilting.

Before proving the proposition, we explain why this claim is sufficient to complete
the proof of Theorem 6.5.2.

Proof of Theorem 6.5.2. — As explained in §6.5.2, all that remains to be proved is
that Z IW(V ) is tilting for any V in Rep(G∨). Moreover, as explained above, for
this we can assume that G is semisimple. In addition, since the category Rep(G∨)
is semisimple we can assume that V is simple. Recall (see e.g. [NP, Lemme 10.3])
that any simple G∨-module is isomorphic to a direct summand of a tensor product
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of simple modules whose highest weights are either minuscule or quasi-minuscule. In
view of Proposition 6.5.7 and Proposition 6.5.9, Z IW(V ) is then a direct summand
of a tilting perverse sheaf, and hence is itself tilting.

Remark 6.5.10. — In case G = GLn(F), with the notation above we have
G/H = PGLn(F), and then (G/H)∨ = SLn(Qℓ). In this case, all the fundamental
coweights are minuscule, and any simple (G/H)∨-module is isomorphic to a direct
summand of a tensor product of simple modules with minuscule highest weights.
(See e.g. Lemma 8.4.3 below for a similar statement in a modular context.) In
particular, in this special case we do not need the case of quasi-minuscule coweights
in Proposition 6.5.9 to prove Theorem 6.5.2.

6.5.5. Extremal coweights. — Our goal in this subsection is to prove that when
G is semisimple and λ is minuscule, the perverse sheaf Z (N(λ)) is tilting. For this
we start with the following lemma, which does not require any assumption.

Lemma 6.5.11. — For any V in Rep(G∨), any λ ∈ X∨, any x ∈Wf and any n ∈ Z
we have

HomDb
IW(FlG,Qℓ)

(
∆IW
λ ,Z IW(V )[n]

) ∼= HomDb
IW(FlG,Qℓ)

(
∆IW
x(λ),Z

IW(V )[n]
)

and

HomDb
IW(FlG,Qℓ)

(
Z IW(V ),∇IW

λ [n]
) ∼= HomDb

IW(FlG,Qℓ)

(
Z IW(V ),∇IW

x(λ)[n]
)
.

Proof. — We prove the first isomorphism; the second one can be justified similarly.
We can assume that λ ∈ X∨

+; then we have wλ = t(λ) and wx(λ) = t(λ) · y with
ℓ(wx(λ)) = ℓ(wλ) − ℓ(y), where y ∈ Wf is of minimal length with yx(λ) = λ (see
e.g. [MR2, Lemma 2.4]). Hence we have

∆IW
λ
∼= ∆IW

0 ⋆I ∆I
wλ
∼= ∆IW

0 ⋆I ∆I
wx(λ)

⋆I ∆I
y−1
∼= ∆IW

x(λ) ⋆
I ∆I

y−1 ,

where we have used Lemma 6.4.5 and Lemma 4.1.4(1). Now since the object ∆I
y−1 is

invertible in Db
I (FlG,Qℓ) (see Lemma 4.1.4(3)), we have

HomDb
IW(FlG,Qℓ)

(∆IW
x(λ),Z

IW(V )[n])

∼= HomDb
IW(FlG,Qℓ)

(∆IW
x(λ) ⋆

I ∆I
y−1 ,Z IW(V ) ⋆I ∆I

y−1 [n])

∼= HomDb
IW(FlG,Qℓ)

(∆IW
λ ,Z IW(V ) ⋆I ∆I

y−1 [n]).

Finally we observe that

Z IW(V ) ⋆I ∆I
y−1 = ∆IW

0 ⋆I Z (V ) ⋆I ∆I
y−1
∼= ∆IW

0 ⋆I ∆I
y−1 ⋆I Z (V )

∼= ∆IW
0 ⋆I Z (V ) = Z IW(V ),

where the isomorphism on the upper line uses the centrality of Z (V ) (see Theo-
rem 3.2.3), and the one on the lower line uses Lemma 6.4.5. This completes the
proof.

Corollary 6.5.12. — For any λ ∈ X∨
+ and any µ ∈ Wf(λ), the complexes

(jIWµ )∗Z IW(N(λ)) and (jIWµ )!Z IW(N(λ)) are concentrated in degree − dim(FlIWG,µ).



244 CHAPTER 6. THE ARKHIPOV–BEZRUKAVNIKOV EQUIVALENCE

Proof. — Proving the lemma amounts to proving that

HomDb
IW(FlG,Qℓ)

(
∆IW
µ ,Z IW(N(λ))[n]

)
= HomDb

IW(FlG,Qℓ)

(
Z IW(N(λ)),∇IW

µ [n]
)
= 0

for any n > 0. In view of Lemma 6.5.11 it suffices to consider the case µ = λ. Now, by
Remark 6.5.5 the orbit FlIWG,λ is open in the support of Z IW(N(λ)); thus, the claim
is obvious in this case.

In the special case when G is semisimple and λ is minuscule, the only elements

µ ∈ X∨ such that FlIWG,µ ⊂ FlIWG,λ are those in Wf(λ). In view of Lemma 6.5.1,
Remark 6.5.5 and Corollary 6.5.12, this shows Proposition 6.5.9 in this case.

6.5.6. The regular quotient. — The rest of this section is devoted to the proof
of the case of quasi-minuscule coweights in Proposition 6.5.9. This case will require
much more work than that of minuscule coweights. Part of the constructions involved
in this proof do not require G to be semisimple, so we do not impose this assumption
at this point.

We consider the Serre subcategory ⟨IC I
w : ℓ(w) > 0⟩Serre ⊂ PI generated by the

objects IC I
w with ℓ(w) > 0, and the Serre quotient

P0
I := PI/⟨IC I

w : ℓ(w) > 0⟩Serre.
The quotient functor PI → P0

I will be denoted Π0. Each object in P0
I has finite length,

and the simple objects in this category are those of the form Π0(IC I
w) with w ∈ W

and ℓ(w) = 0. (In particular, this category has only finitely many simple objects in
case G is semisimple.)

Lemma 6.5.13. — 1. If F belongs to ⟨IC I
w : ℓ(w) > 0⟩Serre and G is any object

of PI , then for any n ∈ Z the perverse sheaves pH n(F ⋆I G ) and pH n(G ⋆I F )
belong to ⟨IC I

w : ℓ(w) > 0⟩Serre.
2. For F ,G in PI and any n ∈ Z ∖ {0} we have Π0(pH n(F ⋆I G )) = 0.

Proof. — (1) Of course, using long exact sequences of cohomology one can assume
that F = IC I

w for some w ∈W with ℓ(w) > 0. Choose a simple reflection s such that
ℓ(sw) < ℓ(w). As in the proof of Lemma 6.4.4, F is Js-equivariant, where Js is the
corresponding minimal parahoric subgroup of GK . That is, F belongs to the image
of the forgetful functor Db

Js
(FlG,Qℓ)→ Db

I (FlG,Qℓ). Then the same will be true for

F ⋆I G , so that all of its perverse cohomology objects will be Js-equivariant. The
composition factors of Js-equivariant perverse sheaves are all of the form IC I

x with
sx < x; in particular such objects belong to ⟨IC I

w : ℓ(w) > 0⟩Serre, which finishes the
proof of the first claim.

The proof of the second claim is similar, using the fact that any IC I
w with ℓ(w) > 0

is the pullback of a perverse sheaf on the partial affine flag variety GK /Js for some
simple reflection s.

(2) Here again we can assume that F = IC I
x and G = IC I

y for some x, y ∈ W .
If ℓ(x) > 0 or ℓ(y) > 0 then the claim follows from (1). And if ℓ(x) = ℓ(y) = 0 then
we have IC I

x ⋆
I IC I

y
∼= IC I

xy, so that the claim is obvious.
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Lemma 6.5.13 has the following consequence.

Proposition 6.5.14. — 1. The bifunctor PI × PI → P0
I sending a pair (F ,G )

to Π0(pH 0(F ⋆I G )) factors through a bifunctor

⃝⋆ : P0
I × P0

I → P0
I .

2. The bifunctor ⃝⋆ is exact on both sides, and admits natural associativity and unit
constraints.

Proof. — Lemma 6.5.13 implies that the bifunctor (F ,G ) 7→ Π0(pH 0(F ⋆I G )) is
exact on both sides, and vanishes on ⟨IC I

w : ℓ(w) > 0⟩Serre × PI and on PI ×
⟨IC I

w : ℓ(w) > 0⟩Serre. Therefore it factors through a bifunctor ⃝⋆ , which is exact on
both sides. This observation also shows that for F1,F2,F3 in P0

I we have canonical
isomorphisms

(F1 ⃝⋆ F2)⃝⋆ F3
∼= Π0(pH 0(F1 ⋆

I F2 ⋆
I F3)) ∼= F1 ⃝⋆ (F2 ⃝⋆ F3),

where in the middle term we use the canonical identification between objects in P0
I and

PI to consider F1,F2,F3 as objects in PI . This provides the desired associativity
constraint. Similar considerations show that the object

δ0 := Π0(IC I
e )

admits a canonical structure of a unit object.

Thanks to Proposition 6.5.14, we can now consider the abelian monoidal category
(P0
I ,⃝⋆ ). We set

Z 0 := Π0 ◦Z : Rep(G∨)→ P0
I .

Lemma 6.5.15. — The functor Z 0 admits a natural structure of a central functor.

Proof. — To prove the lemma we have to endow Z 0 with “monoidality” and “cen-
trality” isomorphisms. These will be induced by the corresponding isomorphisms for
Z. Namely, for V, V ′ in Rep(G∨) we have a canonical isomorphism

Z(S−1(V )) ⋆I Z(S−1(V ′))
∼−→ Z(S−1(V ⊗ V ′)),

see Theorem 3.4.1. Since both sides are perverse sheaves, appying Π0 we deduce a
canonical isomorphism

Z 0(V )⃝⋆ Z 0(V ′)
∼−→ Z 0(V ⊗ V ′).

We leave it to the reader to check that these isomorphisms define a monoidal structure
on Z 0.

Next, for V in Rep(G∨) and F in P0
I we have a canonical isomorphism

Z(S−1(V )) ⋆I F
∼−→ F ⋆I Z(S−1(V )),

see Theorem 3.4.1. (Here, as above we use the identification between objects in P0
I and

PI to regard F as an object in PI .) Since both sides are perverse (see Corollary 3.2.5),
once again applying Π0 we deduce a canonical isomorphism

Z 0(V )⃝⋆ F
∼−→ F ⃝⋆ Z 0(V ).
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We leave it to the reader to check (using the analogous claim for the functor Z) that
these isomorphisms define a central structure on Z 0.

For V in Rep(G∨) we set

n0V := Π0(nV ) ∈ EndP0
I
(Z 0(V )).

The following claim is an immediate consequence of Proposition 2.4.6(2).

Lemma 6.5.16. — For any V, V ′ in Rep(G∨) and any f ∈ HomP0
I
(Z 0(V ),Z 0(V ′))

we have f ◦ n0V = n0V ′ ◦ f .

6.5.7. Description of the regular quotient. — We denote by P̃0
I the full abelian

subcategory of P0
I whose objects are the subquotients of objects of the form Z 0(V )

with V in Rep(G∨). Obviously, the functor Z 0 factors through a functor

Z̃ 0 : Rep(G∨)→ P̃0
I .

Lemma 6.5.17. — If F and G belong to P̃0
I , then F ⃝⋆ G also belongs to P̃0

I .

Proof. — If F is a subquotient of Z 0(V ) and G a subquotient of Z 0(V ′), then by
exactness of the product ⃝⋆ (see Proposition 6.5.14) the object F ⃝⋆ G is a subquotient
of Z 0(V )⃝⋆ Z 0(V ′) ∼= Z 0(V ⊗ V ′).

As a consequence of this lemma, P̃0
I admits a natural structure of an abelian

monoidal category. Clearly, the structure of a central functor on Z 0 restricts to

a structure of a central functor on Z̃ 0.
The following proposition will be the key to the proof of the quasi-minuscule case

in Proposition 6.5.9. It will also play a technical role in Section 6.6.

Proposition 6.5.18. — There exist

1. a closed subgroup H ⊂ G∨;
2. a nilpotent element n0 ∈ g∨ such that H ⊂ ZG∨(n0);
3. an equivalence of monoidal categories

Φ0 : (P̃0
I ,⃝⋆ )

∼−→ (Rep(H),⊗);

4. and an isomorphism of functors η : Φ0 ◦ Z̃ 0 ∼−→ ForG
∨

H

such that for any V in Rep(G∨), the endomorphism η(Φ0(n0V )) coincides with the
action of n0 on V .

Proposition 6.5.18 is a particular case of a more general result proved in [Be2],
to which we refer for further details. Below we review how its proof works, for later
comparison with an analogue over a field of positive characteristic in Chapter 8. (The
details of this proof will however not be needed for the rest of the present chapter.)

The key idea of the proof is to check that the forgetful functor Rep(G∨)→ VectQℓ

factors through the functor Z̃ 0. For this, we start from the observation that the
(left) regular G∨-module O(G∨) defines a ring object in the monoidal category of
ind-objects in Rep(G∨), which we will denote O(G∨). Therefore we can consider its

image Z̃ 0(O(G∨)), a ring object in the category Ind(P̃0
I) of ind-objects in P̃0

I . By
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definition, a left ideal subobject in Z̃ 0(O(G∨)) is a subobject M (in the abelian(5)

category Ind(P̃0
I)) such that the multiplication map sends Z̃ 0(O(G∨))⃝⋆ M into M .

Using the fact that the ring O(G∨) is commutative and Theorem 3.5.1, it is not
difficult to check that any left ideal is automatically a right ideal.

Lemma 6.5.19. — There exist maximal left ideal subobjects in Z̃ 0(O(G∨)).

Proof. — To prove this lemma we will use Zorn’s lemma. Namely, the first obser-

vation is that by [KS2, Theorem 6.1.8], the category Ind(P̃0
I) admits small filtrant

inductive limits. We next consider the poset of left ideal subobjects in Z̃ 0(O(G∨)).
Given a chain (Mi : i ∈ I) in this poset, one can consider the associated inductive

limit M̃ . By the universal property of inductive limits, this object is endowed with a

canonical morphism M̃ → Z̃ 0(O(G∨)), and the image of this morphism is an upper
bound for our chain. By Zorn’s lemma we conclude that our poset has a maximal

element, i.e. that Z̃ 0(O(G∨)) admits a maximal left ideal subobject.

We next choose a maximal left ideal subobject J in Z̃ 0(O(G∨)), and denote by
O(H) the associated quotient. Since our left ideal is also a right ideal, O(H) has a

natural structure of a ring object in Ind(P̃0
I). Let us denote by ModO(H) the category

of left O(H)-modules in Ind(P̃0
I). Then ModO(H) is an abelian category, and O(H) is

a simple object in this category. Therefore, the ring

(6.5.4) K := EndModO(H)
(O(H))

is a division algebra, and the functor V 7→ V ⊗K O(H) defines an equivalence of
categories between the category of right finite K-modules and the full subcategory of
ModO(H) whose objects are finite direct sums of copies of O(H). (Note for later use
that the latter subcategory is closed under subquotients.) Let us also remark that
if M is a left O(H)-module and N is any object in P0

I , then the product M ⃝⋆ N
admits a canonical structure of a left O(H)-module.

The next step is to remark that restriction to Z̃ 0(Qℓ) = δ0 ⊂ O(H) induces an
isomorphism

K
∼−→ HomInd(P̃0

I)
(δ0,O(H)).

In these terms, the product f · g of two maps f, g : δ0 → O(H) is the composition

δ0 = δ0 ⃝⋆ δ0
f⃝⋆g−−−→ O(H)⃝⋆ O(H)→ O(H),

where the map on the right is multiplication in the ring-object O(H). Since O(G∨) can
be written as a formal direct limit of finite-dimensional modules parametrized by Z≥0,

O(H) is a formal direct limit of objects of P̃0
I parametrized by Z≥0, which implies that

K has at most countable dimension over Qℓ. Since Qℓ(X) has uncountable dimension
(e.g. because the fractions 1

X−λ for λ ∈ Qℓ are linearly independent), the only division

algebra over Qℓ which has at most countable dimension is Qℓ. It follows that K = Qℓ.

(5)Recall that the category of ind-objects in an abelian category is itself abelian: see [KS2, Theo-

rem 8.6.5(i)].
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The next important step is the following.

Lemma 6.5.20. — 1. For any M in P̃0
I , the product O(H) ⃝⋆ M is isomorphic

(as an O(H)-module) to a (finite) direct sum of copies of O(H).

2. The functor v : P̃0
I → VectQℓ

defined by

v(M ) := HomModO(H)
(O(H),O(H)⃝⋆ M )

is exact and faithful, and admits a natural monoidal structure. Moreover, the

composition v ◦ Z̃ 0 is canonically isomorphic (as a monoidal functor) to the
forgetful functor Rep(G∨)→ VectQℓ

.

Proof. — (1) First we consider the case M = Z̃ 0(V ) for some V in Rep(G∨). We
have a canonical isomorphism of G∨-modules and of O(G∨)-modules O(G∨) ⊗ V ∼=
O(G∨)⊗V where V is the underlying vector space of V (with trivial G∨-action). We

deduce a canonical isomorphism of Z̃ 0(O(G∨))-modules

Z̃ 0(O(G∨))⃝⋆ Z̃ 0(V ) ∼= Z̃ 0(O(G∨))⊗Qℓ
V .

Being an isomorphism of Z̃ 0(O(G∨))-modules, it must send J ·
(
Z̃ 0(O(G∨)) ⃝⋆

Z̃ 0(V )
)
= J ⃝⋆ Z̃ 0(V ) to J ·

(
Z̃ 0(O(G∨)) ⊗Qℓ

V
)
= J ⊗Qℓ

V , and therefore

induce a canonical isomorphism

(6.5.5) O(H)⃝⋆ Z̃ 0(V ) ∼= O(H)⊗Qℓ
V .

This proves the desired claim for the object M = Z̃ 0(V ). Since any object of P̃0
I is

by definition of subquotient of an object of this form, and since any subquotient (in
ModO(H)) of a direct sum of copies of O(H) is itself isomorphic to a direct sum of
copies of O(H), this finishes the proof.

(2) From the fact that K = Qℓ and (1) we deduce that for any M in P̃0
I we have

O(H)⃝⋆ M ∼= O(H)⊗Qℓ
v(M ).

From this one obtains a monoidal structure by observing that

O(H)⊗Qℓ
v(M ⃝⋆ N ) ∼= O(H)⃝⋆ M ⃝⋆ N ∼= (O(H)⊗Qℓ

v(M ))⃝⋆ N

∼= (O(H)⃝⋆ N )⊗Qℓ
v(M ) ∼= O(H)⊗Qℓ

v(M )⊗Qℓ
v(N )

and then applying the functor HomModO(H)
(O(H),−). The claim about v◦Z̃ 0 is clear

from (6.5.5).
Now, let us prove that v is exact. Consider an exact sequence M1 ↪→M2 ↠ M3 in

P̃0
I . By exactness of ⃝⋆ , applying the functor O(H)⃝⋆ (−) we obtain an exact sequence

O(H)⃝⋆ M1 ↪→ O(H)⃝⋆ M2 ↠ O(H)⃝⋆ M3

in ModO(H). By (1), each object in this sequence is a direct sum of copies of
the simple module O(H); the sequence must therefore split. Applying the functor
HomModO(H)

(O(H),−), we deduce an exact sequence

v(M1) ↪→ v(M2) ↠ v(M3),
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proving the desired exactness.
Finally we prove that v is faithful. For this, since this functor is now known to

be exact, it suffices to prove that it does not kill any object, or even that it does

not kill any simple object in P̃0
I . However, any simple object in P̃0

I is invertible for
the product ⃝⋆ . (In fact, such an object is of the form Π0(IC I

ω ) for some ω ∈ Ω;
its inverse is then Π0(IC I

ω−1).) Since v is a monoidal functor, it must send each of

these objects to a nonzero (in fact, 1-dimensional) Qℓ-vector space, which finishes the
proof.

Remark 6.5.21. — As above in the description of K, one can check that for any

M in P̃0
I we have a canonical isomorphism v(M ) ∼= HomInd(P̃0

I)
(δ0,O(H)⃝⋆ M ).

Once our functor v is constructed, since this functor is exact and faithful, Tan-
nakian formalism provides a bialgebra A (H) over Qℓ and an equivalence of monoidal
categories

(6.5.6) P̃0
I

∼−→ ComodA (H)

(where the right-hand side is the category of right A (H)-comodules which are finite-
dimensional over Qℓ) whose composition with the forgetful functor ComodA (H) →
VectQℓ

is v (see [DM, p. 137]; see also [BR, §1.2]). In more detail, A (H) is defined

as an as an inductive limit over objects X of P̃0
I of certain coalgebras A (H)X defined

in [BR, Proposition 1.2.2]. This set-up is enough to obtain the equivalence (6.5.6), al-
though at this stage, A (H) only has the structure of a coalgebra. Then, the monoidal

structure on P̃0
I lets us define a multiplication map on A (H), making it into a bial-

gebra.

From the monoidal functor Z̃ 0 : Rep(G∨) → P̃0
I we obtain a canonical bialgebra

morphism O(G∨) → A (H), see [BR, Proposition 1.2.6(1)]. In fact, this morphism
can be obtained as an inductive limit of morphisms O(G∨)Y → A (H)

Z̃ 0(Y )
where Y

runs over objects in Rep(G∨); here O(G∨)Y is obtained as above for A (H)X . From

the fact that (by definition) any object in P̃0
I is a subquotient of an object Z̃ 0(V ), we

obtain that this morphism is surjective. (The argument for this can be copied from
that in [DM, Proposition 2.21].) This implies that A (H) is commutative, and that its
spectrum H is a submonoid scheme of G∨. Finally one can check that any submonoid
scheme of a group scheme of finite type over a noetherian ring is a subgroup scheme
(see [Be2, Lemma 2]), which lets us conclude that H is the desired subgroup of G∨.

To finish the proof of Proposition 6.5.18, it now only remains to explain the con-
struction of n0 and the proof of its stated properties. For this, recall the endomor-
phisms (n0V : V ∈ Rep(G∨)) from §6.5.6. Composing with v, we obtain an endo-

morphism of the functor v ◦ Z̃ 0 ∼= ForG
∨
, which satisfies a compatibility with the

tensor product similar to that in (6.3.13). As in §6.3.5, by Tannakian formalism such
a datum defines a element n0 ∈ g∨. The fact that this endomorphism is induced by

an endomorphism of the forgetful functor ForG
∨

H : Rep(G∨)→ Rep(H) means that H
stabilizes n0, i.e. that H ⊂ ZG∨(n0). Finally, the fact that n0 is nilpotent is clear
from the fact that the endomorphisms n0V are nilpotent.
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The following commutative diagram summarizes the functors that have appeared
in the proof of Proposition 6.5.18:

Rep(H)

Rep(G∨) P̃0
I

VectQℓ
.

ForH
Z̃ 0

ForG
∨

H

ForG
∨

Φ0

v

Remark 6.5.22. — 1. The subgroup H and the element n0 are defined only
up to conjugation. In fact, their construction depends on the initial choice of
a maximal proper left ideal subobject in Z 0(O(G∨)), which cannot be made
canonical.

2. We will see in Section 7.2 that in fact P̃0
I = P0

I , and H = ZG∨(n0). These prop-
erties will however not be needed for the proof of the Arkhipov–Bezrukavnikov
equivalence.

6.5.8. Regularity of n0. — The other crucial property of n0 we will need is the
following.

Proposition 6.5.23. — The element n0 ∈ g∨ from Proposition 6.5.18 is regular.

The proof of this property is given (as a particular case of a more general statement)
in [Be2, Theorem 2]. In the special case under consideration, this proof simplifies
considerably, as we explain below.

Remark 6.5.24. — In §8.4.4 we will prove a modular analogue of Proposition 6.5.23
in the case where G is a general linear group. This proof also applies for characteristic-
0 coefficients, and provides a more direct argument proving Proposition 6.5.23 for
general linear groups.

Proof of Proposition 6.5.23. — Recall the notion of Jacobson–Morozov–Deligne fil-
tration associated with a nilpotent endomorphism e of an object X in an abelian
category, see §9.5.4. When X is a finite-dimensional vector space over some field, this
filtration is described explicitly in [De3, §1.6.7]; from this description we see that
the number of Jordan blocks of e (i.e. the dimension of its kernel) is dim(grF0 (X)) +
dim(grF1 (X)).

Now, recall the setting considered in §5.3.4. Consider a representation V in
Rep(G∨), and let F ∈ PervGO (GrG,Qℓ) be the perverse sheaf such that V = S(F ).
Here F is a direct sum of intersection cohomology complexes associated with GO-
orbits in GrG; therefore there exists a semisimple mixed perverse sheaf F◦ of weight
0 on GrG,◦ such that F = κ(F◦), where κ denotes (as in §5.3.3) the base-change
functor to F. Then we have

Z (V ) = Z(F ) = κ(Zmix(F◦)),

see Lemma 9.5.5.
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By Theorem 9.5.6, the Jacobson–Morozov–Deligne filtration associated with the
nilpotent endomorphism nV of Z (V ) is the image under κ of the weight filtration
on Zmix(F◦). Note that by uniqueness the Jacobson–Morozov–Deligne filtration as-
sociated with the nilpotent endomorphism n0V of Z 0(V ) is the image under Π0 of the
aforementioned filtration on Z (V ), and then that the Jacobson–Morozov–Deligne fil-
tration associated with the action of n0 of V is deduced by applying the functor v of
Lemma 6.5.20(2). In summary, the Jacobson–Morozov–Deligne filtration associated
with the action of n0 of V is obtained from the weight filtration on Zmix(F◦) by
applying the composition v ◦ Π0 ◦ κ. In particular, since Π0 sends each IC I

w with
ℓ(w) > 0 to 0, and since dim v(Π0(IC I

ω )) = 1 for ω ∈ Ω (because Π0(IC I
ω ) is an in-

vertible object in P0
I), we deduce that the dimension of the i-th part of the associated

graded of the Jacobson–Morozov–Deligne filtration associated with the action of n0
on V is given by

(6.5.7)
∑
ω∈Ω

[κ(grWi (Zmix(F◦))) : IC I
ω ].

To compute the integer (6.5.7) we use the combinatorial recipe described in §5.3.4.
Consider the unique Z[v, v−1]-algebra homomorphism

η : H → Z[v, v−1]

such that η(Hw) = (−v)ℓ(w). Then it is easily seen that

η(Hw) =

{
1 if ℓ(w) = 0;

0 otherwise

and that

η(θ
X∨

+

λ ) = v⟨λ,2ρ⟩.

In view of Proposition 5.3.5, it follows that∑
i∈Z

∑
ω∈Ω

[κ(grWi (Zmix(F◦))) : IC I
ω ] · vi =

∑
µ∈X∨

dim(Vµ) · v⟨µ,2ρ⟩.

Combining these considerations, we finally obtain that the dimension of the kernel
of the action of n0 on V is given by

(6.5.8) dim(V n0) =
∑
µ∈X∨

⟨µ,2ρ⟩∈{0,1}

dim(Vµ).

In particular, when V is the adjoint representation, we obtain that the dimension of
zg∨(n0) is equal to the rank of T∨, i.e. that n0 is regular.

6.5.9. Consequence for the stalks and costalks of central sheaves. — The
consequence of Proposition 6.5.18 which will be relevant in this section is the following.
(Here, we write V n0 for the kernel of the action of n0 on V .)
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Lemma 6.5.25. — For any V in Rep(G∨), we have

dim
(
HomPIW

(
∆IW

0 ,Z IW(V )
))
≤ dim(V n0),

dim
(
HomPIW

(
Z IW(V ),∇IW

0

))
≤ dim(V n0).

Proof. — We prove the first claim only; the second one can be treated similarly
(using the fact that for an endomorphism f of a finite-dimensional vector space we
have dim(ker(f)) = dim(cok(f))).

By Lemma 6.4.5 we have ∆IW
0 = AvIW(IC I

e ); hence Theorem 6.4.2 provides an
isomorphism

HomPIW

(
∆IW

0 ,Z IW(V )
) ∼= HomPasph

I

(
Πasph(IC I

e ),Πasph(Z (V ))
)
.

Now, by definition the functor Π0 factors through the functor Πasph. Since
Πasph(IC I

e ) is simple, any nonzero morphism Πasph(IC I
e ) → Πasph(Z (V )) is

injective, and its image is not killed by the quotient functor Pasph
I → P0

I ; we deduce
that this functor induces an injective map

HomPasph
I

(
Πasph(IC I

e ),Πasph(Z (V ))
)
↪→ HomP0

I

(
Z 0(Qℓ),Z 0(V )

)
.

Next, since n0Qℓ
= 0, using Lemma 6.5.16 we see that

HomP0
I

(
Z 0(Qℓ),Z 0(V )

)
= HomP0

I

(
Z 0(Qℓ), ker(n0V )

)
.

And then using Proposition 6.5.18 we obtain an injection

HomP0
I

(
Z 0(Qℓ), ker(n0V )

)
↪→ HomQℓ

(Qℓ, V n0) = V n0 .

The desired inequality follows.

6.5.10. The case of quasi-minuscule coweights. — We are finally in a posi-
tion to prove the case of quasi-minuscule coweights in Proposition 6.5.9. So, in this
subsection we assume that G is semisimple and that V is a simple G∨-module with
quasi-minuscule highest weight λ. Observe that in this case we have

(6.5.9) dim(V n0) = dim(V0).

To see this, apply (6.5.8) and note that the nonzero weights µ of V lie in the root
lattice of g∨, and hence satisfy ⟨µ, 2ρ⟩ ∈ 2Z.

Going back to geometry, we note that by Remark 6.5.5 Z IW(V ) is supported on

FlIWG,λ, which contains the orbit FlIWG,µ iff µ ∈ Wf(λ) ∪ {0}. By Corollary 6.5.12, the

restriction and corestriction of Z IW(V ) to any orbit FlIWG,µ with µ ∈Wf(λ) is perverse,

so to conclude it suffices to prove the analogous claim for FlIWG,0 . Let i : Fl
IW
G,0 → FlG

be the embedding, and let j be the embedding of the open complement. Then we
have distinguished triangles

j!j
∗Z IW(V )→ Z IW(V )→ i∗i

∗Z IW(V )
[1]−→,

i∗i
!Z IW(V )→ Z IW(V )→ j∗j

∗Z IW(V )
[1]−→ .
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What we have proved so far implies that j∗Z IW(V ) (an Iwahori–Whittaker perverse

sheaf on FlG∖FlIWG,0 ) admits a filtration with standard subquotients, and a filtration

with costandard subquotients; hence both j!j
∗Z IW(V ) and j∗j

∗Z IW(V ) are per-
verse sheaves. Using the triangles above we deduce that i∗Z IW(V ) is concentrated
in perverse degrees 0 and −1, while i!Z IW(V ) is concentrated in perverse degrees 0
and 1. However, in view of (6.5.9), Lemma 6.5.25 and Proposition 6.5.4 imply that

dimHomPIW

(
∆IW

0 ,Z IW(V )
)

≤
∑
n≥0

(−1)n · dimHomDb
IW(FlG,Qℓ)

(∆IW
0 ,Z IW(V )[n]).

Our remarks above imply that the right-hand side equals

dimHomPIW

(
∆IW

0 ,Z IW(V )
)
− dimHomDb

IW(FlG,Qℓ)

(
∆IW

0 ,Z IW(V )[1]
)
,

so that we necessarily have dimHomDb
IW(FlG,Qℓ)

(
∆IW

0 ,Z IW(V )[1]
)
= 0; in other

words, the corestriction of Z IW(V ) to FlIWG,0 is perverse. Similar arguments show that

the restriction of this perverse sheaf to FlIWG,0 is perverse, and the proof is complete.

6.5.11. Restriction to the regular orbit. — We finish this section by proving
a lemma that will play a technical role in a step of the proof of the Arkhipov–
Bezrukavnikov equivalence in Section 6.6.

Recall that the Springer map Ñ → g∨ (defined by [g : x] 7→ g · x) restricts to an

isomorphism Õr → Or, where Or ⊂ g∨ is the regular nilpotent orbit and Õr ⊂ Ñ is
its preimage (see e.g. [J2, §6.10]). In particular, the element n0 ∈ g∨ admits a unique

preimage ñ0 in Ñ , and moreover since the canonical map G∨/ZG∨(n0) → Or is an
isomorphism of varieties we have a canonical equivalence of categories

(6.5.10) CohG
∨
(Õr)

∼−→ Rep(ZG∨(n0)),

see [Bri1, Lemma 2]. If we denote by CohG
∨

fr (Ñ ) the full subcategory of CohG
∨
(Ñ )

whose objects are those of the form V ⊗OÑ for some V in Rep(G∨), we can therefore
consider the composition

(6.5.11) CohG
∨

fr (Ñ )→ CohG
∨
(Õr)

(6.5.10)−−−−−→
∼

Rep(ZG∨(n0))→ Rep(H)

where the first arrow is given by restriction to the open subset Õr ⊂ Ñ , and the
third one is the restriction functor associated with the embedding H ↪→ ZG∨(n0).

By construction this functor is monoidal, for the monoidal structure on CohG
∨

fr (Ñ )
induced by the tensor product of coherent sheaves.

On the other hand, we can also consider the composition

(6.5.12) CohG
∨

fr (Ñ )
Π0◦F−−−→ P̃0

I
Φ0

−−→
∼

Rep(H),

where the first arrow is defined as follows: the functor F restricts to a functor
CohG

∨

fr (Ñ )→ PI , and then the composition Π0 ◦F : CohG
∨

fr (Ñ )→ P0
I factors through

P̃0
I by (6.3.18).
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Using Remark 6.3.10 we see that (6.5.12) admits a canonical monoidal structure.

Lemma 6.5.26. — The functors (6.5.11) and (6.5.12) are isomorphic as monoidal
functors.

Proof. — The objects in the category CohG
∨

fr (Ñ ) are in canonical bijection with those
in Rep(G∨) (through V 7→ V ⊗ OÑ ), and it is clear that both of our functors send
V ⊗ OÑ to V|H . Hence what we have to prove is that for any V1, V2 in Rep(G∨) the
maps

(6.5.13) HomCohG
∨
(Ñ )(V1 ⊗ OÑ , V2 ⊗ OÑ )→ HomRep(H)(V1, V2)

induced by these two functors coincide.
Using (6.2.1) we see that

HomCohG
∨
(Ñ )(V1 ⊗ OÑ , V2 ⊗ OÑ ) ∼=

(
V ∗
1 ⊗ V2 ⊗ O(Ñ )

)G∨

,

and that similarly we have

HomCohG
∨
(g∨)(V1 ⊗ Og∨ , V2 ⊗ Og∨) ∼=

(
V ∗
1 ⊗ V2 ⊗ O(g∨)

)G∨

.

Let N ⊂ g∨ be the nilpotent cone (i.e. the closed subvariety consisting of nilpotent
elements); then the Springer map induces a projective birational morphism pSpr :

Ñ → N . Since N is known to be normal (see [J2, §8.5] for references), by Zariski’s
main theorem (see the proof of [Har, Chap. III, Corollary 11.4]) we deduce that

(6.5.14) (pSpr)∗OÑ
∼= ON ,

hence that O(Ñ ) = O(N ). In particular, pullback under the Springer morphism

Ñ → g∨ induces a surjection O(g∨) ↠ O(Ñ ), and hence a surjection

HomCohG
∨
(g∨)(V1 ⊗ Og∨ , V2 ⊗ Og∨)→ HomCohG

∨
(Ñ )(V1 ⊗ OÑ , V2 ⊗ OÑ ).

Therefore, to prove that the two morphisms (6.5.13) coincide, it suffices to prove that
their compositions with this surjection coincide. In other words, the lemma will follow
if we show that the two compositions

(6.5.15) CohG
∨

fr (g∨) CohG
∨

fr (Ñ ) Rep(H)
pullback (6.5.11)

(6.5.12)

are isomorphic. Let us further compose with the natural functor Rep(G∨) →
CohG

∨
(g∨). It is clear that both functors

Rep(G∨) CohG
∨

fr (g∨) CohG
∨

fr (Ñ ) Rep(H)
pullback (6.5.11)

(6.5.12)

identify with the restriction functor associated with the embedding H ↪→ G∨. As
explained in §6.3.2 (see in particular Example 6.3.1), an extension of this functor to

a k-linear monoidal functor CohG
∨

fr (g∨)→ Rep(H) is determined by an H-equivariant
algebra homomorphism O(g∨) → Qℓ, which in turn is determined by an endomor-
phism of the restriction functor Rep(G∨)→ Rep(H) (which should correspond to the
canonical endomorphisms of the objects V ⊗ Og∨). In our case, for both functors
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in (6.5.15), this endomorphism is given by the action of n0; therefore these functors
must be isomorphic.

6.6. Proof of the equivalence

6.6.1. Statement. — We will consider the functor

FIW : DbCohG
∨
(Ñ )→ Db

IW(FlG,Qℓ)

defined as the composition

DbCohG
∨
(Ñ )

F−→ DbPI
(6.3.19)−−−−−→ Db

I (FlG,Qℓ)
AvIW−−−−→ Db

IW(FlG,Qℓ).

By construction (see (6.3.18)) we have

(6.6.1) FIW(V ⊗ OÑ ) = Z IW(V ), FIW(OÑ (λ)) = AvIW(Jλ(Qℓ))

for V in Rep(G∨) and λ ∈ X∨.
In view of the t-exactness of the functor AvIW (see Theorem 6.4.2(1)) and gen-

eral results on realization functors (see [Bĕı1, Lemma A.7.1]), FIW is canonically
isomorphic to the composition

(6.6.2) DbCohG
∨
(Ñ )

F−→ DbPI
Db(AvPIW)−−−−−−−→ DbPIW

∼−→ Db
IW(FlG,Qℓ)

where AvPIW is the restriction of AvIW to the hearts of the perverse t-structures,
and the last arrow is the realization functor. (Here this functor is an equivalence of
categories, as follows from the techniques of [BGS, §§3.2–3.3].)

Our goal in this section is to prove the following.

Theorem 6.6.1. — The functor FIW is an equivalence of categories.

Before explaining the proof of this result, let us note the following consequence.

Corollary 6.6.2. — The functor

AvasphIW : Pasph
I → PIW

(see Theorem 6.4.2(2)) is an equivalence of categories.

Proof. — As noted in Theorem 6.4.2 our functor is fully faithful; what remains to be
proved is that it is essentially surjective. However, Theorem 6.6.1 implies that for any
F in PIW , there exists G in Db

I (FlG,Qℓ) such that F ∼= AvIW(G ). By exactness of
AvIW (see Theorem 6.4.2(1)) we then have

F ∼= AvIW(pH 0(G )) ∼= AvasphIW
(
Πasph(

pH 0(G ))
)
,

which finishes the proof.

In view of the description of the functor FIW as the composition (6.6.2), Theo-
rem 6.6.1 and Corollary 6.6.2 show that F also induces an equivalence of triangulated
categories

(6.6.3) F asph := Db(Πasph) ◦ F : DbCohG
∨
(Ñ )

∼−→ DbPasph
I .
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6.6.2. Preliminaries. — The proof of Theorem 6.6.1 will be based on the tech-
niques of Bĕılinson’s lemma; so we will have to analyze the action of this functor on
morphisms between certain objects, and show that these objects (resp. their images)
generate the source category (resp. the target category).

Lemma 6.6.3. — The objects AvIW(Jλ(Qℓ)) with λ ∈ X∨ generate Db
IW(FlG,Qℓ)

as a triangulated category.

Proof. — By Lemma 4.1.9, the class of Jλ(Qℓ) in the Grothendieck group of PI (or
of Db

I (FlG,Qℓ)) coincides with that of ∆I
t(λ)(Qℓ). Using Lemma 6.4.5, we deduce that

the class of AvIW(Jλ(Qℓ)) in the Grothendieck group of Db
IW(FlG,Qℓ) coincides with

that of ∆IW
λ . Using an Euler characteristic argument (as in the proof of Lemma 4.1.9),

it follows that AvIW(Jλ(Qℓ)) is supported on FlIWG,λ, and that its restriction to FlIWG,λ
has rank 1. Then standard arguments (based on induction on the support) show that
these objects generate Db

IW(FlG,Qℓ) as a triangulated category.

Lemma 6.6.4. — For any V in Rep(G∨), the morphism

HomDbCohG
∨
(Ñ )(OÑ , V ⊗ OÑ )→ HomDb

IW(FlG,Qℓ)
(FIW(OÑ ), FIW(V ⊗ OÑ ))

induced by FIW is injective.

Proof. — Both OÑ and V ⊗ OÑ belong to CohG
∨

fr (Ñ ) (in the notation of §6.5.11),
and both

FIW(OÑ ) = ∆IW
0 and FIW(V ⊗ OÑ ) = Z IW(V )

belong to the essential image of the fully faithful functor from Theorem 6.4.2(2).
Hence what we have to show is that the composition of Πasph with F induces an
injective map

HomCohG
∨
(Ñ )(OÑ , V ⊗ OÑ )→ HomPasph

I
(Πasph(∆

I
e),Πasph(Z (V ))).

As observed in the course of the proof of Lemma 6.5.25, the functor Π0 factors through
Πasph; therefore, to conclude it suffices to prove that the composition of Π0 with F
induces an injective morphism

HomCohG
∨
(Ñ )(OÑ , V ⊗ OÑ )→ HomP0

I
(δ0,Z 0(V )).

Finally, in view of Lemma 6.5.26, proving this claim amounts to proving that restric-
tion to the preimage of n0 induces an injective morphism

(6.6.4) HomCohG
∨
(Ñ )(OÑ , V ⊗ OÑ )→ HomRep(H)(Qℓ, V ).

This is however well known. Namely, as in the proof of Lemma 6.5.26, the left-hand
side identifies with (

V ⊗ O(N )
)G∨

,

where N ⊂ g∨ is the nilpotent cone. The regular nilpotent orbit Or ⊂ N is an open
subset of the normal variety N , whose complement has codimension 2. Therefore
restriction induces an isomorphism O(N )

∼−→ O(Or), and hence an isomorphism(
V ⊗ O(N )

)G∨ ∼−→
(
V ⊗ O(Or)

)G∨

.
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Then we have O(Or) = IndG
∨

ZG∨ (n0)(Qℓ), so that(
V ⊗ O(Or)

)G∨

=
(
V ⊗ IndG

∨

ZG∨ (n0)(Qℓ)
)G∨

= V ZG∨ (n0).

Under this identification, (6.6.4) can be identified with the inclusion map V ZG∨ (n0) ↪→
V H , which is indeed injective.

Corollary 6.6.5. — For any V in Rep(G∨), any λ ∈ X∨
+ and any n ∈ Z, the

morphism

HomDbCohG
∨
(Ñ )(OÑ , V ⊗ OÑ (λ)[n])

→ HomDb
IW(FlG,Qℓ)

(FIW(OÑ ), FIW(V ⊗ OÑ (λ))[n])

induced by FIW is injective.

Proof. — Using (6.2.1) we see that

HomDbCohG
∨
(Ñ )(OÑ , V ⊗ OÑ (λ)[n]) =

(
V ⊗ Hn(Ñ ,OÑ (λ))

)G∨

.

By [Bro, Theorem 2.4] we have Hn(Ñ ,OÑ (λ)) = 0 unless n = 0; it follows that

(6.6.5) HomDbCohG
∨
(Ñ )(OÑ , V ⊗ OÑ (λ)[n]) = 0

unless n = 0. So, the only case we have to consider is when n = 0.
By Lemma 6.2.9, there exists V ′ in Rep(G∨) and an embedding OÑ (λ) ↪→ V ′⊗OÑ

in CohG
∨
(Ñ ). We deduce an embedding

(6.6.6) HomCohG
∨
(Ñ )(OÑ , V ⊗ OÑ (λ)) ↪→ HomCohG

∨
(Ñ )(OÑ , V ⊗ V

′ ⊗ OÑ ).

By Lemma 6.6.4, the morphism

(6.6.7) HomCohG
∨
(Ñ )(OÑ , V ⊗ V

′ ⊗ OÑ )

→ HomDb
IW(FlG,Qℓ)

(FIW(OÑ ), FIW(V ⊗ V ′ ⊗ OÑ ))

is injective. Now by functoriality the composition of (6.6.6) and (6.6.7) (which is
injective by our arguments above) coincides with the composition of the morphism in
the statement (for n = 0) with the morphism

HomDb
IW(FlG,Qℓ)

(FIW(OÑ ), FIW(V ⊗ OÑ (λ)))

→ HomDb
IW(FlG,Qℓ)

(FIW(OÑ ), FIW(V ⊗ V ′ ⊗ OÑ ))

induced by our morphism OÑ (λ) ↪→ V ′ ⊗ OÑ . The desired injectivity follows.

6.6.3. Proof of Theorem 6.6.1. — We are now in a position to prove Theo-
rem 6.6.1. We will first prove that FIW is fully faithful. For this, we have to check

that for any F ,G in DbCohG
∨
(Ñ ) the morphism

(6.6.8) HomDbCohG
∨
(Ñ )(F ,G )→ HomDb

IW(FlG,Qℓ)
(FIW(F ), FIW(G ))

induced by FIW is an isomorphism.
Consider the special case when F = OÑ and G = V ⊗ OÑ (λ)[n] for some V

in Rep(G∨), some λ ∈ X∨
+ and some n ∈ Z. In this case (6.6.8) is injective by
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Corollary 6.6.5. We claim that the domain and codomains have the same (finite)
dimension, so that this map must be an isomorphism.

First, we consider the right-hand side. By (6.3.18) we have

FIW(OÑ ) = ∆IW
0 , FIW(V ⊗ OÑ (λ)) ∼= Z IW(V ) ⋆I Jλ(Qℓ).

Hence the space we have to consider is

HomDb
IW(FlG,Qℓ)

(∆IW
0 ,Z IW(V ) ⋆I Jλ(Qℓ)[n])

∼= HomDb
IW(FlG,Qℓ)

(∆IW
0 ⋆I J−λ(Qℓ),Z IW(V )[n])

∼= HomDb
IW(FlG,Qℓ)

(∆IW
0 ⋆I ∆I

t(−λ),Z
IW(V )[n])

∼= HomDb
IW(FlG,Qℓ)

(∆IW
−λ ,Z

IW(V )[n]),

where the second step follows from (4.2.1), and the last step uses Lemma 6.4.5. By
Theorem 6.5.2 this space vanishes unless n = 0, and in this case its dimension is
dim(V−λ).

Now we consider the left-hand side of (6.6.8) (still in our particular case). As seen
in the course of the proof of Corollary 6.6.5, here again the space vanishes unless
n = 0, and in this case it identifies with(

V ⊗ Γ(Ñ ,OÑ (λ))
)G∨

,

so that its dimension is∑
ν∈X∨

+

[V ∗ : N(ν)] ·
[
Γ(Ñ ,OÑ (λ)) : N(ν)

]
.

Now it is known that [
Γ(Ñ ,OÑ (λ)) : N(ν)

]
= dim (N(ν)λ) ,

see [Bro, Proposition 2.1]. We finally deduce that the dimension we are computing
equals

dim((V ∗)λ) = dim(V−λ),

which finishes the proof of our claim.
From this special case, using Lemma 6.2.8 (Case (2)) and the 5-lemma we obtain

that (6.6.8) is an isomorphism when F = OÑ and G is any object of DbCohG
∨
(Ñ ).

Next, if F = OÑ (λ) for some λ ∈ X∨, using the isomorphisms

HomDbCohG
∨
(Ñ )(OÑ (λ),G ) ∼= HomDbCohG

∨
(Ñ )(OÑ ,G ⊗OÑ

OÑ (−λ))

and

HomDb
IW(FlG,Qℓ)

(FIW(OÑ (λ)), FIW(G ))

∼= HomDb
IW(FlG,Qℓ)

(∆IW
0 ⋆I Jλ(Qℓ), FIW(G ))

∼= HomDb
IW(FlG,Qℓ)

(∆IW
0 , FIW(G ) ⋆I J−λ(Qℓ))

∼= HomDb
IW(FlG,Qℓ)

(∆IW
0 , FIW(G ⊗OÑ

OÑ (−λ)))
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one identifies the map (6.6.8) in this case with the analogous map when F = OÑ
and G is replaced by G ⊗OÑ

OÑ (−λ). As explained above this map is known to be

an isomorphism. Finally, using Case (1) in Lemma 6.2.8 and again the 5-lemma, we
obtain that the map (6.6.8) is an isomorphism for any objects F and G .

Now that we know that FIW is fully faithful, we deduce that its essential image is a
triangulated subcategory of Db

IW(FlG,Qℓ). By (6.6.1), this subcategory contains the

objects AvIW(Jλ(Qℓ)) for λ ∈ X∨, which generate Db
IW(FlG,Qℓ) by Lemma 6.6.3.

Therefore FIW is essentially surjective, which finishes the proof.

6.6.4. Application: indecomposability of Z IW(V ) when V is simple. —
As an immediate application of Theorem 6.6.1, we answer the question raised in
Remark 6.5.3.

Proposition 6.6.6. — If V ∈ Rep(G∨) is simple, then the tilting perverse sheaf
Z IW(V ) is indecomposable.

Proof. — To prove that Z IW(V ) is indecomposable it suffices to prove that its inverse
image under the equivalence of Theorem 6.6.1, i.e. the equivariant coherent sheaf

V ⊗OÑ ∈ CohG
∨
(Ñ ), is indecomposable. However, by the same considerations as in

the proof of Lemma 6.5.26 we have

(6.6.9) EndCohG∨
(Ñ )(V ⊗ OÑ ) ∼= (End(V )⊗ O(N ))G

∨
.

Now, consider the action of Gm on g∨ for with z ∈ Q×
ℓ acts by multiplication by

z−1. This action stabilizes N , and therefore defines a grading on the algebra O(N ).
By construction the parts in negative degrees vanish, and the degree-0 part con-
sists of the constant functions. This grading induces a grading on the vector space
(End(V )⊗O(N ))G

∨
, and it is not difficult to check that this endows this space with

a graded algebra structure (for the product induced by the product on the left-hand
side in (6.6.9)). Now it is clear that a graded Qℓ-algebra concentrated in nonnega-
tive degrees, and whose degree-0 part is Qℓ, cannot contain nontrivial idempotents.
Therefore V ⊗ OÑ is indeed indecomposable, which finishes the proof.





CHAPTER 7

COMPLEMENTS

In this chapter we present three complements to the results of Chapter 6. We
continue with the same setting and notation as in that chapter.

First, in Section 7.1 we describe the t-structure onDbCohG
∨
(Ñ ) obtained by trans-

porting the perverse t-structure on Db
IW(FlG,Qℓ) along the equivalence of Theo-

rem 6.6.1. This t-structure is called the exotic t-structure, and is studied in particular
in [Be3] and in [MR1]; it plays an important role in several other works in geomet-
ric representation theory; see [Ac2, Be3, MR2] for examples. The relation with
Theorem 6.6.1 is due to Bezrukavnikov in [Be3].

Then, in Section 7.2 we show that the functor considered in §6.5.7 induces an
equivalence of monoidal categories between P0

I and the category of representations of
ZG∨(n0). This fact is stated in a remark in [AB], but as far as we know no proof
appears in the literature. (See however [BRR] for closely related considerations in a
modular setting.)

Finally, in Section 7.3 we explain how one can deduce from Theorem 6.6.1 a de-
scription of the derived category of equivariant coherent sheaves on the nilpotent cone
N in terms of perverse sheaves on FlG. Once again this result is due to Bezrukavnikov,
see [Be4].

7.1. t-structures

In this section we describe the t-structure on DbCohG
∨
(Ñ ) obtained by trans-

port along the equivalence FIW (see Theorem 6.6.1) from the perverse t-structure on
Db

IW(FlG,Qℓ).

7.1.1. Exceptional collections and associated t-structures. — We start by
recalling a general construction of a t-structure on a triangulated category starting
from a nice enough family of objects.

In this subsection we let k be any field. Let D be a k-linear triangulated cat-
egory which is of finite type, i.e. such that for any X,Y in D the k-vector space⊕

n∈Z HomD(X,Y [n]) is finite-dimensional. Let (I,≤) be a partially ordered set. A
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collection (∇i : i ∈ I) of objects of D is called an exceptional collection (parametrized
by (I,≤)) if it satisfies

HomD(∇i,∇j [n]) = 0

if i ̸≥ j or if i = j and n ̸= 0, and if in addition HomD(∇i,∇i) = k.
The case which will be the most relevant for us is the case when (I,≤) = (Z≥0,≤).

Assume we are in this setting, and consider an exceptional collection (∇i : i ∈ Z≥0).
There exists a unique collection (∆i : i ∈ Z≥0) of objects of D which satisfy

HomD(∆
i,∇j) = 0 if i > j and ∆i ∼= ∇i mod D<i

(where D<i is the full triangulated subcategory of D generated by the objects ∇j for
j < i, and the right-hand side means that the images of ∆i and ∇i in the Verdier
quotient D/D<i are isomorphic), see [Be3, Proposition 3]. This collection is called
the dual exceptional collection; it satisfies

HomD(∆
i,∆j [n]) = 0

if i ≥ j or if i = j and n ̸= 0, and in addition HomD(∆
i,∆i) = k. (In other words, this

collection is exceptional for the opposite of the usual order on Z≥0.) These objects
also automatically satisfy the condition

HomD(∆
i,∇j [n]) =

{
k if i = j and n = 0;

0 otherwise.

Assume now that the objects (∇j : j ∈ Z≥0) generate D as a triangulated cat-
egory. Define D≥0 as the full subcategory of D generated under extensions by the
objects ∇i[n] with i ∈ Z≥0 and n ∈ Z≤0, and D≤0 as the full subcategory of D
generated under extensions by the objects ∆i[n] with i ∈ Z≥0 and n ∈ Z≥0. Then
by [Be3, Proposition 4], the pair (D≤0,D≥0) is a bounded t-structure on D, called
the t-structure associated with the exceptional collection (∇i : i ∈ Z≥0).

Example 7.1.1. — Consider the order ≤geo on X∨ such that λ ≤geo µ iff FlIWG,λ ⊂
FlIWG,µ. Then it is easy to see using adjunction that the collection (∇IW

λ : λ ∈ X∨) is
exceptional (for the poset (X∨,≤geo)). Choose an arbitrary refinement ≤′

geo of this
order to a total order such that (X∨,≤′

geo) is isomorphic to (Z≥0,≤) as a poset. Then

the dual exceptional collection is (∆IW
λ : λ ∈ X∨), and the associated t-structure is

the perverse t-structure.

Another important operation we can do with exceptional collections is mutation.
Namely, let us come back to the setting of a general poset (I,≤), and assume we are
given another partial order ⪯ on I such that (I,⪯) is isomorphic to (Z≥0,≤). Then

for any i ∈ I there exists a unique object ∇̃i in D⪯i such that HomD(X, ∇̃i) = 0 for

any X in D≺i and such that ∇i ∼= ∇̃i mod D≺i. (Here D⪯i, resp. D≺i, means the
triangulated subcategory of D generated by the objects ∇j with j ⪯ i, resp. with
j ≺ i.) Moreover, the collection (∇̃i : i ∈ I) is an exceptional collection parametrized
by (I,⪯), and it generates D as a triangulated category if (∇i : i ∈ I) does.
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7.1.2. The exotic t-structure. — We come back to the case k = Qℓ, and D =

DbCohG
∨
(Ñ ). It is well known that this category is of finite type, see e.g. [MR1,

Corollary 2.7] for a proof. Consider also the set X∨, equipped with the order such
that λ is smaller than µ iff µ−λ is a sum of positive roots. The following claim is not
difficult to check directly (see e.g. [Be3, Lemma 5]), but can also be deduced from
the Arkhipov–Bezrukavnikov equivalence.

Lemma 7.1.2. — The collection (OÑ (λ) : λ ∈ X) is an exceptional collection

(parametrized by X∨ with the order as above) which generates DbCohG
∨
(Ñ ) as a

triangulated category.

Proof. — Recall that for all λ ∈ X∨ we have

FIW(OÑ (λ)) = AvIW(Jλ(Qℓ)).

Therefore, using Theorem 6.6.1, the lemma translates into the statement that the
collection (AvIW(Jλ(Qℓ)) : λ ∈ X∨) is an exceptional collection in Db

IW(FlG,Qℓ),
and that it generates this category (as a triangulated category). The latter property
is exactly Lemma 6.6.3. For the former, consider λ1, λ2 ∈ X∨ and n ∈ Z. Then for
any µ ∈ X∨, convolution on the right with Jµ(Qℓ) induces an isomorphism

HomDb
IW(FlG,Qℓ)

(
AvIW(Jλ1(Qℓ)),AvIW(Jλ2(Qℓ))[n]

) ∼=
HomDb

IW(FlG,Qℓ)

(
AvIW(Jλ1+µ(Qℓ)),AvIW(Jλ2+µ(Qℓ))[n]

)
,

by Proposition 4.2.3 and Lemma 4.2.7. If we choose µ such that λ1 + µ is dominant,
then we have

AvIW(Jλ1+µ(Qℓ)) ∼= AvIW(∇It(λ1+µ)
) ∼= ∇IW

λ1+µ

by (4.2.1) and Lemma 6.4.5 respectively. If we furthermore assume that λ2 + µ is
dominant then we likewise have

AvIW(Jλ2+µ(Qℓ)) ∼= ∇IW
λ2+µ.

Hence

HomDb
IW(FlG,Qℓ)

(
AvIW(Jλ1(Qℓ)),AvIW(Jλ2(Qℓ))[n]

) ∼=
HomDb

IW(FlG,Qℓ)

(
∇IW
λ1+µ,∇

IW
λ2+µ[n]

)
.

Here by adjunction the right-hand side vanishes unless FlIWG,λ2+µ ⊂ FlIWG,λ1+µ, or equiv-
alently, unless (λ1+µ)−(λ2+µ) = λ1−λ2 is a sum of positive roots (see Remark 6.4.1).
These considerations also show that in case λ1 = λ2 this space vanishes unless n = 0,
and is 1-dimensional in this case, which finishes the proof.

We now consider the order ≤geo on X∨ from Example 7.1.1, and fix a completion
≤′

geo such that (X∨,≤′
geo)

∼= (Z≥0,≤). Then we can define the exotic exceptional
collection

(∇ex
λ : λ ∈ X∨)
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as the collection obtained from (OÑ (λ) : λ ∈ X∨) by mutation using this new order
(see §7.1.1). By the results recalled in §7.1.1, there exists a dual collection, which will
be denoted

(∆ex
λ : λ ∈ X∨),

and an associated t-structure on DbCohG
∨
(Ñ ), which will be called the exceptional

t-structure. The heart of this t-structure will be denoted ExCoh(Ñ ).

Remark 7.1.3. — By Remark 6.4.1, we have λ ≤geo µ iff the GO-orbit containing
FlG,t(λ) is contained in the closure of the GO-orbit containing FlG,t(µ). In turn, it is
known that this condition is equivalent to the property that wλ ≤Bru wµ. (See §6.4.3
for the definition of the elements wν , and §4.1.1 for the definition of the Bruhat order
≤Bru.) Therefore, the order ≤geo indeed coincides with the order considered in [Be3]
or in [MR1]. (In these references, one adds some conditions on the completion of the
order. However it follows from Proposition 7.1.5 below that the exotic exceptional
collection does not depend on the choice of completion, so that these conditions turn
out to be unnecessary.)

The exotic t-structure can be defined and studied purely in terms of equivariant
coherent sheaves, see [Be3, MR1] (see also [Ac2] for a survey on this topic and
some explicit computations), and for coefficient fields more general than Qℓ; but this
requires introducing more notation and constructions. For simplicity, we will not go
into these details, and will instead use Theorem 6.6.1 to deduce most of the properties
of this t-structure that we will need.

In fact, the only property (to be used in Section 7.2) that we could not prove in

this way is the following. Recall the preimage Õr of the regular nilpotent orbit under
the Springer map, see §6.5.11.

Proposition 7.1.4. — For any λ ∈ X and any simple root α such that ⟨λ, α∨⟩ > 0,
there exist morphisms

∇ex
λ → ∇ex

sα(λ) and ∆ex
sα(λ) → ∆ex

λ

whose restriction to Õr is an isomorphism.

Proof. — The morphisms can be chosen as those appearing in the distinguished trian-
gles of [Ac2, Proposition 1.5(4)] (see also [Be3, Proposition 7]). Here for each triangle

the third object has trivial restriction to Õr by definition of the functor denoted Ψα,
so that these morphisms indeed have the stated property.

7.1.3. Exotic and perverse t-structures. — The main result of the present sec-
tion is the following.

Proposition 7.1.5. — For any λ ∈ X∨ we have

FIW(∇ex
λ ) ∼= ∇IW

λ , FIW(∆ex
λ ) ∼= ∆IW

λ .

As a consequence, the functor FIW is t-exact with respect to the exotic t-structure on

DbCohG
∨
(Ñ ) and the perverse t-structure on Db

IW(FlG,Qℓ). Moreover, the objects

∇ex
λ and ∆ex

λ lie in the abelian category ExCoh(Ñ ).
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Proof. — We first observe that if we prove the first isomorphism, the rest of the
proposition follows. Indeed, the isomorphisms FIW(∆ex

λ ) ∼= ∆IW
λ follow by unique-

ness of the dual exceptional collection; t-exactness follows in view of the definition
of the t-structure associated with an exceptional collection; and the last assertion
follows from the fact that ∇IW

λ and ∆IW
λ are perverse (see 6.4.3).

Let us now prove that FIW(∇ex
λ ) ∼= ∇IW

λ for all λ ∈ X∨. In view of Theorem 6.6.1,
this amounts to proving that the collection (∇IW

λ : λ ∈ X∨) is the collection obtained

from the exceptional collection (AvIW(Jλ(Qℓ)) : λ ∈ X∨) in Db
IW(FlG,Qℓ) by muta-

tion for the order ≤′
geo.

Recall from the proof of Lemma 6.6.3 that for any λ ∈ X∨ the perverse sheaf

AvIW(Jλ(Qℓ)) is supported on FlIWG,λ, and that its restriction to FlIWG,λ has rank one.
Using these properties it is not difficult to show that for any order ideal Y ⊂ X∨

(i.e. any subset Y such that if y ∈ Y and z ≤′
geo y then z ∈ Y ) the triangulated

subcategory of Db
IW(FlG,Qℓ) generated by the objects AvIW(Jλ(Qℓ)) with λ ∈ Y

coincides with the subcategory of complexes supported on the closed subset⋃
λ∈Y

FlIWG,λ.

From this remark it is easily seen (using adjunction and the distinguished triangle of
functors associated with a partition of a space into an open subspace and its closed
complement) that the collection (∇IW

λ : λ ∈ X∨) satisfies the defining property for
the collection obtained by mutation, which completes the proof.

7.1.4. Some consequences. — From the general theory of perverse sheaves
(see [BBDG]) we know that the simple objects in the category PervIW(FlG,Qℓ) are
naturally parametrized by X∨. More precisely, for any λ ∈ X∨, the vector space
HomPervIW(FlG,Qℓ)

(∆IW
λ ,∇IW

λ ) is 1-dimensional; if we denote (as in §6.4.3) by IC IW
λ

the image of any nonzero morphism in this space, then IC IW
λ is simple, and the

assignment λ 7→ IC IW
λ induces a bijection between X∨ and the set of isomorphism

classes of simple objects in PervIW(FlG,Qℓ).
From Proposition 7.1.5 we see that FIW induces an equivalence of abelian cate-

gories

ExCoh(Ñ )
∼−→ PervIW(FlG,Qℓ).

Hence from the classification of simple objects in PervIW(FlG,Qℓ) one can deduce

a similar classification for the category ExCoh(Ñ ). Namely, for any λ ∈ X∨ the
vector space Hom(∆ex

λ ,∇ex
λ ) is 1-dimensional. If we denote by Lex

λ the image of any
nonzero morphism in this space, then Lex

λ is simple, and the assignment λ 7→ Lex
λ

induces a bijection between X∨ and the set of isomorphism classes of simple objects

in ExCoh(Ñ ). (Here, the term “image” makes sense because ∆ex
λ and ∇ex

λ live in the

abelian category ExCoh(Ñ ): see Proposition 7.1.5.) From these considerations, it is
clear that for any λ ∈ X∨ we have

(7.1.1) FIW(Lex
λ ) ∼= IC IW

λ .
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Since ExCoh(Ñ ) is the heart of a t-structure onDbCohG
∨
(Ñ ), there exists a natural

“realization functor”

(7.1.2) DbExCoh(Ñ )→ DbCohG
∨
(Ñ ),

see [BBDG, §3.1] (see also [Bĕı1] for this construction in a more general context).

Corollary 7.1.6. — The realization functor (7.1.2) is an equivalence of triangulated
categories.

Proof. — Using the equivalence FIW , one translates the statement into the corre-
sponding statement for the perverse t-structure on Db

IW(FlG,Qℓ). In this case the
claim is well known: as explained in §6.6.1, it follows from the techniques of [BGS,
§§3.2–3.3]. (Alternatively, the techniques of [BGS, §§3.2–3.3] can be applied directly

to ExCoh(Ñ ), using the fact from Proposition 7.1.5 that the objects ∆ex
λ and ∇ex

λ lie
in this category.)

7.2. Description of the regular quotient

Our goal in this section is to make Proposition 6.5.18 more precise, by proving

that in this proposition we have P̃0
I = P0

I , and that the embedding H ⊂ ZG∨(n0)
is an equality. These statements will therefore provide an equivalence of monoidal
categories

(P0
I ,⃝⋆ )

∼−→ (Rep(ZG∨(n0)),⊗).

7.2.1. Support of simple exotic sheaves. — First, we need to determine which

simple exotic sheaves have a nonzero restriction to Õr.

Lemma 7.2.1. — For any λ ∈ X∨
+ we have ∇ex

λ
∼= OÑ (λ). Dually, for any λ ∈

−X∨
+ we have ∆ex

λ
∼= OÑ (λ).

Proof. — Assume first that λ ∈ X∨
+. Then by (4.2.1) we have Jλ(Qℓ) = ∇It(λ).

Using Lemma 6.4.5, it follows that AvIW(Jλ(Qℓ)) = ∇IW
λ . Comparing (6.6.1) and

Proposition 7.1.5, and applying (FIW)−1, we deduce the first claim.
Similarly, if λ ∈ −X∨

+ we have Jλ(Qℓ) = ∆I
t(λ), so that AvIW(Jλ(Qℓ)) = ∆IW

λ ,

and we deduce that ∆ex
λ
∼= OÑ (λ).

Lemma 7.2.2. — For any λ ∈ X∨, the restriction of ∇ex
λ to Õr is isomorphic to

the restriction of OÑ (λ+), where λ+ is the dominant Wf-conjugate of λ. Dually, for

any λ ∈ X∨, the restriction of ∇ex
λ to Õr is isomorphic to the restriction of OÑ (λ−),

where λ− is the antidominant Wf-conjugate of λ.

Proof. — We prove the claim for the costandard objects; the case of standard objects
is similar. The proof proceeds by induction on the length of the minimal element
w ∈Wf such that λ = w(λ+). If w = e, then the result follows from Lemma 7.2.1. In
general, write w = sv with s ∈ Sf and ℓ(w) = ℓ(v) + 1. Then by induction we know

that the restriction of ∇ex
s(λ) to Õr is isomorphic to the restriction of OÑ (λ+). We

deduce the analogous claim for λ using Proposition 7.1.4.
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Corollary 7.2.3. — For any F in ExCoh(Ñ ), the restriction F|Õr
is a G∨-

equivariant vector bundle on Õr.

Proof. — In view of (6.5.10), any G∨-equivariant coherent sheaf on Õr is a vector
bundle. Hence the statement is equivalent to the claim that the restriction functor

DbCohG
∨
(Ñ )→ DbCohG

∨
(Õr)

is t-exact, where the left-hand side is endowed with the exotic t-structure and the
right-hand side with the tautological t-structure. This claim in turn follows from
Lemma 7.2.2 and the description of the t-structure associated with an exceptional
collection in §7.1.1.

Proposition 7.2.4. — For λ ∈ X∨, the restriction of Lex
λ to Õr coincides with the

restriction of OÑ (λ+) (where λ+ is the dominant Wf-conjugate of λ) if ℓ(wλ) = 0,
and is 0 otherwise.

Proof. — First, assume that ℓ(wλ) = 0. Then the orbit FlIWG,λ does not contain any

orbit FlIWG,µ with µ ̸= λ in its closure. It follows that ∇IW
λ
∼= IC IW

λ . In view of
Proposition 7.1.5 and (7.1.1), this implies that

∇ex
λ
∼= Lex

λ ,

so that the claim follows from Lemma 7.2.2 in this case.
Now we consider the general case. Each connected component of FlG contains

exactly one 0-dimensional I-orbit; in particular there exists µ ∈ X∨ such that
ℓ(wµ) = 0 and FlG,wµ

and FlG,wλ
belong to the same connected component. Then

by Lemma 4.1.3 IC I
wµ

is a composition factor of ∇Iwλ
(with multiplicity 1). Using

Lemma 6.4.4, Lemma 6.4.5 and Corollary 6.4.7, it follows that IC IW
wµ

is a com-

position factor of ∇IW
µ (with multiplicity 1). Applying the functor (FIW)−1 and

using Proposition 7.1.5 and (7.1.1), we deduce that Lex
µ is a composition factor of

∇ex
λ (with multiplicity 1). Since the restriction of each simple exotic sheaf to Õr is a

vector bundle (see Corollary 7.2.3) and since the restrictions of both ∇ex
λ and Lex

µ are
of rank 1 (see Lemma 7.2.2 and the case treated above), it follows that all the other

composition factors of ∇ex
λ restrict trivially to Õr. Since Lex

λ is a composition factor

(in fact, a subobject) of ∇ex
λ , it must in particular restrict trivially to Õr.

Remark 7.2.5. — One can check that ℓ(wλ) = 0 iff w◦(λ) belongs to the subset of
X∨ denoted Σ in Remark 4.1.1. This explains the relation between Proposition 7.2.4
and [Ac2, Lemmas 5.1 and 5.2].

7.2.2. Induced equivalence for the regular nilpotent orbit. — Recall (see
e.g. the proof of Lemma 6.5.25) that the quotient functor Π0 : PI → P0

I factors

through a functor Pasph
I → P0

I , which will be denoted Π0
asph. (It is easily checked

that this functor identifies P0
I with the quotient of Pasph

I by the Serre subcategory
generated by the objects of the form Πasph(IC I

w) with w ∈ fW and ℓ(w) > 0.) Recall
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also the equivalence F asph defined in (6.6.3). Our goal in this subsection is to prove
the following proposition.

Proposition 7.2.6. — There exists a unique triangulated functor

F r : DbCohG
∨
(Õr)→ Db(P0

I)

which makes the following diagram commutative, where the left vertical arrow is in-
duced by restriction:

DbCohG
∨
(Ñ ) Db(Pasph

I )

DbCohG
∨
(Õr) Db(P0

I).

F asph

∼

Db(Π0
asph)

F r

Moreover, F r is an equivalence of categories, and it is t-exact with respect to the

tautological t-structures on DbCohG
∨
(Õr) and D

b(P0
I).

For the proof of this proposition we will need the following property. We denote

by DÑ∖Õr
the full triangulated subcategory of DbCohG

∨
(Ñ ) whose objects are the

complexes supported (set-theoretically) on the closed subset Ñ ∖ Õr. In these terms,
Proposition 7.2.4 implies that this subcategory contains all the objects Lex

λ with λ ∈
X∨ such that ℓ(wλ) > 0.

Lemma 7.2.7. — The category DÑ∖Õr
is generated, as a triangulated category, by

the objects Lex
λ with λ ∈ X∨ such that ℓ(wλ) > 0.

Proof. — In view of the comments preceding the statement, what remains to be

seen is that any complex F in DbCohG
∨
(Ñ ) which restricts trivially to Õr belongs

to the triangulated subcategory generated by the objects Lex
λ with λ ∈ X∨ such

that ℓ(wλ) > 0. Now if F|Õr
= 0, then using Corollary 7.2.3 we see that each

composition factor of each exotic cohomology object of F also restricts trivially to

Õr. By Proposition 7.2.4 these composition factors must be of the form Lex
λ with

ℓ(wλ) > 0, so that F indeed belongs to the triangulated subcategory generated by
such objects.

We are now in a position to prove Proposition 7.2.6.

Proof of Proposition 7.2.6. — Let us set

F̄ asph := Db(Π0
asph) ◦ F asph : DbCohG

∨
(Ñ )→ Db(P0

I).

(We have already encountered an abelian-category counterpart of this functor:
see (6.5.12).) By (7.1.1) (see also Corollary 6.6.2), for any λ ∈ X∨ we have

(7.2.1) F̄ asph(Lex
λ ) = Π0(IC I

wλ
).

In particular, if ℓ(wλ) > 0 the right-hand side vanishes, and from this we deduce that

F̄ asph vanishes on the triangulated subcategory of DbCohG
∨
(Ñ ) generated by the
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objects Lex
λ with ℓ(wλ) > 0, or in other words (see Lemma 7.2.7), on the subcategory

DÑ∖Õr
. Now by [AriB, Remark after Lemma 2.12] the restriction functor

DbCohG
∨
(Ñ )→ DbCohG

∨
(Õr)

identifiesDbCohG
∨
(Õr) with the Verdier quotient ofDbCohG

∨
(Ñ ) by the subcategory

DÑ∖Õr
. The existence and uniqueness of F r follow, by the universal property of the

Verdier quotient (see [SP, Tag 05RJ]).
To prove that F r is an equivalence, we note that the image of DÑ∖Õr

under the

equivalence F asph is the triangulated subcategory generated by the objects of the
form Πasph(IC I

w) with w ∈ fW such that ℓ(w) > 0. By [Miy, Theorem 3.2] and the
remarks at the beginning of the subsection, the functor

Db(Π0
asph) : D

b(Pasph
I )→ Db(P0

I)

identifies Db(P0
I) with the Verdier quotient of Db(Pasph

I ) by this subcategory, and the
invertibility follows.

Finally, it remains to prove that F r is t-exact. For this, observe (as follows

e.g. from (6.5.10)) that any object in CohG
∨
(Õr) has finite length. Since F asph is

t-exact (with respect to the exotic t-structure on the domain and the tautological
t-structure on the codomain, see Proposition 7.1.5), to conclude it suffices to show

that any simple object in CohG
∨
(Õr) is the restriction of a simple object in ExCoh(Ñ ).

This property can be checked in two different ways as follows.
First, recall from Corollary 7.2.3 that the restriction functor

DbCohG
∨
(Ñ )→ DbCohG

∨
(Õr)

is t-exact with respect to the exotic t-structure on the domain and the tautological
t-structure on the codomain. On the other hand, it is well known that given an

object F in CohG
∨
(Õr), there exists an object G in CohG

∨
(Ñ ) such that G|Õr

∼= F .

(See [AriB, Lemma 2.12] for a much more general statement.) By exactness the
0-th exotic cohomology object G ′ of G also satisfies G ′

|Õr

∼= F . If we furthermore

assume that F is simple, then G ′ must admit a composition factor G ′′ such that
(G ′′)|Õr

∼= F , which finishes the proof.

Alternatively, if U∨
0 is the unipotent radical of the unique Borel subgroup of G∨

containing n0, it is known that multiplication induces a group isomorphism

Z(G∨)× ZU∨
0
(n0)

∼−→ ZG∨(n0).

(This can, for instance, be deduced from the results in [Hu3, §4.6].) In particular,
since ZU∨

0
(n0) is unipotent, restriction induces an isomorphism between the isomor-

phism classes of simple ZG∨(n0)-modules and simple Z(G∨)-modules. Now Z(G∨) is
a diagonalizable group, so that any simple Z(G∨)-module is 1-dimensional; moreover
restriction along the embedding Z(G∨) ⊂ T∨ induces an isomorphism

X∨/ZR∨ ∼−→ X∗(Z(G)).

https://stacks.math.columbia.edu/tag/05RJ
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For λ ∈ X∨, it is not difficult to check that the image of the restriction of OÑ (λ) to

Õreg is the character corresponding to the image of λ in X∨/ZR∨. Then the desired
claim follows from Proposition 7.2.4 and Remark 4.1.1.

7.2.3. Consequence for the equivalence Φ0. — Proposition 7.2.6 provides an

equivalence of categories P0
I
∼= CohG

∨
(Õr), and by (6.5.10) we have an equiva-

lence CohG
∨
(Õr) ∼= Rep(ZG∨(n0)). Combining these equivalences we have essentially

reached our goal, but with a caveat. Namely, Proposition 6.5.18 is concerned with a
certain specific functor, whose comparison with the equivalence obtained from Propo-
sition 7.2.6 is not immediate. The more specific statement we were looking for is the
following.

Proposition 7.2.8. — In Proposition 6.5.18 we have P̃0
I = P0

I , and moreover H =
ZG∨(n0).

To prove the proposition we will need some preliminaries.

Lemma 7.2.9. — 1. The restriction functor CohG
∨

fr (Ñ ) → CohG
∨
(Õr) is fully

faithful.

2. Every object in CohG
∨
(Õr) is a quotient of the restriction of some object in

CohG
∨

fr (Ñ ).

Proof. — (1) We have seen in the proof of Lemma 6.5.26 that O(Ñ ) ∼= O(N ) where
N ⊂ g∨ is the nilpotent cone, and hence that

HomCohG
∨

fr (Ñ )(V1 ⊗ OÑ , V2 ⊗ OÑ ) ∼=
(
V ∗
1 ⊗ V2 ⊗ O(Ñ )

)G∨

∼=
(
V ∗
1 ⊗ V2 ⊗ O(N )

)G∨ ∼= HomCohG
∨
(N )(V1 ⊗ ON , V2 ⊗ ON ).

Since the Springer map identifies Õr with the regular nilpotent orbit Or (see §6.5.11),
our claim is equivalent to the claim that restriction from N to Or induces an isomor-
phism

HomCohG
∨
(N )(V1 ⊗ ON , V2 ⊗ ON ) ∼= HomCohG

∨
(Or)

(V1 ⊗ OOr
, V2 ⊗ OOr

).

This claim follows from the fact that N is a normal variety (see the proof of
Lemma 6.5.26) in which the complement of Or has codimension 2 (because N has
finitely many G∨-orbits, each of which is of even dimension; see e.g. [J2, §2.8]), so
that restriction induces an isomorphism O(N )

∼−→ O(Or).

(2) As explained in §6.5.11 the Springer map induces an isomorphism Õr
∼−→ Or.

If we denote by F ′ the G∨-equivariant coherent sheaf on Or corresponding to F
under this identification, then by, say, [AriB, Lemma 2.12(a)], F ′ is the restriction
of some G∨-equivariant coherent sheaf G on N . Since N is an affine variety, G is a
quotient of some equivariant coherent sheaf of the form V ⊗ON with V in Rep(G∨).
(In fact, one can take for V any finite-dimensional G∨-stable subspace of Γ(N ,G )
which generates this O(N )-module.) Pulling back the surjection (V ⊗ ON )|Or

↠ F ′
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along the isomorphism Õr
∼−→ Or we obtain a surjection (V ⊗ OÑ )|Õr

↠ F , which

proves the desired claim.

Corollary 7.2.10. — For any F in CohG
∨
(Õr), there exist V1, V2 in Rep(G∨) and

f ∈ HomCohG
∨
(Ñ )(V1 ⊗ OÑ , V2 ⊗ OÑ ) such that F ∼= cok(f|Õr

).

Proof. — Using Lemma 7.2.9(2) twice, we obtain V1, V2 in Rep(G∨) and a morphism
g : (V1⊗OÑ )|Õr

→ (V1⊗OÑ )|Õr
such that F ∼= cok(g). Now by Lemma 7.2.9(1) g is

the restriction of a morphism f : V1 ⊗ OÑ → V2 ⊗ OÑ , which finishes the proof.

Proof of Proposition 7.2.8. — Consider the following commutative diagram, ob-
tained by restricting the functors appearing in Proposition 7.2.6 to appropriate
subcategories:

CohG
∨

fr (Ñ ) PI Pasph
I

CohG
∨
(Õr) P0

I .

F

F asph

Πasph

Π0
Π0

asph

F r

∼

As noted in (6.5.12), the composition Π0 ◦ F ∼= Π0
asph ◦ F asph in this diagram takes

values in the subcategory P̃0
I ⊂ P0

I . By definition, P̃0
I is closed under subquotients.

But if we follow the other path around the diagram, Lemma 7.2.9(2) implies that
every object in P0

I is a quotient of some object in the image of Π0
asph ◦ F asph. We

conclude that

P̃0
I = P0

I .

In particular, the equivalence Φ0 from Proposition 6.5.18 has P0
I as its domain. Extend

the diagram above as follows:

(7.2.2)

CohG
∨

fr (Ñ ) PI Pasph
I

CohG
∨
(Õr) P0

I

Rep(ZG∨(n0)) Rep(H).

F

F asph

Πasph

Π0

Π0
asph

F r

∼

(6.5.10) ≀ Φ0≀
For

Z
G∨ (n0)

H

We emphasize that we do not claim that this diagram as a whole is commutative.
Its upper part is commutative by the considerations above, and if we omit the arrow
labelled F r then the remainder of the diagram is commutative by Lemma 6.5.26.

Let us denote by Υ : CohG
∨
(Õr)

∼−→ Rep(ZG∨(n0)) the equivalence from (6.5.10).

We claim that for any F in CohG
∨
(Õr) there exists an isomorphism

(7.2.3) Φ0 ◦ F r(F )
∼−→ For

ZG∨ (n0)
H ◦Υ(F ).



272 CHAPTER 7. COMPLEMENTS

In fact, by Corollary 7.2.10, there exist V1, V2 in Rep(G∨) and a morphism f : V1 ⊗
OÑ → V2 ⊗ OÑ such that F ∼= cok(f|Õr

). Applying the exact functors Φ0 ◦ F r and

For
ZG∨ (n0)
H ◦Υ, we deduce isomorphisms

Φ0 ◦ F r(F ) ∼= cok
(
Φ0 ◦ F r(f|Õr

)
)
,

For
ZG∨ (n0)
H ◦Υ(F ) ∼= cok

(
For

ZG∨ (n0)
H ◦Υ(f|Õr

)
)
.

Using the commutativity of the upper part of (7.2.2), from the first isomorphism we
deduce that

Φ0 ◦ F r(F ) ∼= cok
(
Φ0 ◦Π0 ◦ F (f)

)
.

On the other hand, using the commutativity of the outer part of (7.2.2) we obtain
isomorphisms making the following square commute:

Φ0 ◦Π0 ◦ F (V1 ⊗ OÑ ) Φ0 ◦Π0 ◦ F (V2 ⊗ OÑ )

For
ZG∨ (n0)
H ◦Υ((V1 ⊗ OÑ )|Õr

) For
ZG∨ (n0)
H ◦Υ((V2 ⊗ OÑ )|Õr

).

Φ0◦Π0◦F (f)

≀ ≀

For
Z
G∨ (n0)

H ◦Υ(f|Õr
)

We deduce an isomorphism (7.2.3), finishing the proof of the claim.
Finally, we can conclude the proof as follows. By Tannakian formalism (see

e.g. [DM, Proposition 2.8]), to prove that H = ZG∨(n0) it suffices to prove that

the functor For
ZG∨ (n0)
H is an equivalence of categories. This functor is obviously faith-

ful. If V, V ′ are in Rep(ZG∨(n0)), then we have

HomRep(H)(For
ZG∨ (n0)
H (V ),For

ZG∨ (n0)
H (V ′))

∼= HomRep(H)(Φ
0F rΥ−1(V ),Φ0F rΥ−1(V ′)) ∼= HomRep(ZG∨ (n0))(V, V

′)

where the first isomorphism uses (7.2.3) (applied to Υ−1(V ) and Υ−1(V ′)), and the
second one the fact that Φ0, F r and Υ−1 are equivalences. It follows that the injec-

tion HomRep(ZG∨ (n0))(V, V
′) ↪→ HomRep(H)(For

ZG∨ (n0)
H (V ),For

ZG∨ (n0)
H (V ′)) must be

an isomorphism for dimension reasons, proving that For
ZG∨ (n0)
H is fully faithful. On

the other hand, for any V in Rep(H), applying (7.2.3) to (F r)−1◦(Φ0)−1(V ) we obtain
an isomorphism

V ∼= For
ZG∨ (n0)
H

(
Υ ◦ (F r)−1 ◦ (Φ0)−1(V )

)
.

It follows that For
ZG∨ (n0)
H is essentially surjective, and hence an equivalence.

7.3. A perverse description of equivariant coherent sheaves on N

In this section we describe an equivalence of categories deduced from Theorem 6.6.1
in [Be4].
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7.3.1. Statement. — We denote by fW f ⊂ W the subset of elements w which are
minimal (for the Bruhat order) in WfwWf . Under the bijection X∨ ∼−→ fW given by
λ 7→ wλ (see §6.4.3), one can easily check that the preimage of the subset fW f ⊂ fW is
the subset −X∨

+ of anti-dominant coweights. We will also denote by fPf
I the quotient

of the category PI by the Serre subcategory generated by the simple objects IC I
w

with w ∈ W ∖ fW f . The quotient functor fΠf : PI → fPf
I factors through a functor

fΠf
asph : Pasph

I → fPf
I which identifies the category fPf

I with the quotient of Pasph
I by

the Serre subcategory generated by the objects Πasph(IC I
w) with w ∈ fW ∖ fW f .

Recall also the Springer map pSpr : Ñ → N introduced in the course of the proof
of Lemma 6.5.26, and the equivalence F asph from (6.6.3). In this section we will be

interested in the category CohG
∨
(N ) of G∨-equivariant coherent sheaves on N .

Theorem 7.3.1. — There exists a unique triangulated functor

fF f : DbCohG
∨
(N )→ Db(fPf

I)

which makes the following diagram commutative:

DbCohG
∨
(Ñ ) Db(Pasph)

DbCohG
∨
(N ) Db(fPf

I).

F asph

∼

R(pSpr)∗ Db(fΠf
asph)

fF f

Moreover, fF f is an equivalence of categories.

Remark 7.3.2. — Transporting the tautological t-structure on Db(fPf
I) along the

equivalence fF f one obtains a nonstandard t-structure on the triangulated category

DbCohG
∨
(N ). This t-structure also has an intrinsic construction: it is a special case

of the “perverse coherent” t-structure from [AriB]; see [Be4, Theorem 2].

The proof of Theorem 7.3.1 will be given in §7.3.4 below, after a number of pre-
liminary results proved in the next two subsections.

7.3.2. Pushforward to the nilpotent cone. — We start with some results re-

garding the functor R(pSpr)∗ and the “free” equivariant coherent sheaves on Ñ . Recall
the simple exotic sheaves Lex

λ (λ ∈ X∨) introduced in §7.1.4.

Lemma 7.3.3. — If λ ∈ X∨ ∖ (−X∨
+), then we have

R(pSpr)∗L
ex
λ = 0.

Proof. — Let λ ∈ X∨ ∖ (−X∨
+). By the Yoneda lemma, and since the scheme N is

affine, to prove that R(pSpr)∗L
ex
λ = 0 it suffices to prove that

HomDbCohG
∨
(N )(V ⊗ ON , R(pSpr)∗L

ex
λ [n]) = 0

for any V in Rep(G∨) and n ∈ Z, or in other words (using adjunction) that

HomDbCohG
∨
(Ñ )(V ⊗ OÑ ,L

ex
λ [n]) = 0
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for any V in Rep(G∨) and n ∈ Z. Using the equivalence FIW , in view of (6.6.1)
and (7.1.1), what we have to prove translates to

HomDb
IW(FlG,Qℓ)

(Z IW(V ),IC IW
λ [n]) = 0

for all V in Rep(G∨) and n ∈ Z.
Now the assumption that λ /∈ −X∨

+ means that wλ /∈ fW f (see §7.3.1), and hence

that IC IW
λ is the pullback of a complex (in fact, a shift of a simple perverse sheaf)

under the morphism πs : FlG → GK /Js for some s ∈ Sf (where we use the notation
from the proof of Lemma 6.4.4). Thus, by adjunction, to finish the proof it suffices
to check that

(πs)∗Z
IW(V ) = 0

for all V in Rep(G∨). This, in turn, will follow if we prove that

(πs)
∗(πs)∗Z

IW(V ) = 0

for all V in Rep(G∨). Now, using the base change theorem we see that

(πs)
∗(πs)∗Z

IW(V ) ∼= Z IW(V ) ⋆I IC I
s [−1].

Then, using the centrality of Z (V ) (see Theorem 3.2.3) and Lemma 6.4.4 we see that

Z IW(V ) ⋆I IC I
s = ∆IW

0 ⋆I Z (V ) ⋆I IC I
s
∼= ∆IW

0 ⋆I IC I
s ⋆

I Z (V ) = 0,

which concludes the proof.

Remark 7.3.4. — See [Be3, Proposition 8] or [Ac2, Proposition 1.6] for proofs of
Lemma 7.3.3 which do not rely on the equivalence FIW .

Lemma 7.3.5. — For any V in Rep(G∨) and any X in DbCohG
∨
(N ), the functor

R(pSpr)∗ induces an isomorphism

HomDbCohG
∨
(Ñ )(V ⊗OÑ , X)

∼−→ HomDbCohG
∨
(N )

(
R(pSpr)∗(V ⊗OÑ ), R(pSpr)∗(X)

)
.

Proof. — It follows from (6.6.5) (using the adjunction (L(pSpr)
∗, R(pSpr)∗)) that the

higher derived functors Ri(pSpr)∗OÑ vanish for i > 0. In view of (6.5.14), we have a
canonical isomorphism

R(pSpr)∗OÑ
∼= ON .

This implies that R(pSpr)∗(V ⊗ OÑ ) ∼= V ⊗ ON , and then the claim follows by
adjunction again.

Lemma 7.3.6. — For any µ ∈ X∨
+, the object N(µ) ⊗ OÑ belongs to ExCoh(Ñ ),

and there exists a surjective morphism

N(µ)⊗ OÑ ↠ ∇ex
µ

whose kernel belongs to the subcategory generated under extensions by the objects ∇ex
ν

(ν ∈ X∨).
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Proof. — The fact that N(µ) ⊗ OÑ belongs to ExCoh(Ñ ) follows from (6.6.1) and

Proposition 7.1.5, since Z IW(N(µ)) is perverse. To prove the second claim, using the
same results, it suffices to prove that there exists a surjection Z IW(N(µ)) ↠ ∇IW

µ

whose kernel admits a filtration with costandard subquotients. In turn, this is easily
seen to follow from the fact that Z IW(N(µ)) is tilting (see Theorem 6.5.2) and that

FlIWG,µ is open in its support (see Remark 6.5.5).

The proof of the following lemma relies on the geometry of nilpotent orbits, and
will not be reviewed here. For details, see [Be1, Lemma 7] or [Ac1, Lemma 5.9].

Lemma 7.3.7. — The category DbCohG
∨
(N ) is generated, as a triangulated cate-

gory, by the essential image of the functor

R(pSpr)∗ : DbCohG
∨
(Ñ )→ DbCohG

∨
(N ).

7.3.3. Quotient by some simple exotic shaves. — Let us now denote by ⟨Lex
λ :

λ ∈ X∨ ∖ (−X∨
+)⟩Serre the Serre subcategory of the abelian category ExCoh(Ñ ) gen-

erated by the simple objects Lex
λ with λ ∈ X∨ ∖ (−X∨

+). We can then consider the
quotient abelian category

A := ExCoh(Ñ )/⟨Lex
λ : λ ∈ X∨ ∖ (−X∨

+)⟩Serre.
Recall that by Corollary 7.1.6 we have a natural equivalence

DbExCoh(Ñ )
∼−→ DbCohG

∨
(Ñ ).

We deduce a natural triangulated functor

(7.3.1) DbCohG
∨
(Ñ )→ DbA.

On the other hand, we denote by ⟨Lex
λ : λ ∈ X∨ ∖ (−X∨

+)⟩∆ the triangulated

subcategory of DbCohG
∨
(Ñ ) generated by the objects Lex

λ with λ ∈ X∨ ∖ (−X∨
+).

Then we can also consider the Verdier quotient category

D := DbCohG
∨
(Ñ )/⟨Lex

λ : λ ∈ X∨ ∖ (−X∨
+)⟩∆.

Most of the statements in this subsection are concerned with the quotient functor

Π : DbCohG
∨
(Ñ )→ D.

The universal property of the Verdier quotient ([SP, Tag 05RJ]) says that triangu-

lated functors out of DbCohG
∨
(Ñ ) that kill all Lex

λ for λ ∈ X∨ ∖ (−X∨
+) must factor

uniquely through Π. This property applies in particular to R(pSpr)∗ (by Lemma 7.3.3)
and to the functor in (7.3.1). We obtain factorizations

(7.3.2) DbCohG
∨
(Ñ ) D DbCohG

∨
(N )

R(pSpr)∗

Π ΦN

and

(7.3.3) DbCohG
∨
(Ñ ) D DbA

(7.3.1)

Π ∼

https://stacks.math.columbia.edu/tag/05RJ
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In the latter case, the induced functor D → DbA is an equivalence by [Miy, Theo-
rem 3.2].

Lemma 7.3.8. — For any X ∈ D, there exists d ∈ Z such that

HomD(Π(∇ex
λ ), X[i]) = 0

for any i < d and any λ ∈ X∨.

Proof. — Transfer this problem across the equivalenceD
∼−→ DbA from (7.3.3). Then

the claim becomes clear: since each Π(∇ex
λ ) belongs to (the preimage of) A, it suffices

to choose d such that (the image of) X[d] is concentrated in nonnegative degrees.

Lemma 7.3.9. — Let V ∈ Rep(G∨).

1. For any X in DbCohG
∨
(Ñ ), the functor Π induces an isomorphism

HomDbCohG
∨
(Ñ )(V ⊗OÑ , X)

∼−→ HomD(Π(V ⊗OÑ ),Π(X)).

2. For any ν ∈ X∨ we have

HomD(Π(V ⊗OÑ ),Π(∇ex
ν )[1]) = 0.

Proof. — (1) By [Miy, Lemma 2.1] (or more precisely the dual statement), to prove
the claim it suffices to prove that

HomDbCohG
∨
(Ñ )(V ⊗ OÑ , X) = 0

if X belongs to ⟨Lex
λ : λ ∈ X∨ ∖ (−X∨

+)⟩∆. By standard arguments, it suffices to
check this when X = Lex

λ [n] for some λ ∈ X∨ ∖ (−X∨
+) and n ∈ Z, and in this case

the claim was checked in the course of the proof of Lemma 7.3.3.
(2) In view of (1), to prove the claim it suffices to prove that

HomDbCohG
∨
(Ñ )(V ⊗ OÑ ,∇

ex
ν [1]) = 0.

Using the equivalence FIW , (6.6.1) and Proposition 7.1.5, this assertion is equivalent
to the assertion that

HomDb
IW(FlG,Qℓ)

(Z IW(V ),∇IW
ν [1]) = 0.

Finally, the latter assertion follows from the fact that Z IW(V ) is tilting (see Theo-
rem 6.5.2) and (6.4.2).

Lemma 7.3.10. — For any λ ∈ X and w ∈Wf , we have

Π(∇ex
λ ) ∼= Π(∇ex

wλ)

in D.

Proof. — Of course, it suffices to prove the claim in case w = s ∈ Sf and sλ ̸= λ.
Moreover, replacing λ by sλ if necessary, we can assume that ⟨λ, α⟩ > 0, where α is
the simple root associated with s. As usual, we transport the statement across the
equivalence FIW . Then, in view of Proposition 7.1.5 and (7.1.1), what we have to
prove is that ∇IW

λ and ∇IW
sλ have isomorphic images in the Verdier quotient by the

full triangulated subcategory generated by the objects IC IW
µ with µ /∈ −X∨

+.
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From the formula (4.1.1) we see that ℓ(t(λ)s) = ℓ(t(λ)) + 1, so that

∇It(λ)s ∼= ∇
I
t(λ) ⋆

I ∇Is
(see Lemma 4.1.4(2)). By Lemma 6.4.5, this implies that

∇IW
sλ
∼= ∇IW

λ ⋆I ∇Is.
Now we have an exact sequence of perverse sheaves IC I

s ↪→ ∇Is ↠ IC I
e ; convolving

with ∇IW
λ on the left, we deduce a distinguished triangle

∇IW
λ ⋆I IC I

s → ∇IW
sλ → ∇IW

λ

[1]−→ .

Hence, to conclude it suffices to prove that∇IW
λ ⋆IIC I

s belongs to the full triangulated
subcategory generated by the objects IC IW

µ with µ /∈ −X∨
+.

As already used above we have ∇IW
λ
∼= AvIW(∇It(λ)), so that

∇IW
λ ⋆I IC I

s
∼= AvIW(∇It(λ)) ⋆

I IC I
s
∼= AvIW(∇It(λ) ⋆

I IC I
s ).

As in the proof of Lemma 7.3.3, the base change theorem implies that we have

∇It(λ) ⋆
I IC I

s
∼= (πs)

∗(πs)∗∇It(λ)[1].

Since t(λ)s >Bru t(λ), πs induces an isomorphism between FlG,t(λ) and its image

in GK /Js. Denote that image (which is an I-orbit) by FlsG,t(λ). Then (πs)∗∇It(λ)
identifies with the !-extension of the constant local system on FlsG,t(λ) shifted by

ℓ(t(λ)). The latter object is a perverse sheaf; since the functor (πs)
∗[1] is t-exact and

sends simple I-equivariant perverse sheaves to simple perverse sheaves of the form
IC I

y with ys < y (by [BBDG, §§4.2.5–4.2.6]), we deduce that (πs)
∗(πs)∗∇It(λ)[1] is

perverse, and that all of its composition factors are of this form. Using Lemma 6.4.4
and Corollary 6.4.7 we deduce that ∇IW

λ ⋆I IC I
s is perverse, and that all of its

composition factors are of the form IC IW
ν where ν ∈ X∨ satisfies wνs <Bru wν . In

particular, these ν’s cannot belong to −X∨
+, so that indeed ∇IW

λ ⋆I IC I
s belongs to

the triangulated subcategory generated by the objects IC IW
µ with µ /∈ −X∨

+.

Lemma 7.3.11. — For any µ ∈ X∨, the complex R(pSpr)∗∇ex
µ is concentrated in

degree 0 (i.e. is a coherent sheaf).

Proof. — Recall that we have R(pSpr)∗ = ΦN ◦ Π. Hence Lemma 7.3.10 implies
that it suffices to prove the claim in case µ ∈ X∨

+. In this case, by Lemma 7.2.1 we
have ∇ex

µ
∼= OÑ (µ). Now, as already used in the proof of Corollary 6.6.5, by [Bro,

Theorem 2.4] the complex R(pSpr)∗OÑ (µ) is concentrated in degree 0, which finishes
the proof.

Lemma 7.3.12. — Let X be an object of D which admits a filtration (in the sense
of triangulated categories) with subquotients of the form Π(∇ex

µ ) (µ ∈ X∨). Then
there exist V in Rep(G∨) and a distinguished triangle

Y → Π(V ⊗ OÑ )→ X
[1]−→

where Y is an object of D which admits a filtration (again in the sense of triangulated
categories) with subquotients of the form Π(∇ex

µ ) (µ ∈ X∨).
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(See the proof of Proposition 6.5.7 for the notion of a filtration in the sense of
triangulated categories.)

Proof. — We proceed by induction on the length of the filtration of X. If this length
is 0, i.e., if X = 0, then there is nothing to prove. Otherwise, our object X fits into
a distinguished triangle

X ′ f−→ X
g−→ Π(∇ex

µ )
[1]−→

where X ′ has a shorter filtration, still with subquotients of the form Π(∇ex
ν ). By

Lemma 7.3.10, we may assume that µ ∈ X∨
+. Assume by induction that the conclusion

holds for X ′: there is a distinguished triangle

Y ′ → Π(V ′ ⊗ OÑ )
h−→ X ′ [1]−→

where Y ′ has a filtration with subquotients of the form Π(∇ex
ν ). On the other hand,

since µ ∈ X∨
+, Lemma 7.3.6 tells us that there is a short exact sequence of exotic

sheaves K ↪→ N(µ)⊗ OÑ ↠ ∇ex
µ where K admits a filtration by various ∇ex

ν . Apply
Π to obtain a distinguished triangle

Π(K)→ Π(N(µ)⊗ OÑ )
j−→ Π(∇ex

µ )
[1]−→

By Lemma 7.3.9(2), the composition Π(N(µ)⊗ OÑ )
j−→ Π(∇ex

µ ) → X ′[1] vanishes, so
j factors through a morphism j′ : Π(N(µ)⊗ OÑ )→ X.

Set V := V ′⊕N(µ), and let Y be the cocone of the map f ◦h+j′ : Π(V ⊗OÑ )→ X.
We can assemble these objects into the commutative diagram as shown below. In
this diagram, the bottom two rows and all three columns are distinguished triangle.
(Furthermore, the middle row is split.)

Y ′ Y Π(K)

Π(V ′ ⊗ OÑ ) Π(V ⊗ OÑ ) Π(N(µ)⊗ OÑ )

X ′ X Π(∇ex
µ )

[1]

h f◦h+j′

[1]

jj′

f
[1]

g

[1]

[1]

[1]

By the 9-lemma (see [BBDG, Proposition 1.1.11]), the top row is a distinguished
triangle, and hence Y has a filtration of the desired form.

7.3.4. Proof of Theorem 7.3.1. — We can finally explain the proof of Theo-
rem 7.3.1. It will be based on the following general lemma.

Lemma 7.3.13. — Let C be a triangulated category, and consider two cohomological
functors H1 = (Hj

1 : j ∈ Z) and H2 = (Hj
2 : j ∈ Z) from C to an abelian category.

Also let φ : H1 → H2 be a morphism of cohomological functors, and let (Xi : i ∈ I)
be a collection of objects in C. Assume that

1. there exists d ∈ Z such that Hj
1(Xi) = 0 = Hj

2(Xi) for all j < d and all i ∈ I;
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2. for any i ∈ I there exist X in C, i′ ∈ I, and a distinguished triangle

Xi → X → Xi′
[1]−→

such that φjX : Hj
1(X)→ Hj

2(X) is an isomorphism for all j ∈ Z.
Then φjXi

: Hj
1(Xi)→ Hj

2(Xi) is an isomorphism for all i ∈ I and j ∈ Z.

Proof. — The proof proceeds by induction on j. The claim is obvious if j < d by (1).
We then consider some j ∈ Z, and assume the property is known for j − 1. Fix i ∈ I
and a triangle as in (2). The associated long exact sequences provide a commutative
diagram

Hj−1
1 (X) Hj−1

1 (Xi′) Hj
1(Xi) Hj

1(X) Hj
1(Xi′)

Hj−1
2 (X) Hj−1

2 (Xi′) Hj
2(Xi) Hj

2(X) Hj
2(Xi′)

φj−1
X

φj−1
X

i′
φj

Xi
φj

X
φj

X
i′

in which the second vertical arrow is an isomorphism by induction, and the first
and fourth arrows are isomorphisms by assumption. Ignoring the fifth column and
applying one of the four lemmas, this diagram shows that φjXi

is injective for any i.
Then, in the full diagram we know that the fifth vertical arrow is injective, so that
by the five lemma the morphism φjXi

is invertible.

Proof of Theorem 7.3.1. — Let D′ be the Verdier quotient of Db(Pasph) by the full
triangulated subcategory generated by the objects Πasph(IC I

w) with w ∈ fW ∖ fW f .
(The latter subcategory is the image of ⟨Lex

λ : λ ∈ X∨ ∖ (−X∨
+)⟩∆ under F asph,

thanks to Corollary 6.4.7 and (7.1.1).) Expand the diagram from the statement of
the theorem as follows:

DbCohG
∨
(Ñ ) Db(Pasph)

D D′

DbCohG
∨
(N ) Db(fPf

I).

F asph

∼

R(pSpr)∗

Π

Db(fΠf
asph)

∼

ΦN ≀
fF f

Here, the middle horizontal arrow is an equivalence induced by F asph. In the right-
hand column, we have factored Db(fΠf

asph) through D′ using the universal property

of the latter. As in (7.3.3), [Miy, Theorem 3.2] implies that the induced functor
D′ → Db(fPf

I) is an equivalence of categories. Thus, the existence of fF f and the
claim that it is an equivalence will both follow if we prove that the functor ΦN
of (7.3.2) is an equivalence of categories.

First we will prove that ΦN is fully faithful. For this we fix X0 in D, and consider
the cohomological functors H1 and H2 from Dop to the category of Qℓ-vector spaces
defined by

Hj
1(X) := HomD(X,X0[j]), Hj

2(X) := HomDbCohG
∨
(N )(ΦN (X),ΦN (X0)[j]).

The functor ΦN induces a morphism of cohomological functors H1 → H2.
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We will apply Lemma 7.3.13 to these data, with (Xi : i ∈ I) being the collection
of objects of D which admit a filtration (in the sense of triangulated categories) with
subquotients of the form Π(∇ex

µ ) with µ ∈ X∨. Assumption (1) can be checked
independently for H1 and H2. For H1 it follows from Lemma 7.3.8. For H2 it follows
from Lemma 7.3.11. (In fact, one can take for d any integer such that the complex
ΦN (X0)[d] is concentrated in nonnegative degrees.)

To check assumption (2), we observe that for any V ∈ Rep(G∨) the functor ΦN
induces an isomorphism

HomD(Π(V ⊗ ON ), X0[j])→ HomDbCohG
∨
(N )(ΦN (V ⊗ ON ),ΦN (X0)[j])

for any j, by Lemma 7.3.5 and Lemma 7.3.9(1). (Here we also use the fact that Π
is essentially surjective, as a Verdier quotient functor.) Hence the desired property
follows from Lemma 7.3.12.

The conclusion of Lemma 7.3.13 implies in particular that the functor ΦN induces
an isomorphism

HomD(Π(∇ex
µ ), X0[j])

∼−→ HomDbCohG
∨
(N )(R(pSpr)∗∇

ex
µ ,ΦN (X0)[j])

for any j ∈ Z. By construction the objects (∇ex
µ : µ ∈ X∨) generate DbCohG

∨
(Ñ ) as

a triangulated category. Therefore their images under Π generate D as a triangulated
category, which finally proves that the morphism

HomD(X,X0)→ HomDbCohG
∨
(N )(ΦN (X),ΦN (X0))

induced by ΦN is an isomorphism for any X in D, hence that ΦN is fully faithful.
This full faithfulness implies that the essential image of ΦN is a triangulated

subcategory. On the other hand, by Lemma 7.3.7 this essential image generates

DbCohG
∨
(N ) as a triangulated category. Thus ΦN is essentially surjective, and hence

an equivalence.



CHAPTER 8

A MODULAR ARKHIPOV–BEZRUKAVNIKOV
EQUIVALENCE FOR GL(n)

Let F be an algebraic closure of Fp, and let ℓ ̸= p be another prime number. The
main result of Chapter 6 is an equivalence of categories

FIW : DbCohG
∨
k (Ñk)→ Db

IW(FlG,k) for k = Qℓ
where G is a connected reductive algebraic group over F. It is natural to ask for
a “modular” analogue of this statement, i.e., one in which k is replaced by a field
of positive characteristic. In this chapter, we prove such a modular analogue in the
following special case:

(8.0.1) G = GL(n,F), k =
an algebraic
closure of Fℓ,

ℓ >
1

2

(
n

⌊n/2⌋

)
.

In this setting, as observed in Example 1.5.4, the group G∨
k is also a general linear

group: it identifies canonically with GL(Ek), where Ek := H•(Pn−1;k) (a k-vector
space of dimension n).

The plan of the proof is completely parallel to what we have done in Chapter 6,
with only a few additional technical difficulties, most of which are encountered in
Section 8.1 (the modular analogue of Section 6.2). Our assumptions on G and ℓ are
in fact essentially imposed to be able to overcome these specific difficulties. We will
explain where these subtleties occur, and how they can be dealt with, but will not
repeat the statements (nor the proofs) that do not require modifications other than
replacing Qℓ by k.

8.1. Coherent sheaves on the Springer resolution

8.1.1. The basic affine space and its affine completion. — As in Section 6.2
we will consider H-equivariant coherent sheaves on H-equivariant k-varieties X, for
H a k-algebraic group. Here again, for any F ,G in DbCohH(X) the k-vector space
HomDbCoh(X)(F ,G ) has a natural structure of an algebraic H-module. But since k
has positive characteristic, even in the setting when H is reductive the formula (6.2.1)
does not hold in general. As a replacement, we will use the following much more
specific claim, which uses the notion of modules with a good filtration. Recall that if
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H is a reductive algebraic group, and BH ⊂ H is a Borel subgroup, a (not necessarily
finite-dimensional) algebraicH-moduleM is said to admit a good filtration if it admits
an exhaustive filtration

{0} =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂M

indexed by Z≥0 such that each subquotient Mn/Mn−1 is of the form IndHBH
(λn) for

some character λn of BH . (It can be easily checked that this notion does not depend
on the choice of BH . For more on good filtrations, the reader might consult [J1,
§§II.4.16–II.4.24].)

Lemma 8.1.1. — Assume that H is reductive. Let F ,G in DbCohH(X), and as-
sume that

HomDbCoh(X)(F ,G [n]) = 0

for n ̸= 0, and moreover that the H-module HomDbCoh(X)(F ,G ) admits a good filtra-
tion. Then we have

HomDbCohH(X)(F ,G [n]) = 0

for n ̸= 0, and the forgetful functor DbCohH(X) → DbCoh(X) induces an isomor-
phism

HomDbCohH(X)(F ,G )
∼−→
(
HomDbCoh(X)(F ,G )

)H
.

Proof. — Let us denote by Rep∞(H) the category of all (possibly infinite-dim-
ensional) algebraic H-modules, and by Vect∞k the category of all k-vector spaces.
Let

IH : Rep∞(H)→ Vect∞k
be the functor of H-invariants: IH(M) = {m ∈ M | h ·m = m for all h ∈ H}. This
functor is clearly left exact. It is well known that the category Rep∞(H) has enough
injective objects (see [J1, Proposition I.3.9]), so IH admits a right derived functor

RIH : D+Rep∞(H)→ D+Vect∞k .

Now the bifunctor

RHomDbCoh(X)(−,−) : DbCohH(X)×DbCohH(X)→ D+Vect∞k

factors canonically through a bifunctor

RHomDbCoh(X)(−,−) : DbCohH(X)×DbCohH(X)→ D+Rep∞(H),

and by [MR1, Proposition A.6], for any F ,G in DbCohH(X) and n ∈ Z we have

HomDbCohH(X)(F ,G [n]) ∼= Hn
(
RIH(RHomDbCoh(X)(F ,G ))

)
.

Our assumptions ensure that the complex RHomDbCoh(X)(F ,G ) is concentrated in
degree 0, i.e., it is isomorphic to HomDbCoh(X)(F ,G ), so that

HomDbCohH(X)(F ,G [n]) ∼= Hn
(
RIH(HomDbCoh(X)(F ,G ))

)
.

Finally, since HomDbCoh(X)(F ,G ) has a good filtration, the complex of vector spaces

RIH(HomDbCoh(X)(F ,G )) is concentrated in degree 0 (see [J1, Proposition II.4.13
and Lemma I.4.17]), which finishes the proof.
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As in §6.2.1 we can consider the quotientG∨
k /U

∨
k , with its natural action ofG∨

k×T∨
k ,

and as in (6.2.3) we have

(8.1.1) O(G∨
k /U

∨
k )
∼=
⊕
λ∈X∨

Nk(λ)⊗ kT∨
k
(−λ),

where the terms in the right-hand side vanish unless λ ∈ X∨
+. Lemma 6.2.1 also

remains true, with an identical proof.
It is known in this setting also (although this is much less obvious) that the maps

aλ,µ are surjective for all λ, µ ∈ X∨
+, see [J1, Proposition II.14.20]. Therefore the

k-algebra O(G∨
k /U

∨
k ) is finitely generated, so that it is reasonable to set

Xk := Spec(O(G∨
k /U

∨
k )).

We again have an open and dense embedding G∨
k /U

∨
k ↪→ Xk, whose complement (with

its reduced subscheme structure) will be denoted ∂Xk.

8.1.2. The Springer resolution and some variants. — As in §6.2.2 we will
consider the Springer resolution

Ñk := G∨
k ×B

∨
k n∨k

(where n∨k is the Lie algebra of U∨
k ) with its natural action of G∨

k , and also the inverse

image N̂k of Ñk in g∨k ×G∨
k /U

∨
k , with its natural action of G∨

k × T∨
k . (Here, g∨k is the

Lie algebra of G∨
k .)

Now the first difference with Chapter 6 arises: in practice, instead of considering
the variety above, we will need to consider a certain “multiplicative analogue” defined
as follows. We set

Ũk := G∨
k ×B

∨
k U∨

k ,

where B∨
k acts on its normal subgoup U∨

k by conjugation. Consider the natural

G∨
k -action on this variety. As for Ñk we have a natural closed embedding Ũk ↪→

G∨
k ×(G∨

k /B
∨
k ) (defined by [g : u] 7→ (gug−1, gB∨

k )), and we denote by Ûk the preimage

of Ũk in G∨
k ×(G∨

k /U
∨
k ). Then Ûk admits a natural action of G∨

k ×T∨
k , and as in (6.2.7)

and (6.2.8) we have an equivalence

(8.1.2) CohG
∨
k (Ũk)

∼−→ CohG
∨
k ×T∨

k (Ûk)
and identifications

(8.1.3) O(Ûk)−λ = Γ(Ũk,OŨk
(λ))

for λ ∈ X∨. (Here OŨk
(λ) is the pullback to Ũk of the line bundle on G∨

k /B
∨
k naturally

associated with λ.)

The construction of Ûk can be seen as a particular case of the following general
construction. Consider an affine k-group scheme H, and a separated k-scheme X
endowed with an H-action. Then the universal stabilizer for this action is the closed
subscheme

(H ×X)×X×X ∆X

of H × X, where ∆X ⊂ X × X is the diagonal, and the morphism H × X →
X ×X is given by (h, x) 7→ (h · x, x). In case X is affine, this closed subscheme can
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be described more explicitly as follows. The H-action on X defines a right O(H)-
comodule structure on O(X), given by a comultiplication morphism ∆ : O(X) →
O(X)⊗ O(H). Then the ideal in O(H ×X) = O(X)⊗ O(H) defining the universal
stabilizer is generated by the image of the map

O(X)→ O(X)⊗ O(H)

sending f to ∆(f)− f ⊗ 1.
Applying this construction in the case of the G∨

k -action on G∨
k /U

∨
k one recovers

the scheme Ûk. The universal stabilizer for the G∨
k -action on the affine scheme Xk

will be denoted ÛX ,k. As for N̂X in (6.2.10), we have

(8.1.4) ÛX ,k ∩ (G∨
k ×G∨

k /U
∨
k ) = Ûk.

Here our group G∨
k is a general linear group; we therefore have a G∨

k -equivariant
open embedding

(8.1.5) G∨
k ↪→ g∨k

sending x to x− Id. (Here, the G∨
k -actions are given by conjugation.) This morphism

restricts to an isomorphism U∨
k

∼−→ n∨k , so that (8.1.5) induces an isomorphism

(8.1.6) Ûk
∼−→ N̂k.

The following statement will be our replacement for Lemma 6.2.4.

Lemma 8.1.2. — There exists N ∈ Z≥0 such that, for any λ ∈ X∨ such that
⟨λ, α∨⟩ ≥ N for any simple root α, the morphism

O(ÛX ,k)−λ → O(Ûk)−λ

induced by restriction is an isomorphism.

Proof. — The proof is the same as for Lemma 6.2.4; in the first step, we replace the
complex F • by its restriction to G∨

k × (G∨
k /B

∨
k ) (which provides a resolution of the

pushforward of OŨk
to G∨

k × (G∨
k /B

∨
k )).

8.1.3. Koszul complexes. — The construction of the Koszul complex (6.2.13) as-
sociated with a surjection V ↠ V ′ also applies to k-vector spaces. In particular, using
this construction for the morphism fλ and using the same procedure as in §6.2.3 we
obtain a complex

· · · → 0→ ∧dλ
(
Nk(λ)

)
⊗ OÛX ,k

→ ∧dλ−1
(
Nk(λ)

)
⊗ kT∨(λ)⊗ OÛX ,k

→ · · ·

→ ∧1
(
Nk(λ)

)
⊗ kT∨((dλ − 1) · λ)⊗ OÛX ,k

→ kT∨(dλ · λ)⊗ OÛX ,k
→ 0→ · · ·

of objects of CohG
∨
k ×T∨

k (ÛX ,k) (where dλ = dim(Nk(λ))) concentrated in degrees be-

tween −dλ and 0, whose restriction to Ûk is acyclic. Tensoring this complex by
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kT∨
k
(−dλ · λ), forgetting the term in degree 0, and then applying [−1], we obtain a

complex

· · · → 0→ ∧dλ
(
Nk(λ)

)
⊗ kT∨

k
(−dλ · λ)⊗ OÛX ,k

→ ∧dλ−1
(
Nk(λ)

)
⊗ kT∨

k
((−dλ + 1) · λ)⊗ OÛX ,k

→ · · ·

→ ∧1
(
Nk(λ)

)
⊗ kT∨

k
(−λ)⊗ OÛX ,k

→ 0→ · · ·

concentrated in degrees between −dλ + 1 and 0, which will be denoted by Gλ. By
construction there exists a canonical morphism of complexes

(8.1.7) Gλ → OÛX ,k
,

whose cone is supported set-theoretically on the preimage of ∂Xk ⊂ Xk in ÛX ,k.
Later we will also consider the following construction. For any simple root α, we

fix a coweight ϖ∨
α such that for any simple root β we have

⟨ϖ∨
α , β⟩ =

{
1 if β = α;

0 otherwise.

Then any λ ∈ X∨
+ can be written uniquely in the form

λ =
∑
α

nα ·ϖ∨
α + λ0

where for each simple root α we have nα ∈ Z≥0 and ⟨λ0, α⟩ = 0. (In fact, here we
must have nα = ⟨λ, α⟩.) We then set

G ′
λ :=

(⊗
α

G ⊗nα

ϖ∨
α

)
⊗OÛX ,k

Gλ0 .

There exists a canonical morphism of complexes

(8.1.8) G ′
λ → OÛX ,k

,

obtained by taking tensor products of the morphisms Gϖ∨
α
→ OÛX ,k

and Gλ0 → OÛX ,k

from (8.1.7).
The first property of the complexes G ′

λ that will be important for us is that its
components are all direct sums of objects of the form V ⊗ kT∨

k
(−η)⊗OÛX ,k

where V

is in Rep(G∨
k ) and η ∈ X∨ satisfies ⟨η, α⟩ ≥ ⟨λ, α⟩ for each simple root α. The second

important property is given by the following lemma.

Lemma 8.1.3. — For any λ ∈ X∨
+, the cone of the morphism (8.1.8) is supported

set-theoretically on the preimage of ∂Xk ⊂ Xk in ÛX ,k.

Proof. — The claim is known if λ ∈ X∨ satisfies ⟨λ, α⟩ = 0 for each simple root
α, since in this case G ′

λ = Gλ. We therefore only have to check that if it holds for
some λ, and if α is a simple root, then the claim holds for λ + ϖ∨

α . Now we have
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G ′
λ+ϖ∨

α
= G ′

λ ⊗OÛX ,k
Gϖ∨

α
, and under this identification the map (8.1.8) for λ+ϖ∨

α is

the composition

G ′
λ ⊗OÛX ,k

Gϖ∨
α
→ G ′

λ ⊗OÛX ,k
OÛX ,k

= G ′
λ → OÛX ,k

where the first morphism is induced by the canonical morphism Gϖ∨
α
→ OÛX ,k

, and

the second one is the morphism (8.1.8) for λ. By induction the cone of the second
morphism is supported set-theoretically on the preimage of ∂Xk, and since the same
property holds for the cone of the morphism Gϖ∨

α
→ OÛX ,k

, it also holds for the

first morphism. The octahedral axiom implies that the cone of our composition is an
extension (in the sense of triangulated categories) of the cones of these two morphisms;
therefore it is supported set-theoretically on the preimage of ∂Xk, which finishes the
proof.

8.1.4. Equivariant coherent sheaves on Ũk. — We now have the following ana-
logue of Lemma 6.2.8. Here we denote by Tilt(G∨

k ) ⊂ Rep(G∨
k ) the subcategory of

tilting modules.(1)

Lemma 8.1.4. — The category DbCohG
∨
k (Ũk) is generated (as a triangulated cate-

gory) by the following classes of objects:

1. the line bundles OŨk
(λ), for λ ∈ X∨;

2. the objects of the form V ⊗ OŨk
(λ) where V ∈ Tilt(G∨

k ) and λ ∈ X∨
+.

Proof. — In view of (8.1.6), the proof is identical to that of Lemma 6.2.8, with the ex-
tra observation that the subcategory Tilt(G∨

k ) generates D
bRep(G∨

k ) as a triangulated
category (by the general theory of highest weight categories; see e.g. [Ri, Proposi-
tion 7.17]); therefore in (2) we can equivalently replace the condition V ∈ Tilt(G∨

k )
by the condition V ∈ Rep(G∨

k ).

We also have the following analogue of Lemma 6.2.9.

Lemma 8.1.5. — For any λ ∈ X∨ there exists V ∈ Tilt(G∨
k ) and an embedding of

G∨-equivariant coherent sheaves OŨk
(λ) ↪→ V ⊗ OŨk

.

Proof. — In view of (8.1.6), the same proof as that of Lemma 6.2.9 applies, replacing
Nk(w◦(λ−ν)) by the indecomposable tilting G∨

k -module with highest weight w◦(λ−ν)
(see [J1, Proposition II.E.6]).

8.1.5. Describing the category of equivariant coherent sheaves on Ũk as a
quotient. — We will denote by Tilt(G∨

k ×T∨
k ) the full subcategory of Rep(G∨

k ×T∨
k )

whose objects are the tilting representations. In more concrete terms, any object V
in Rep(G∨

k × T∨
k ) can be written in a canonical way as a direct sum

V =
⊕
λ∈X∨

V λ ⊗ kT∨
k
(λ)

(1)Recall that a finite-dimensional algebraic module M over a reductive algebraic group is called

tilting if both M and M∗ admit good filtrations.
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for some representations V λ in Rep(G∨
k ) (with only finitely many nonzero terms);

then V is tilting iff each V λ is a tilting G∨
k -module. We will denote by

Coh
G∨

k ×T∨
k

fr,tilt (ÛX ,k)

the full additive subcategory of CohG
∨
k ×T∨

k (ÛX ,k) whose objects are the “free tilting”
coherent sheaves, i.e. those of the form V ⊗ OÛX ,k

with V in Tilt(G∨
k × T∨

k ). Since

a tensor product of tilting G∨
k -modules is tilting (see [J1, Proposition II.E.7]), the

subcategory Coh
G∨

k ×T∨
k

fr,tilt (ÛX ,k) is stable under tensor products of coherent sheaves.
As in §6.2.5 we will consider the composition

(8.1.9) KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k)→ DbCohG
∨
k ×T∨

k (ÛX ,k)

→ DbCohG
∨
k ×T∨

k (Ûk)
(8.1.2)−−−−→

∼
DbCohG

∨
k (Ũk),

where the first arrow is the obvious functor, and the second one is pullback under the

open embedding Ûk ⊂ ÛX ,k (see (8.1.4)). We will denote by KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k)∂X
the kernel of this functor, i.e. the full subcategory of KbCoh

G∨
k ×T∨

k
fr,tilt (ÛX ,k) consisting

of objects whose cohomology is supported set-theoretically on the preimage of ∂Xk.
Our goal in this subsection is to prove the following analogue of Proposition 6.2.10.

Proposition 8.1.6. — The functor

KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k)/KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k)∂X → DbCohG
∨
k (Ũk)

induced by (8.1.9) is an equivalence of triangulated categories.

Until now, we have not used our assumption on ℓ from (8.0.1), and in fact all the
results from the previous subsections hold in all characteristics. The main reason for
imposing this assumption is that it guarantees that the following claim holds.

Lemma 8.1.7. — If λ either is of the form ϖ∨
α for α a simple root, or satisfies

⟨λ, α⟩ = 0 for all simple roots α, then for any r ≥ 0 the G∨
k -module ∧r

(
Nk(λ)

)
is

tilting.

Proof. — First, if ⟨λ, α⟩ = 0 for all simple roots α, then λ is the restriction of a
character of G∨

k , so that Nk(λ) = kG∨
k
(λ). Now any 1-dimensional module is tilting

(as a simple induced module), and there are no higher exterior powers to consider.
Next we fix a simple root α, and consider the case λ = ϖ∨

α . In this case also it is
well known that Nk(λ) is a simple induced module, and therefore tilting. (Indeed, the
T∨
k -weights of Nk(λ) are exactly the Wf -translates of λ, so that this module cannot

have a nontrivial submodule.) Moreover, it is known also that

dλ := dim(Nk(λ)) ≤
(

n

⌊n/2⌋

)
.

(More precisely, each Nk(ϖ
∨
α) is an exterior power of the natural representation of

G∨
k = GL(Ek), tensored with some 1-dimensional module.) If r ≤ dλ/2, our assump-

tion on ℓ from (8.0.1) guarantees that all k-representations of the finite group Sr are
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semisimple, so that ∧r
(
Nk(λ)

)
is a direct summand of Nk(λ)

⊗r. The latter module is
tilting as a tensor product of tilting modules (see again [J1, Proposition II.E.7]), and
hence so is ∧r

(
Nk(λ)

)
. If instead r ≥ dλ/2, we observe that

∧r
(
Nk(λ)

) ∼= ∧dλ(Nk(λ)
)
⊗
(
∧dλ−r

(
Nk(λ)

))∗
.

Here ∧dλ
(
Nk(λ)

)
is tilting because it is 1-dimensional, and ∧dλ−r

(
Nk(λ)

)
is tilting by

the case treated above; so ∧r
(
Nk(λ)

)
is tilting also.

Lemma 8.1.7 implies that the complexes Gλ from §8.1.3 (with λ as in the lemma)

are complexes of objects in Coh
G∨

k ×T∨
k

fr,tilt (ÛX ,k). It follows that the same is true for the

complex G ′
λ, for each λ ∈ X∨

+. The images of these complexes in KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k)
will play a crucial role in the proof of Proposition 8.1.6.

Proof of Proposition 8.1.6. — Using Lemma 8.1.4, as for Proposition 6.2.10, what we
have to prove is that our functor induces, for any µ ∈ X∨, n ∈ Z and V in Tilt(G∨

k ),
an isomorphism from

Hom
KbCoh

G∨
k ×T∨

k
fr,tilt (ÛX ,k)/KbCoh

G∨
k ×T∨

k
fr,tilt (ÛX ,k)∂X

(V ⊗ kT∨
k
(µ)⊗ OÛX ,k

,OÛX ,k
[n])

to

Hom
DbCohG

∨
k (Ũk)

(V ⊗ OŨk
(µ),OŨk

[n]).

We first prove that our map is injective. A morphism from V ⊗ kT∨
k
(µ) ⊗ OÛX ,k

to OÛX ,k
[n] in KbCoh

G∨
k ×T∨

k
fr,tilt (ÛX ,k)/KbCoh

G∨
k ×T∨

k
fr,tilt (ÛX ,k)∂X can be represented by a

diagram

(8.1.10) V ⊗ kT∨
k
(µ)⊗ OÛX ,k

f←− F
g−→ OÛX ,k

[n]

where F is an object of KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k), and the cone of f belongs to the sub-

category KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k)∂X . Saying that the image of this morphism vanishes is

equivalent to saying that the image of g under (8.1.9) vanishes.
Now choose λ ∈ X∨

+, and consider the complex G ′
λ from §8.1.3. Lemma 8.1.3

says that the cone of the canonical morphism G ′
λ → OÛX ,k

is supported on the

closed subset ÛX ,k ∖ Ûk; hence the same will be true for the induced morphism
F ⊗OÛX ,k

G ′
λ → F . In other words, this morphism is an isomorphism in the quotient

category KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k)/KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k)∂X . This argument shows (after an

appropriate choice of λ; see also the comments preceding Lemma 8.1.3) that in the
diagram (8.1.10) we can assume that the components of F are all direct sums of
objects of the form M ⊗ kT∨

k
(−η) ⊗ OÛX ,k

with M in Tilt(G∨
k ) and η ∈ X∨

+ which

satisfies the condition in Lemma 8.1.2.
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For such M and η we have

Hom
KbCoh

G∨
k ×T∨

k
fr,tilt (ÛX ,k)

(M ⊗ kT∨
k
(−η)⊗ OÛX ,k

,OÛX ,k
[n])

=

{(
M∗ ⊗ O(ÛX ,k)−η

)G∨
k if n = 0;

0 otherwise

and

Hom
DbCohG

∨
k (Ũk)

(M ⊗ OŨk
(−η),OŨk

[n]) =

{(
M∗ ⊗ Γ(Ũk,OŨk

(η))
)G∨

k if n = 0;

0 otherwise.

Here the first equality is clear, but the second one deserves some explanation. First,
by [KLT, Theorem 2] (see also the isomorphism (8.1.6)), we have

Hn(Ũk,OŨk
(η)) = 0

for n ̸= 0, which implies that

HomDbCoh(Ũk)
(M ⊗ OŨk

(−η),OŨk
[n]) = 0

for n ̸= 0. Next, by [KLT, Theorem 7] the G∨
k -module Γ(Ũk,OŨk

(η)) admits a good

filtration, which implies (in view of [J1, Proposition II.4.21]) that the same holds for

M∗ ⊗ Γ(Ũk,OŨk
(η)) ∼= HomDbCoh(Ũk)

(M ⊗ OŨk
(−η),OŨk

).

Hence we are in the setting of Lemma 8.1.1, which implies our second equality.
In view of these isomorphisms, Lemma 8.1.2 says that the functor (8.1.9) induces

an isomorphism between these Hom-spaces. By the 5-lemma, it then follows that this
functor induces an isomorphism

Hom
KbCoh

G∨
k ×T∨

k
fr,tilt (ÛX ,k)

(H ,OÛX ,k
[n])

∼−→ Hom
DbCohG

∨
k (Ũk)

(H ′,OŨk
[n])

for any complex H whose components are direct sums of objects of this form (where
H ′ is the image of H ). In particular, this property holds for the complex F consid-
ered above, which finishes the proof of injectivity.

The proof of surjectivity will use similar tools. Namely, consider a morphism

f : V ⊗OŨk
(µ)→ OŨk

[n] inDbCohG
∨
k (Ũk). Choose λ ∈ X∨

+ such that λ−µ satisfies the

condition in Lemma 8.1.2. Then if G ′
λ is as in §8.1.3 and G ′′

λ is its image under (8.1.9),
the arguments above show that the composition

V ⊗k OŨk
(µ)⊗OŨk

G ′′
λ → V ⊗k OŨk

(µ)
f−→ OŨk

[n]

(where the first map is induced by (8.1.8)) is the image of a morphism

f̃ : V ⊗ kT∨
k
(µ)⊗ G ′

λ → OÛX ,k
[n]

in KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k). Hence f is the image of the morphism represented by the
diagram

V ⊗ kT∨
k
(µ)⊗ OÛX ,k

← V ⊗ kT∨
k
(µ)⊗ G ′

λ
f̃−→ OÛX ,k

[n],

which finishes the proof (in view of Lemma 8.1.3).
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8.2. Construction of the functor

From now on we consider the affine flag variety FlG associated with our group
G = GL(n,F), and the I-equivariant derived category of étale k-sheaves Db

I (FlG,k).
For brevity, we denote the heart of the perverse t-structure on this category by

PI := PervI(FlG,k) ⊂ Db
I (FlG,k),

and we introduce the notation

Z := Z ◦ S−1 : Rep(G∨
k )→ PI .

Our next task will be to construct a functor

F k : DbCohG
∨
k (Ũk)→ DbPI ,

following the strategy of Section 6.3.

8.2.1. Definition of a functor on Coh
G∨

k ×T∨
k

fr,tilt (ÛX ,k). — The construction of the

functor F k will again be based on the considerations of §6.3.2. The only difference is
that the role of Example 6.3.1 will now be played by the following variant.

Example 8.2.1. — We consider the special case of the construction of §6.3.2 when
A′ = O(H) (for the adjoint action of H on itself). Again in this case the cor-

respondence between extensions of the canonical functor Rep(H) → A-modK to

O(H)-modHfr
∼= CohHfr (H) and K-equivariant algebra morphisms O(H)→ A admits a

reformulation in terms of Tannakian formalism, as follows.
For any V in Rep(H), the H-equivariant coherent sheaf V ⊗OH admits a canonical

automorphism icanV , described at the level of global sections as the composition

V ⊗ O(H)→ V ⊗ O(H)⊗ O(H)→ V ⊗ O(H)

where the first map is induced by the comultiplication morphism V → V ⊗O(H), and
the second map by the product in O(H). (Here, V ⊗O(H) identifies with the space of
morphisms H → V , and the automorphism above corresponds to the automorphism
sending a function f : H → V to the function h 7→ h · f(h).) These automorphisms
satisfy

icanV1⊗V2
= icanV1

⊗ icanV2

for V1, V2 in Rep(H). Given an extension of our functor Rep(H) → A-modK to

CohHfr (H), by taking the images of these automorphisms (and forgetting the K-
equivariance) we obtain an automorphism of the functor V 7→ V ⊗ A, which de-
termines an A-point of H, or in other words an algebra morphism O(H) → K. The
fact that each automorphism of V ⊗ A is K-equivariant translates into the property
that this algebra morphism is K-equivariant.

Once again, we leave it to the reader to check that this construction provides the
same algebra morphism as the general construction described in §6.3.2 (in this special
case). In this way we obtain that the data of the following structures are equivalent:

1. an extension of the functor V 7→ V ⊗ A to a k-linear (symmetric) monoidal

functor CohHfr (H)→ A-modK ;
2. a K-equivariant algebra morphism O(H)→ A;
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3. a K-invariant A-point of H;
4. for any V in Rep(H), a K-equivariant automorphism iV of V ⊗A, this collection

satisfying

iV1⊗V2
= iV1

⊗ iV2

for V1, V2 in Rep(H).

Under this correspondence, the collection (iV : V ∈ Rep(H)) attached to an extension

φ : CohHfr (H)→ A-modK is given by iV = φ(icanV ).

We start by considering the full subcategory Perv
X∨

+

I (FlG,k) of PI whose objects
are the perverse sheaves admitting a Wakimoto filtration, endowed with its natural
monoidal structure, and the natural exact monoidal functor

F
k
: Rep(G∨

k × T∨
k )→ Perv

X∨
+

I (FlG,k)

defined as in the characteristic-0 setting. Then using the same recipe as in §6.3.4 one

defines the symmetric monoidal (non-full) subcategory (C , ⋆) of Perv
X∨

+

I (FlG,k), such
that F

k
factors through a monoidal functor

F k : Rep(G∨
k × T∨

k )→ C .

The unit object 1C in C corresponds to the perverse sheaf δFl := IC I
e .

Next, we consider the commutative k-algebra

A := HomInd(C )(1C , F
k(O(G∨

k × T∨
k ))),

and the full subcategory

A-mod
G∨

k ×T∨
k

fr

of the category of G∨
k ×T∨

k -equivariant A-modules whose objects are those of the form
V ⊗A with V in Rep(G∨

k × T∨
k ).

The following statement is the analogue of Proposition 6.3.5.

Proposition 8.2.2. — There is an equivalence of symmetric monoidal categories

H : C
∼−→ A-modG

∨×T∨

fr given by the formula

H(V ) = HomInd(C )(1C , F
k(V ) ⋆ F k(O(G∨ × T∨))).

Proof. — The proof of essential surjectivity and the construction of a monoidal struc-
ture onH are identical to their characteristic-0 counterparts, and will not be repeated.
However, to check full faithfulness, one needs to argue differently, since in this set-
ting it is not true that any representation is a direct summand of a sum of copies of
O(G∨

k × T∨
k ). By adjunction, as in the characteristic-0 setting,what we have to prove

is that for V in Rep(G∨
k × T∨

k ), the map

(8.2.1) HomC (1C , V )
∼−→ (V ⊗A)G

∨
k ×T∨

k

induced by our functor is an isomorphism. (Compare with (6.3.12) and the discussion
following it.) As in the proof of Proposition 6.3.5, we consider the extension of H to
ind-objects. The reasoning given there shows again that (8.2.1) is an isomorphism
when V is the ind-object O(G∨

k ×T∨
k ), or a finite direct sum of copies of O(G∨

k ×T∨
k ).
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Before considering (8.2.1) in general, we make the following observation. LetM be
an object in Rep(G∨

k ×T∨
k ), and let Γ be an abstract group acting on M by G∨

k ×T∨
k -

module automorphisms. Then we can consider the fixed pointsMΓ, which is again an
object in Rep(G∨

k × T∨
k ), and hence in C . On the other hand, by functoriality, Γ acts

by automorphisms on the finite-dimensional k-vector spaces HomC (1C , F
k(M)) and

HomPI
(δFl, F

k
(M)). We claim that the embeddingMΓ ↪→M induces an isomorphism

(8.2.2) HomC (1C , F
k(MΓ))

∼−→
(
HomC (1C , F

k(M))
)Γ
.

To see this, we first note that since all the vector spaces under consideration are
finite-dimensional, there exists a finite subset Γ0 ⊂ Γ such that

MΓ =MΓ0 ,(
HomPI

(δFl, V )
)Γ

=
(
HomPI

(δFl, F
k
(M))

)Γ0
.

Then MΓ is the kernel of the morphism M →
⊕

γ∈Γ0
M sending v to (γ · v− v)γ∈Γ0

,

and by left exactness of the functor HomPI
(δFl,−) we deduce that

HomPI
(δFl, F

k
(MΓ)) =

(
HomPI

(δFl, F
k
(M))

)Γ
.

It is easy to see (using exactness of F
k
and of convolution in Perv

X∨
+

I (FlG,k)) that

a morphism in HomPI
(δFl, F

k
(MΓ)) belongs to HomC (1C , F

k(MΓ)) iff its compo-

sition with the morphism F
k
(MΓ) → F

k
(M) belongs to HomC (1C , F

k(M)). The
isomorphism (8.2.2) follows.

By passing to limits, we see that (8.2.2) also holds when M is an ind-object that
is an inductive limit of representations equipped with a compatible action of Γ.

Now, for V in Rep(G∨
k × T∨

k ), consider the vector space V ⊗ O(G∨
k × T∨

k ), which
can be identified with the space of algebraic functions G∨

k × T∨
k → V . In the proof

of Proposition 6.3.5, we introduced four different actions of G∨ × T∨ on this space,
including the so-called “left-only” and “mixed” actions. Regard V ⊗ O(G∨

k × T∨
k ) as

an ind-object of Rep(G∨
k ×T∨

k ) using the left-only action, and then make the abstract
group Γ = G∨

k × T∨
k act on it by the “mixed” action. We then have an isomorphism

V
∼−→
(
V ⊗ O(G∨

k × T∨
k )
)Γ
.

in Rep(G∨
k × T∨

k ) given by sending v to the function g 7→ g−1 · v.
Since V ⊗O(G∨

k × T∨
k ) under the left-only action is isomorphic to a (finite) direct

sum of copies of O(G∨
k × T∨

k ), we have already seen that the corresponding case
of (8.2.1), i.e., the map

HomInd(C )(1C , V ⊗ O(G∨
k × T∨

k ))
∼−→ (V ⊗ O(G∨

k × T∨
k )⊗A)G

∨
k ×T∨

k ,

is an isomorphism. The abstract group Γ acts (by the mixed action) on both sides.
Taking Γ-invariants and using (8.2.2) (which is permitted because (V ⊗O(G∨

k × T∨
k )

is a limit of finite-dimensional Γ-stable subspaces), we obtain (8.2.1).

Next, we want to define a G∨
k × T∨

k -equivariant algebra morphism

O(ÛX ,k)→ A.
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First, the same considerations as in the characteristic-0 setting (using the morphisms
fλ) provide an equivariant algebra morphism O(Xk)→ A. Next, we fix a topological
generator of the group Zℓ(1) associated with F; in this way we obtain monodromy
automorphisms (mV : V ∈ Rep(G∨

k )) (where for simplicity we write mV for mZ (V )),
see §9.5.2. By Proposition 3.4.2, these automorphisms satisfy

mV1⊗V2
= mV1

⋆I mV2

for V1, V2 in Rep(G∨
k ). As explained in Example 8.2.1, such a datum determines an

algebra morphism O(G∨
k )→ A. Combining these constructions we obtain a G∨

k ×T∨
k -

equivariant algebra morphism

(8.2.3) O(G∨
k ×Xk)→ A.

By construction (see §8.1.2) we have a surjection

O(G∨
k ×Xk)→ O(ÛX ,k),

whose kernel is generated by the image of a certain morphism O(G∨
k /U

∨
k ) →

O(G∨
k /U

∨
k ) ⊗ O(G∨

k ). The restriction of this morphism to Nk(λ) ⊂ O(G∨
k /U

∨
k ) is

constructed from the composition

Z (Nk(λ))
mNk(λ)−−−−→ Z (Nk(λ))

fλ−→ Jλ(k),

which coincides with fλ by Lemma 4.6.9. This implies that the morphism (8.2.3)

factors through the surjection O(G∨
k × Xk) → O(ÛX ,k), which allows us to define a

functor

F̃ k : Coh
G∨

k ×T∨
k

fr (ÛX ,k)→ Perv
X∨

+

I (FlG,k)

as in the characteristic-0 setting, where Coh
G∨

k ×T∨
k

fr (ÛX ,k) is the full subcategory of

CohG
∨
k ×T∨

k (ÛX ,k) whose objects are the coherent sheaves of the form V ⊗OÛX ,k
with V

in Rep(G∨
k ×T∨

k ). Below we will in fact mainly consider the restriction of this functor

to the full subcategory Coh
G∨

k ×T∨
k

fr,tilt (ÛX ,k); this restriction will be denoted F̃ k
tilt.

8.2.2. Factorization through coherent sheaves on Ũk. — To finish the con-
struction of the functor F k it only remains to prove the following claim.

Proposition 8.2.3. — There exists a unique triangulated functor

F k : DbCohG
∨
k (Ũk)→ DbPI

such that the following diagram (where the left vertical arrow is induced by restriction

to the open subset Ûk followed by the equivalence (8.1.2), and the right vertical arrow
is the obvious functor) commutes up to isomorphism:

KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k) KbPI

DbCohG
∨
k (Ũk) DbPI .

Kb(F̃ k
tilt)

F k
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Proof. — The proof is very similar to that of Proposition 6.3.9, using Proposi-
tion 8.1.6 in place of Proposition 6.2.10.

In this proof, we had to restrict the functor F̃ k to tilting representations in order
to apply Proposition 8.1.6. However, this subtlety can be ignored a posteriori. The
following claim is a partial step towards making this idea precise, that will be needed
below.

Lemma 8.2.4. — The composition of F k with the canonical functor

Rep(G∨
k )→ DbCohG

∨
k (Ũk), V 7→ V ⊗ OŨk

coincides (up to isomorphism) with the composition of the restriction of F
k

to

Rep(G∨
k ) with the canonical functor Perv

X∨
+

I (FlG,k) → DbPI . Moreover, for any V
in Rep(G∨

k ), the image under F k of the canonical automorphism of V ⊗OŨk
(obtained

by pullback from the automorphism icanV of Example 8.2.1) is mV .

Proof. — We consider the following diagram, where the vertical arrows are all induced
by the canonical functor from the homotopy category to the derived category, and
the arrows from the first to the second column are given by V 7→ V ⊗ OÛX ,k

and

V 7→ V ⊗ OŨk
respectively:

KbCoh
G∨

k ×T∨
k

fr,tilt (ÛX ,k) KbPI

KbTilt(G∨
k )

DbCohG
∨
k (Ũk) DbPI .

DbRep(G∨
k )

Kb(F̃ k
tilt)

Kb(F
k
)

F k

Db(F
k
)

In this diagram the three squares and the upper triangle all commute. Moreover
the leftmost vertical arrow is known to be an equivalence of categories (e.g. by [Ri,
Proposition 7.17]). It follows that the lower triangle also commutes, which proves the
first claim.

For the second claim, since any finite-dimensional algebraic G∨
k -module is isomor-

phic to a subquotient of a tilting module, one can assume that V is tilting; then the
claim is clear by construction.

8.3. Antispherical and Iwahori–Whittaker categories

We continue with analogues of the developments in Section 6.4. Define the anti-

spherical category Pasph
I to be the quotient of the abelian category PI by the Serre

subcategory generated by the simple objects IC I
w with w /∈ fW . The quotient functor

PI → Pasph
I will be denoted Πasph.
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Next, it makes sense to consider the Artin–Schreier local system LAS over k defined
exactly as in §6.4.2 (depending on the choice of a primitive p-th root of unity in k).
One can then define the derived category of Iwahori–Whittaker sheaves Db

IW(FlG,k),
as well as the abelian subcategory of Iwahori–Whittaker perverse sheaves PIW . In
particular, one can define objects ∆IW

λ and ∇IW
λ by the same formulas as in §6.4.3.

We can also consider the functor

AvIW : Db
I (FlG,k)→ Db

IW(FlG,k)

defined by

AvIW(F ) = ∆IW
0 ⋆I F .

We then have the following analogue of Theorem 6.4.2.

Theorem 8.3.1. — 1. The functor AvIW is t-exact for the perverse t-structures
on Db

I (FlG,k) and Db
IW(FlG,k).

2. The restriction of this functor to the hearts of these t-structures factors through

a fully faithful functor Pasph
I → PIW .

The proof is identical to that of Theorem 6.4.2, and will not be repeated here.
(Note in particular that [BeR2] allows modular coefficients, and that the results
from [BBM] that are used apply also in this context, with identical proofs.) Below
we will freely use the notation introduced in this proof, simply replacing Qℓ by k
when appropriate, as well as the lemmas from §§6.4.4–6.4.5.

8.4. Central sheaves and tilting Iwahori–Whittaker perverse sheaves

8.4.1. Statement. — We now consider the functor

Z IW := AvIW ◦Z : Rep(G∨
k )→ PIW .

As in the characteristic-0 setting the category PIW admits a natural structure of a
highest weight category, and we can consider the tilting objects therein.

We have the following counterpart of Theorem 6.5.2.

Theorem 8.4.1. — For any V in Tilt(G∨
k ), the perverse sheaf Z IW(V ) is tilting.

Moreover, for any λ ∈ X∨ we have

(8.4.1) (Z IW(V ) : ∆IW
λ ) = (Z IW(V ) : ∇IW

λ ) = dim(Vλ).

8.4.2. Proof of Theorem 8.4.1. — The proof of Theorem 8.4.1 will follow the
same pattern as that of Theorem 6.5.2, but will be much simpler since in the present
setting G∨

k is a general linear group.
Namely, the same arguments as for Proposition 6.5.6 show that the formula (8.4.1)

will follow if we prove the first claim. Next, the same arguments as in the characte-
ristic-0 setting (see Proposition 6.5.7) prove the following claim.

Proposition 8.4.2. — If V, V ′ are objects in Rep(G∨
k ) such that Z IW(V ) and

Z IW(V ′) are tilting, then Z IW(V ⊗ V ′) is tilting.



296 CHAPTER 8. A MODULAR ARKHIPOV–BEZRUKAVNIKOV EQUIVALENCE FOR GL(n)

For the next step, we choose a basis (e1, . . . , en) in Ek consisting of eigenvectors
for the action of T∨

k . This lets us identify G∨ with GLn(k), and T∨
k with the subspace

of diagonal matrices. Reordering the basis if necessary, we can further assume that
B∨

k identifies with the subgroup of lower triangular matrices. These identifications
provide a canonical isomorphism

X∨ = Zn,
such that if for i ∈ {1, . . . , n} we set

ωi = (1, . . . , 1︸ ︷︷ ︸
i terms

, 0, . . . , 0),

then (ω1, . . . , ωn) is a Z-basis of X∨, and X∨
+ consists of the elements of the form

k1ω1 + · · ·+ kn−1ωn−1 +mωn

with ki ≥ 0 for i ∈ {1, . . . , n− 1}.

Lemma 8.4.3. — For any k1, . . . , kn−1 ∈ Z≥0 and any m ∈ Z, the G∨
k -module(

n−1⊗
i=1

Nk(ωi)
⊗ki

)
⊗ Nk(m · ωn)

is tilting. Moreover, any (finite-dimensional) tilting G∨
k -module is isomorphic to a

direct sum of direct summands of such modules.

Proof. — For any i ∈ {1, . . . , n − 1}, the weights of Nk(ωi) (which are the same as
those of the characteristic-0 counterpart of this module) all belong to the Wf -orbit
of ωi; therefore this induced module is simple, and hence isomorphic to the Weyl
module of highest weight ωi (in the sense of [J1, §II.5.11]); in particular, it is tilting.
Similarly, for any m ∈ Z, the induced module Nk(m ·ωn) is 1-dimensional, with action
given by det⊗m; hence it is simple, and therefore tilting. Since a tensor product of
tilting modules is tilting (see [J1, §II.E.7]), we deduce the first claim.

For the second claim, recall that any tilting G∨
k -module is a direct sum of indecom-

posable tilting modules, and that indecomposable tilting modules are parametrized
by X∨

+ (see [J1, §II.E.6]). Now if λ = k1ω1 + · · · + kn−1ωn−1 + mωn is dominant
(i.e. if ki ≥ 0 for i ∈ {1, . . . , n− 1}), then the tilting module(

n−1⊗
i=1

Nk(ωi)
⊗ki

)
⊗ Nk(m · ωn)

admits λ as a maximal weight (for the dominance order); therefore it must contain
the indecomposable tilting module attached to λ as a direct summand, which implies
our claim.

Proposition 8.4.2 and Lemma 8.4.3 reduce the proof of the first claim in Theo-
rem 8.4.1 to the special case when V is either Nk(ωi) (for some i ∈ {1, . . . , n− 1}) or
Nk(m · ωn) (for some m ∈ Z). In these cases, the claim can be checked by the same
considerations as in §6.5.5.
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8.4.3. The regular quotient. — To finish this section we consider appropriate
analogues of Proposition 6.5.18 and Lemma 6.5.26. (In the present setting these
results are not needed for the proof of Theorem 8.4.1. However they will be required
in the proof of Lemma 8.5.3 below.) Note that unlike in §6.5.7, our base field is
now countable, so one key step from that section (namely, the determination of the
division ring in (6.5.4)) does not go through. For this reason we will restrict ourselves
to weaker claims, which will still be sufficient for our purposes.

We will denote by P0
I the Serre quotient of the category PI by the Serre subcategory

generated by the objects IC I
w with ℓ(w) > 0, and by Π0 : PI → P0

I the associated
quotient functor. Then, as in the characteristic-0 setting, the functor (F ,G ) 7→
Π0(pH 0(F ⋆I G )) induces a monoidal structure on P0

I , with product denoted ⃝⋆ , and
with unit object δ0 := Π0(IC I

e ). The functor Z 0 := Π0 ◦ Z admits a natural
structure of a central functor, and for V in Rep(G∨

k ) we set m0
V := Π0(mV ). We will

also denote by P̃0
I the full (monoidal) abelian subcategory of P0

I whose objects are
the subquotients of objects of the form Z 0(V ) for V in Rep(G∨

k ), so that Z 0 factors

through a central functor Z̃ 0 : Rep(G∨
k )→ P̃0

I .
The (left) regular G∨

k -module O(G∨
k ) is the union of its finite-dimensional sub-G∨

k -
modules; it therefore defines an ind-object O(G∨

k ) in Rep(G∨
k ). We consider the image

Z̃ 0(O(G∨
k )), an ind-object in P̃0

I . Since O(G∨
k ) is a ring-object, so is Z̃ 0(O(G∨

k )), and
using Theorem 3.5.1 one sees that any left ideal subobject in this ring-object is also
a right ideal subobject. Hence, choosing a maximal left ideal subobject J (whose
existence can be checked as in the proof of Lemma 6.5.19) one obtains a ring-object

quotient O(H) of Z̃ 0(O(G∨
k )).

One can then consider the k-algebra
K := HomInd(P̃0

I)
(δ0,O(H)),

where the product of f : δ0 → O(H) and g : δ0 → O(H) is the composition

δ0 = δ0 ⃝⋆ δ0
f⃝⋆g−−−→ O(H)⃝⋆ O(H)→ O(H),

where the rightmost arrow is the multiplication map.

Lemma 8.4.4. — The algebra K is a (commutative) field.

Proof. — Let us first prove commutativity. As part of the central structure on the

functor Z̃ 0, we have a canonical isomorphism

ς
O(G∨

k ),Z̃ 0(O(G∨
k ))

: Z̃ 0(O(G∨
k ))⃝⋆ Z̃ 0(O(G∨

k ))
∼−→ Z̃ 0(O(G∨

k ))⃝⋆ Z̃ 0(O(G∨
k )).

By functoriality this isomorphism sends Z̃ 0(O(G∨
k ))⃝⋆J to J ⃝⋆ Z̃ 0(O(G∨

k )). More-
over, this isomorphism is also (via the appropriate identifications) the image under

Z̃ 0 of the commutativity constraint in Rep(G∨
k ), which is symmetric; therefore it

satisfies
ς
O(G∨

k ),Z̃ 0(O(G∨
k ))
◦ ς

O(G∨
k ),Z̃ 0(O(G∨

k ))
= id,

and thus also sends J ⃝⋆ Z̃ 0(O(G∨
k )) to Z̃ 0(O(G∨

k )) ⃝⋆ J . It follows that this

isomorphism sends J ⃝⋆ Z̃ 0(O(G∨
k )) + Z̃ 0(O(G∨

k ))⃝⋆ J to itself, so that it induces
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a canonical isomorphism

ς : O(H)⃝⋆ O(H)
∼−→ O(H)⃝⋆ O(H).

Let us denote by mO(H) : O(H) ⃝⋆ O(H) → O(H) the multiplication map. Using
the corresponding properties for ς

O(G∨
k ),Z̃ 0(O(G∨

k ))
, it is not difficult to check that we

have

mO(H) ◦ ς = mO(H),

and that for any morphism f : δ0 → O(H) we have

ς ◦ (idO(H) ⃝⋆ f) = f ⃝⋆ idO(H)

(where we identify δ0 ⃝⋆ O(H) and O(H)⃝⋆ δ0 with O(H) using the unit constraint).
In particular, for f, g ∈ K, we have a commutative diagram

δ0 ⃝⋆ O(H) O(H)⃝⋆ O(H)

δ0 O(H).

O(H)⃝⋆ δ0 O(H)⃝⋆ O(H)

f⃝⋆ id

mO(H)g

g

≀

id⃝⋆f

ς

mO(H)

From this diagram one deduces that f · g = g · f , proving that K is commutative.
Next, one sees as in §6.5.7 that K can also be described as the algebra of endo-

morphisms of O(H) as an O(H)-module. Since this module is simple by construction
it follows that K is a division algebra, and hence a field.

As in the proof of Lemma 6.5.20, one sees that for any F in P̃0
I the product

O(H)⃝⋆ F is a direct sum of copies of O(H). Using this, one obtains that the functor

vK : P̃0
I → VectK

defined by

vK(F ) = HomModO(H)
(O(H),O(H)⃝⋆ F )

is exact and faithful, that it admits a canonical monoidal structure, and finally that

its composition with Z̃ 0 is canonically isomorphic to the functor Rep(G∨
k ) → VectK

sending V to K ⊗k V .
For simplicity, we now choose an algebraic closure K of K, and consider the functor

vK : P̃0
I → VectK

defined by vK(F ) = K⊗K vK(F ). Then vK admits a canonical monoidal structure,

and the composition vK ◦ Z̃ 0 is isomorphic (as a monoidal functor) to the functor
V 7→ K⊗k V .
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8.4.4. Monodromy and the regular quotient. — For any V in Rep(G∨
k ) we set

m0
V := Π0(mV ). Then m0

(−) defines an automorphism of the functor Z̃ 0, and by

Proposition 3.4.2 we have
m0
V⊗V ′ = m0

V ⃝⋆ m0
V ′

for any V, V ′ in Rep(G∨
k ). Composing this automorphism with vK we obtain an

automorphism of the functor V 7→ K ⊗k V , which defines (by Tannakian formalism,
see [DM, Proposition 2.8]) a K-point u0 of G∨

k .
The following claim is our modular analogue of Proposition 6.5.23 (in the present

special case).

Proposition 8.4.5. — The element u0 is unipotent and regular.

The proof of this proposition will require the following lemma.

Lemma 8.4.6. — For m ∈ Z≥1, we consider the map

gm : AmF → A1
F

given by gm(x1, . . . , xm) = x1 · · ·xm. Then the complex kg−1
m (0)[m − 1] ∈ Db

c (AmF ,k)
is a perverse sheaf, which satisfies

[kg−1
m (0)[m− 1] : k{0}] = 1.

Proof. — The proof proceeds by induction on m. If m = 1 then the claim is obvious.
If m ≥ 2, we have a closed embedding i : Am−1 = Am−1 × {0} ↪→ g−1

m (0), with open
complement j : g−1

m−1(0)× (A1
F ∖ {0}) ↪→ g−1

m (0). We deduce a distinguished triangle

j!kg−1
m−1(0)×(A1

F∖{0})[m− 1]→ kg−1
m (0)[m− 1]→ i∗kAm−1 [m− 1]

[1]−→ .

Since the right-hand side is a simple perverse sheaf distinct from k{0} (because Am−1
F

is smooth), to conclude it suffices to prove that j!kg−1
m (0)×(A1

F∖{0})[m−1] is a perverse

sheaf which admits k{0} as a composition factor with multiplicity one. Now j factors
a composition

g−1
m−1(0)× (A1

F ∖ {0})→ g−1
m−1(0)× A1

F → g−1
m (0)

where the first map is an open embedding and the second one a closed embedding.
We deduce an isomorphism

j!kg−1
m−1(0)×(A1

F∖{0})[m− 1] ∼= kg−1
m−1(0)

[m− 2]⊠ (j0)!kA1
F∖{0}[1],

where j0 : A1
F ∖ {0} → A1

F is the embedding. From this we obtain a distinguished
triangle

kg−1
m−1(0)

[m− 2]⊠ k{0} → j!kg−1
m−1(0)×(A1

F∖{0})[m− 1]

→ kg−1
m−1(0)

[m− 2]⊠ kA1 [1]
[1]−→ .

Since kg−1
m−1(0)

[m−2] is perverse, the first and third terms in this triangle are perverse

sheaves, showing that the middle term is also perverse. Moreover, the composition
factors of kg−1

m−1(0)
[m−2]⊠kA1 [1] are all of the form F ⊠kA1 [1] with F a composition
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factor of kg−1
m−1(0)

[m − 2] (see e.g. [BBDG, §§4.2.5–4.2.6]); in particular, k{0} is not

such a composition factor, which finishes the proof.

Proof of Proposition 8.4.5. — Consider the coweight ε∨1 for T (in the notation of
Example 1.2.3). In view of Example 1.5.4, and by construction of this element, to
prove that u0 is unipotent regular it suffices to prove that if m is the monodromy
automorphism of Z

(
k
Gr

ε∨1
G

[n]
)
, then m is unipotent and the nilpotent endomorphism

vK(Π
0(m)− id) of the n-dimensional K-vector space vK ◦Π0(Z(k

Gr
ε∨1
G

[n])) has a single

Jordan block, or in other words a kernel of dimension at most 1. First, m is indeed
unipotent by Proposition 2.4.6(1). For the claim about the kernel of vK(Π

0(m)− id),
denoting by ω ∈W the unique element of length 0 such that t(ε∨1 ) ∈ ωWCox, the object
Π0(Z(k

Gr
ε∨1
G

[n])) has length n, with all composition factors isomorphic to Π0(IC I
ω ).

(In fact Z(k
Gr

ε∨1
G

[n]) has a Wakimoto filtration of length n, and by Remark 4.2.4 the

image in P0
I of each of these Wakimoto sheaves is Π0(IC I

ω ).) Therefore, to conclude
it suffices to prove that the simple perverse sheaf IC I

ω appears at most once as a
composition factor of ker(m− id).

A description of the geometry involved in the construction of Z(k
Gr

ε∨1
G

[n]) has been

given in §2.2.4. From this description we see that what has to be proved is that if gn
is the map considered in Lemma 8.4.6, and if F = kg−1

n (A1
F∖{0})[n], then the simple

perverse sheaf k{0} appears at most once as a composition factor of ker(mF − id) ⊂
Ψgn(F ).

Let us denote by j : g−1
n (A1

F ∖ {0}) ↪→ AnF the embedding. Then in view of [Re,
Proposition 3.1] there exists a perverse sheaf G (in fact, the image of F under
Bĕılinson’s “maximal extension” functor) and a factorization

Ψgn(F ) G Ψgn(F )

mF−id

such that the kernel of the surjection G ↠ Ψgn(F ) is j!F . Therefore, to conclude it
suffices to prove that

[j!F : k{0}] = 1.

Now if i : g−1
n (0) ↪→ AnF is the embedding, then we have a canonical distinguished

triangle

i∗kg−1
n (0)[n− 1]→ j!F → kAn

F
[n]

[1]−→ .

Here the third term is a simple perverse sheaf distinct from k{0} (by smoothness of

AnF), and by Lemma 8.4.6 the first term is perverse, and admits k{0} as a composition
factor with multiplicity 1; it follows that j!F also satisfies these properties, which
finishes the proof.

We can now prove the (weak) analogue over k of Lemma 6.5.26. We consider the

unipotent variety Uk ⊂ G∨
k , and the (multiplicative) Springer resolution Ũk → Uk.

These varieties also have analogues over K, denoted UK and ŨK. We have the regular
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orbit OK
r ⊂ UK, and the Springer resolution restricts to an isomorphism ÕK

r
∼−→ OK

r ,

where ÕK
r is the preimage of OK

r (see e.g. [Hu1, §§6.3–6.4]). Again we have an

isomorphism G∨
K/ZG∨

K
(u0)

∼−→ OK
r , where G

∨
K is the base change of G∨

k to K (see the

discussion in [Hu1, §6.4]), and hence an equivalence of categories

(8.4.2) CohG
∨
K (ÕK

r )
∼−→ Rep(ZG∨

K
(u0))

as in (6.5.10). If we denote by Coh
G∨

K
fr,tilt(ŨK), resp. Coh

G∨
k

fr,tilt(Ũk), the full subcategory

of CohG
∨
K (ŨK), resp. CohG

∨
k (Ũk), whose objects are those of the form V ⊗OŨK

for some

V in Tilt(G∨
K), resp. of the form V ⊗OŨk

for some V in Tilt(G∨
k ), we can consider the

composition

(8.4.3) Coh
G∨

k
fr,tilt(Ũk)

K⊗k(−)−−−−−→ Coh
G∨

K
fr,tilt(ŨK)→ CohG

∨
K (ÕK

r )

(8.4.2)−−−−→
∼

Rep(ZG∨
K
(u0))→ VectK

where the second arrow is given by restriction to the open subset ÕK
r ⊂ ŨK, and the

fourth one is the natural forgetful functor. (More concretely, the composition of the

last three arrows is the pullback under the embedding {ũ0} ↪→ ŨK, where ũ0 is the

unique preimage of u0 in ŨK.)
On the other hand, we can also consider the composition

(8.4.4) Coh
G∨

k
fr,tilt(Ũk)

Π0◦F k

−−−−→ P̃0
I

vK−→ VectK,

where the first arrow is defined as follows: the functor F k restricts to a functor
Coh

G∨
k

fr,tilt(Ũk) → PI , and then the composition Π0 ◦ F k : Coh
G∨

k
fr,tilt(Ũk) → P0

I factors

through P̃0
I . The functor (8.4.4) admits a canonical monoidal structure.

Lemma 8.4.7. — The functors (8.4.3) and (8.4.4) are isomorphic as monoidal
functors.

Proof. — The proof is similar to that of Lemma 6.5.26. First we observe that both
functors

Tilt(G∨
k ) Coh

G∨
k

fr,tilt(Ũk) VectK
(8.4.3)

(8.4.4)

identify (as monoidal functors) with the functor Tilt(G∨
k ) → VectK sending V to

K⊗k V . In other words, (8.4.3) and (8.4.4) agree on objects. It remains to check that
they agree on morphisms.

For this, we use the fact that both of our functors extend in a natural way to the

full subcategory Coh
G∨

k
fr (Ũk) of CohG

∨
k (Ũk) consisting of objects of the form V ⊗ OŨk

with V in Rep(G∨
k ). Using Lemma 8.2.4 we see that here again the compositions

Rep(G∨
k ) Coh

G∨
k

fr (Ũk) VectK
(8.4.3)

(8.4.4)

are both canonically isomorphic (as monoidal functors) to the functor Rep(G∨
k ) →

VectK sending V to K⊗k V .
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We then consider the composition of these “extended” functors with the pullback

functor Coh
G∨

k
fr (G∨

k ) → Coh
G∨

k
fr (Ũk) associated with the composition Ũk → Uk ↪→ G∨

k .
In view of Example 8.2.1, to check that the two functors

(8.4.5) Coh
G∨

k
fr (G∨

k ) Coh
G∨

k
fr (Ũk) VectK

pullback (8.4.3)

(8.4.4)

coincide it suffices to prove that the associated K-points of G∨
k coincide; however by

construction these two points are given by u0.
This observation shows that, for any V1, V2 in Rep(G∨

k ), the maps

Hom
CohG

∨
k (G∨

k )
(V1 ⊗ OG∨

k
, V2 ⊗ OG∨

k
)→ HomK(K⊗k V1,K⊗k V2)

induced by the two functors in (8.4.5) coincide. To conclude, it therefore only remains
to prove that for V1, V2 in Tilt(G∨

k ), the pullback functor induces a surjection

Hom
CohG

∨
k (G∨

k )
(V1 ⊗ OG∨

k
, V2 ⊗ OG∨

k
)→ Hom

CohG
∨
k (Ũk)

(V1 ⊗ OŨk
, V2 ⊗ OŨk

).

Here the left-hand side identifies with

(V ∗
1 ⊗ V2 ⊗ O(G∨

k ))
G∨

k ,

and the right-hand side with

(V ∗
1 ⊗ V2 ⊗ O(Ũk))G

∨
k = (V ∗

1 ⊗ V2 ⊗ O(Uk))G
∨
k .

(Here we use the fact that O(Ũk) = O(Uk), by normality of Uk—see [Hu1, §4.24]—and
Zariski’s main theorem.) Therefore, to conclude it suffices to show that the morphism

(V ∗
1 ⊗ V2 ⊗ O(G∨

k ))
G∨

k → (V ∗
1 ⊗ V2 ⊗ O(Uk))G

∨
k

induced by restriction is surjective,.
It is well known that if Nk ⊂ g∨k is the nilpotent cone, we have O(Nk) =

O(g∨k ) ⊗O(g∨
k )G

∨
k
k, and that O(g∨k )

G∨
k is isomorphic to a polynomial algebra (gener-

ated, for instance, by the coefficients of the characteristic polynomial). Moreover,

the morphism O(g∨k )
G∨

k → O(g∨k ) is flat, e.g. by [BC, Proposition 4.2.6]. Starting

with a finite free resolution of k as an O(g∨k )
G∨

k -module (e.g., the Koszul resolution),

and then tensoring with the flat O(g∨k )
G∨

k -algebra O(g∨k ), we obtain a G∨-equivariant
finite resolution of O(Nk) as an O(g∨k )-module, all of whose terms are direct sums of
copies of O(g∨k ) (as equivariant modules). Then, since the open embedding (8.1.5)

restricts to an isomorphism Uk
∼−→ Nk, tensoring with the flat O(g∨k )-algebra O(G∨

k )
we obtain a G∨

k -equivariant finite free resolution of O(Uk) as an O(G∨
k )-module, all of

whose terms are direct sums of copies of O(G∨
k ) (as equivariant modules). Breaking

this resolution into short exact sequences and using the same kinds of arguments as
in the first step of the proof of Lemma 6.2.4, from the fact that

H>0(G∨
k , V

∗
1 ⊗ V2 ⊗ O(G∨

k )) = 0

(because V ∗
1 ⊗ V2 ⊗ O(G∨

k ) admits a good filtration, see [J1, §§II.4.20–II.4.21]) we
obtain that the morphism

(V ∗
1 ⊗ V2 ⊗ O(G∨

k ))
G∨

k → (V ∗
1 ⊗ V2 ⊗ O(Uk))G

∨
k
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induced by restriction is surjective, which finishes the proof.

8.5. Proof of the equivalence

8.5.1. Statement. — As in Section 6.6 we will consider the triangulated functor

F k
IW : DbCohG

∨
k (Ũk)→ Db

IW(FlG,k)

defined as the composition

DbCohG
∨
k (Ũk)

F k

−−→ DbPI → Db
I (FlG,k)

AvIW−−−−→ Db
IW(FlG,k),

where the second arrow is the realization functor. Our goal is to prove the following
counterpart of Theorem 6.6.1.

Theorem 8.5.1. — The functor F k
IW is an equivalence of categories.

8.5.2. Preliminaries. — First, the proof of the following lemma is identical to that
of Lemma 6.6.3.

Lemma 8.5.2. — The objects AvIW(Jλ(k)) with λ ∈ X∨ generate Db
IW(FlG,k) as

a triangulated category.

Next, we consider the following analogue of Lemma 6.6.4.

Lemma 8.5.3. — For any V in Tilt(G∨
k ), the morphism

Hom
DbCohG

∨
k (Ũk)

(OŨk
, V ⊗ OŨk

)→ HomDb
IW(FlG,k)(F

k
IW(OŨk

), F k
IW(V ⊗ OŨk

))

induced by F k
IW is injective.

Proof. — The proof is similar to that of Lemma 6.6.4. Namely, since

F k
IW(OŨk

) = ∆IW
0 and F k

IW(V ⊗ OŨk
) = Z 0(V ),

the right-hand side identifies (in view of Theorem 8.3.1) with

HomPasph
I

(Πasph(∆
I
e),Πasph(Z (V ))),

so that to conclude it suffices to prove that the induced morphism

Hom
CohG

∨
k (Ũk)

(OŨk
, V ⊗ OŨk

)→ HomP0
I
(δ0,Z 0(V ))

is injective. For this we use the functor vK of §8.4.3. Lemma 8.4.7 shows that the
desired claim is equivalent to the fact that restriction to u0 induces an injective map

(V ⊗ O(Uk))G
∨
k ↪→ K⊗k V.

The latter claim can be proved as in the characteristic-0 setting, after remarking that

K⊗k (V ⊗k O(Uk))G
∨
k ∼=

(
(K⊗k V )⊗K O(UK)

)G∨
K

by [J1, I.2.6(3)], where UK ⊂ G∨
K is the unipotent variety.

As with Corollary 6.6.5, we next deduce the following corollary.
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Corollary 8.5.4. — For any V in Tilt(G∨
k ), any λ ∈ X∨

+ and any n ∈ Z, the
morphism

Hom
DbCohG

∨
k (Ũk)

(OŨk
, V ⊗ OŨk

(λ)[n])

→ HomDb
IW(FlG,k)(F

k
IW(OŨk

), F k
IW(V ⊗ OŨk

(λ))[n])

induced by F k
IW is injective.

Proof. — Let us fix V in Tilt(G∨
k ) and λ ∈ X∨

+. By [KLT, Theorem 2] (see
also (8.1.6)) we have

HomDbCoh(Ũk)
(OŨk

, V ⊗ OŨk
(λ)[n]) = V ⊗ Hn(Ũk,OŨk

(λ)) = 0

for n ̸= 0. Moreover, by [KLT, Theorem 7] (see again (8.1.6)) and [J1, Proposi-
tion II.4.21], the G∨

k -module

HomDbCoh(Ũk)
(OŨk

, V ⊗ OŨk
(λ)) = V ⊗ H0(Ũk,OŨk

(λ))

admits a good filtration. In view of Lemma 8.1.1, this implies that

Hom
DbCohG

∨
k (Ũk)

(OŨk
, V ⊗ OŨk

(λ)[n]) = 0

unless n = 0, and moreover that we have

Hom
DbCohG

∨
k (Ũk)

(OŨk
, V ⊗ OŨk

(λ)) =
(
V ⊗ Hn(Ũk,OŨk

(λ))
)G∨

k .

In particular, this shows that the only case we have to consider is when n = 0.
By Lemma 8.1.5, there exists V ′ in Tilt(G∨

k ) and an embedding OŨk
(λ) ↪→ V ′⊗OŨk

in CohG
∨
k (Ũk). We deduce an embedding

(8.5.1) Hom
CohG

∨
k (Ũk)

(OŨk
, V ⊗ OŨk

(λ)) ↪→ Hom
CohG

∨
k (Ũk)

(OŨk
, V ⊗ V ′ ⊗ OŨk

).

By Lemma 8.5.3, the morphism

(8.5.2) Hom
CohG

∨
k (Ũk)

(OŨk
, V ⊗ V ′ ⊗ OŨk

)

→ HomDb
IW(FlG,k)(F

k
IW(OŨk

), F k
IW(V ⊗ V ′ ⊗ OŨk

))

is injective. Now by functoriality the composition of (8.5.1) and (8.5.2) (which is
injective by our arguments above) coincides with the composition of the morphism in
the statement (for n = 0) with the morphism

HomDb
IW(FlG,k)(F

k
IW(OŨk

), F k
IW(V ⊗ OŨk

(λ)))

→ HomDb
IW(FlG,k)(F

k
IW(OŨk

), F k
IW(V ⊗ V ′ ⊗ OŨk

))

induced by our embedding OŨk
(λ) ↪→ V ′ ⊗ OŨk

. The desired injectivity follows.
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8.5.3. Proof of Theorem 8.5.1. — We are now in a position to prove Theo-
rem 8.5.1. We will first prove that F k

IW is fully faithful. For this, we have to check

that for any F ,G in DbCohG
∨
k (Ũk) the morphism

(8.5.3) Hom
DbCohG

∨
k (Ũk)

(F ,G )→ HomDb
IW(FlG,k)(F

k
IW(F ), F k

IW(G ))

induced by F k
IW is an isomorphism.

Consider the special case when F = OŨk
and G = V ⊗ OŨk

(λ)[n] for some V

in Tilt(G∨
k ), some λ ∈ X∨

+ and some n ∈ Z. In this case (8.5.3) is injective by
Corollary 8.5.4. We claim that the domain and codomain have the same (finite)
dimension, so that this map must be an isomorphism.

For the right-hand side, exactly the same considerations as in the characteristic-0
setting allow us to conclude that this space vanishes unless n = 0, and that in this
case its dimension is dim(V−λ). Next we turn to the left-hand side of (8.5.3) (still in
our particular case). As seen in the course of the proof of Corollary 8.5.4, here again
the space vanishes unless n = 0, and in this case it identifies with(

V ⊗ Γ(Ũk,OŨk
(λ))

)G∨
k .

Since Γ(Ũk,OŨk
(λ)) admits a good filtration (see again the proof of Corollary 8.5.4)

and V is tilting, the dimension of this space is∑
ν∈X∨

+

(V ∗ : Nk(ν)) ·
(
Γ(Ũk,OŨk

(λ)) : Nk(ν)
)
,

where (M : Nk(ν)) denotes the multiplicity of Nk(ν) in a good filtration ofM . Finally,
we observe that the proof of [Bry, Lemma 6.1] (which assumes that the base field
has characteristic 0, but in fact works in arbitrary characteristic) and the higher
cohomology vanishing of OŨk

(λ) imply that(
Γ(Ũk,OŨk

(λ)) : Nk(ν)
)
= dim (Nk(ν)λ) ,

which allows us to conclude as in the characteristic-0 setting.
The rest of the proof is identical to that in the characteristic-0 setting, simply

replacing references to Lemma 6.2.8 by references to Lemma 8.1.4.
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CHAPTER 9

REVIEW OF THE MAIN PROPERTIES OF NEARBY
CYCLES

In this chapter we review the standard constructions and properties of the nearby
cycles functors. All of the facts stated here are well known (although sometimes
treated in the literature in a more limited or slightly different setting), and are recalled
only for ease of reference.

In this book we have tried to write everything in such a way that the translation
between the “classical” and the “étale” settings is immediate. However when it comes
to the definition of nearby cycles, the two settings really require different treatments.
We first explain our constructions in the classical setting, and then briefly explain (in
Section 9.5) how to treat the étale setting.

9.1. Definition and basic properties

9.1.1. Definition. — Let X be a separated C-scheme of finite type, and let f :
X → C be an algebraic map. The constructions below will require the consideration
of analytic spaces which are not algebraic varieties; so by “X” we usually mean
the topological space X(C) with its classical topology; but for simplicity we do not
introduce special notation. Let X0 = f−1(0) and X× = f−1(C×). Let exp : C→ C×

be the exponential map, and set X̃× := X×C× C. (Here X̃× is an analytic space, but
not an algebraic variety in general.) We have the following commutative diagram, in
which every square is cartesian (as a diagram of topological spaces):

(9.1.1)

X0 X X× X̃×

{0} C C× C.

i

f0 f

j

f×

expX

exp

If k is a noetherian commutative ring of finite global dimension, the nearby cycles
functor is the functor

Ψf : Db
c (X

×,k)→ Db(X0,k)
given by

Ψf (F ) = (i∗j∗ expX∗ exp
∗
X F )[−1].
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For simplicity of notation, when the map f is clear from the context, we will sometimes
write ΨX for Ψf .

Note that if G belongs to Db
c (X,k), then the adjunction morphism id →

j∗ expX∗ exp
∗
X j

∗ induces a canonical morphism

(9.1.2) i∗G [−1]→ Ψf (j
∗G ).

Remark 9.1.1. — We emphasize that we incorporate a cohomological shift in the
definition of the functor Ψf ; in some references (e.g. [KS1]) the nearby cycles functor
is defined as F 7→ i∗j∗ expX∗ exp

∗
X F instead. This convention is more appropriate

when working with perverse sheaves, as shown in Theorem 9.1.3(2) below.

Example 9.1.2. — A surprisingly useful toy example of the setting above is that
in which X = C and f = id. Consider the natural maps

ı, ı1 : pt→ C, π : C→ pt, ȷ : C× → C

where ı and ı1 are the embeddings of 0 and 1 respectively, and ȷ is the natural
embedding. If G ∈ Db

c (C,k) is a constant complex (i.e. a complex which belongs to
the essential image of π∗), then adjunction provides canonical isomorphisms

(9.1.3) ı∗1G = π∗(ı1)∗ı
∗
1G

∼←− π∗G
∼−→ π∗ı∗ı

∗G = ı∗G .

On the other hand, we also have canonical isomorphisms

(9.1.4) ı∗1G [−1] = ı∗ exp∗ ȷ∗G [−1] ∼←− π∗ exp∗ ȷ∗G [−1]

= π∗ȷ∗ exp∗ exp
∗ ȷ∗G [−1] ∼−→ ı∗ȷ∗ exp∗ exp

∗ ȷ∗G [−1] = Ψid(ȷ
∗G ).

(For the isomorphism in the second line, see, for instance, [Ac3, Proposition B.4.2].)
We claim that these two pairs of maps are related by the following commutative
diagram, where all maps are isomorphisms, and where the middle and right-hand
vertical arrows are induced by the adjunction map id→ ȷ∗ exp∗ exp

∗ ȷ∗:

ı∗1G [−1] π∗G [−1] ı∗G [−1]

ı∗1G [−1] π∗ȷ∗ exp∗ exp
∗ ȷ∗G [−1] Ψid(ȷ

∗G ).

(9.1.2)

9.1.2. Some basic properties. — The following statement gives some fundamen-
tal properties of this functor.

Theorem 9.1.3. — Let X be a separated C-scheme of finite type, and let f : X → C
be an algebraic map.

1. For all F ∈ Db
c (X

×,k), the object Ψf (F ) lies in Db
c (X0,k).

2. The functor Ψf : Db
c (X

×,k) → Db
c (X0,k) is t-exact for the perverse t-

structures.

For proofs, see [KS1, Proposition 8.6.3 and Corollary 10.3.13] or [Ac3, Theo-
rems 4.2.3 and 4.2.8]. (Note that since expX is a nonalgebraic map, it is not obvi-
ous from the definition that Ψf (F ) is constructible. Indeed, the intermediate object
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expX∗ exp
∗
X F is never constructible if F is nonzero: it has stalks that are not finitely

generated over k.)
The following proposition gathers some compatibility properties of nearby cycles

with pushforward and pullback functors. Its proof is an easy exercise in applying
proper (or smooth) base change (see in particular [KS1, Exercise VIII.15] for (1)).

Proposition 9.1.4. — Let X, Y be separated C-schemes of finite type, and let
f : X → C and g : Y → X be algebraic maps.

1. For F ∈ Db
c (Y

×,k), there is a natural (functorial) transformation

Ψf ((g|Y ×)∗F )→ (g|Y0
)∗Ψf◦g(F ).

If g is proper, this map is an isomorphism.
2. For F ∈ Db

c (X
×,k), there is a natural (functorial) transformation

(g|Y0
)∗Ψf (F )→ Ψf◦g((g|Y ×)∗F ).

If g is smooth, this map is an isomorphism.

Remark 9.1.5. — 1. Consider the setting of Proposition 9.1.4(1), and let h :
Z → Y be another algebraic map. Then for G in Db

c (Z
×,k) one can check that

the following diagram commutes, where the horizontal arrows are provided by
Proposition 9.1.4(1) and the vertical ones by the compatibility of pushforward
with composition:

Ψf ((g|Y ×)∗(h|Z×)∗G ) (g|Y0
)∗Ψf◦g((h|Z×)∗G ) (g|Y0

)∗(h|Z0
)∗Ψf◦g◦h(G )

Ψf ((g ◦ h)|Z×)∗G ) ((g ◦ h)|Z0
)∗Ψf◦g◦h(G ).

≀ ≀

Of course, a similar claim holds for the morphism in Proposition 9.1.4(2).
2. An important special case of Proposition 9.1.4(1) is when f = idC. In this case,

for g proper we obtain a canonical isomorphism

Ψid((g|Y ×)∗F )
∼−→ RΓ(Y0,Ψg(F )).

If furthermore the complex (g|Y ×)∗F is constant in the sense of Example 9.1.2
(which will be the case in all the examples we will encounter in practice), we
deduce a canonical isomorphism

H•(g−1(1),F|g−1(1))
∼−→ H•(Y0,Ψg(F )).

We will also require the following compatibility properties of nearby cycles with
Verdier duality, change-of-scalars, and external tensor products. Here (1) is stated
only for completeness; it will not be used in this book. In (2), given a ring morphism
φ : k→ k′ (where both rings are noetherian, commutative, of finite global dimension),
we consider the change-of-scalars functors

k′
L
⊗k (−) : Db

c (X,k)→ Db
c (X,k′), k′

L
⊗k (−) : Db

c (X0,k)→ Db
c (X0,k′),

see e.g. [Ac3, §1.4].
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Proposition 9.1.6. — 1. Let X be a separated C-scheme of finite type, and let
f : X → C be an algebraic map. For F ∈ Db

c (X
×,k), there is a natural

isomorphism

Ψf ◦ DX×(F )
∼−→ DX0 ◦Ψf (F ).

2. Let X be a separated C-scheme of finite type, let f : X → C be an algebraic
map, and let φ : k → k′ be a ring homomorphism. For F ∈ Db

c (X
×,k), there

is a natural isomorphism

k′
L
⊗k Ψf (F )→ Ψf (k′

L
⊗k F ).

3. Let X, Y be separated C-schemes of finite type, let f : X → C and g : Y → C
be algebraic maps, and let f ×C g : X ×C Y → C be the induced map. For
F ∈ Db

c (X
×,k) and G ∈ Db

c (Y
×,k), there is a natural isomorphism

Ψf (F )
L

⊠Ψg(G )
∼−→ Ψf×Cg(F

L

⊠C G ),

where F ⊠LC G denotes the restriction of (F ⊠L G )[−1] to X× ×C× Y × ⊂
X× × Y ×.

For proofs, see [Mas, Corollary 3.2] or [Ac3, Proposition 4.2.4] for (1) (this state-
ment has earlier but weaker antecedents; see [Mas] for details), see [Ac3, Proposi-
tion 4.2.5] for (2), and see [Sc, Theorem 1.0.4] for (3).

Remark 9.1.7. — Although we will not repeat the proof of Proposition 9.1.6, it
will be useful below to have an explicit description of the construction of the map in
part (3). Recall that for any continuous map of topological spaces h : X → Y , there
is a natural “Künneth” map (not, in general, an isomorphism)

(9.1.5) h∗F
L
⊗ h∗G → h∗(F

L
⊗ G ).

(This map is obtained using the adjunction (h∗, h∗) and the compatibility of h∗ with
tensor products.) From this construction we deduce, for continuous maps h1 : X1 →
Y1 and h2 : X2 → Y2, a canonical morphism

(9.1.6) (h1)∗F
L

⊠ (h2)∗G → (h1 × h2)∗(F
L

⊠ G );

see e.g. [Sc, §1.4].
Briefly, the map in part (3) (following [Sc]; see also [I1, §4]) is defined by apply-

ing (9.1.5) to the map h = j ◦ expX×CY . In more detail, denote by iX , jX , expX ,
resp. iY , jY , expY , the maps involved in the construction of Ψf , resp. Ψg, and consider
the diagram

X0 × Y0
i(2)=iX×iY−−−−−−−−→ X × Y j(2)=jX×jY←−−−−−−−− X× × Y × exp(2)=expX × expY←−−−−−−−−−−−−− X̃× × Ỹ ×.

Using (9.1.6) we obtain a canonical morphism

Ψf (F )
L
⊠Ψg(G )→ i(2)∗j

(2)
∗ exp

(2)
∗ exp(2)∗(F

L
⊠ G )[−2],
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and a computation of stalks (see [Sc, Proof of Corollary 1.2.1]) shows that this map
is an isomorphism. (The idea is that the stalks can be expressed as the cohomology
of a compact space, so that one can apply the classical Künneth formula.)

Next, consider the commutative diagram

C (C× C)×C××C× C× C× C

C× C× × C×

exp
exp× exp

Here, the bottom horizontal map is the diagonal embedding, and the composition of
the two maps along the top is also the diagonal embedding. Let k, k̃, e, and d be
the maps shown in the diagram below, obtained by taking the fiber product of the
diagram above with X × Y :

X̃× ×C Ỹ
× = (X̃ ×C Y )× X̃× ×C× Ỹ × X̃× × Ỹ ×

X× ×C× Y × X× × Y ×.

d

expX×CY

k̃

e exp(2)

k

We have a sequence of adjunction and base change maps

exp
(2)
∗ exp(2)∗(F

L

⊠ G )→ k∗k
∗ exp

(2)
∗ exp(2)∗(F

L

⊠ G )

→ k∗e∗k̃
∗ exp(2)∗(F

L

⊠ G ) ∼= k∗e∗e
∗(F

L

⊠C G [1])

→ k∗e∗d∗d
∗e∗(F

L

⊠C G [1]) ∼= k∗ expX×CY ∗ exp
∗
X×CY

(F
L

⊠C G [1]).

Applying i(2)∗j
(2)
∗ [−2] we deduce a natural map

i(2)∗j
(2)
∗ exp

(2)
∗ exp(2)∗(F

L

⊠ G )[−2]→ Ψf×Cg(F
L

⊠C G ).

Once again, a computation of stalks shows that this map is an isomorphism, from
which we obtain Proposition 9.1.6(3).

We conclude this subsection with another compatibility property of nearby cycles
with external products.

Lemma 9.1.8. — Let X, Y be separated C-schemes of finite type, and let f : X → C
be an algebraic map. For any F in Db

c (X
×,k) and any G in Db

c (Y, k), there exists a
canonical isomorphism

Ψf (F )
L
⊠ G

∼−→ Ψf◦pX (F
L
⊠ G )

where pX : X × Y → X is the projection morphism.

Proof. — Recall that ∗-pullback functors commute with external products in the
natural way, see [Ac3, Proposition 1.4.21]. In view of the definition of the nearby
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cycles functor, it therefore suffices to prove that for any F ′ in D+(X̃×,k) and G in
Db
c (Y, k) the natural morphism

(j ◦ expX)∗F
′ L⊠ G →

(
(j ◦ expX)× idY

)
∗(F

′ L⊠ G )

(see (9.1.6)) is an isomorphism. This claim however follows from the proof of [Ac3,

Proposition 2.9.1]. (This proof shows an isomorphism h∗F ′⊠LG → (h×id)∗(F ′⊠LG )
under the assumption that h is algebraic and F ′ is bounded and constructible, but
these assumptions are not used in the arguments; only the fact that G is bounded
and constructible matters.)

9.1.3. Monodromy. — For F ∈ Db
c (X

×,k), there is a natural action of the fun-
damental group π1(C×, 1) on the object expX∗ exp

∗
X F (induced by the action on

C), and hence on Ψf (F ). In particular, one can consider the action of the canonical
generator of π1(C×, 1) (i.e. the class of the counterclockwise loop t 7→ exp(2iπt)). The
resulting automorphism of Ψf (F ) is denoted by

mF : Ψf (F )
∼−→ Ψf (F ),

and is called the monodromy automorphism. The isomorphisms in Proposition 9.1.4
and in Proposition 9.1.6 are all compatible with the monodromy automorphisms in the
obvious way; for instance, in the setting of Proposition 9.1.6(3) the map mF ⊠L mG

identifies with mF⊠L
C G . It is well known also that for any F ∈ Db

c (X
×,k) we have a

canonical distinguished triangle

(9.1.7) i∗j∗F [−1]→ Ψf (F )
id−mF−−−−→ Ψf (F )

[1]−→,

see [Brl, Proposition 1.1] or [Sc, (5.88)].
Using this triangle, the complex Ψf (F ) can be more explicitly computed in the

following case.

Lemma 9.1.9. — Let X be a separated C-scheme of finite type, let f : X → C be
an algebraic map, and let F ∈ Perv(X×,k). Assume that mF = id. Then there exists
a canonical isomorphism

Ψf (F )
∼−→ pH −1(i∗j!∗F ).

Proof. — Since Ψf (F ) is perverse (see Theorem 9.1.3(2)), taking the long exact
sequence of perverse cohomology associated with the distinguished triangle (9.1.7)

we obtain an isomorphism pH −1(i∗j∗F )
∼−→ Ψf (F ). Now, consider the standard

distinguished triangle

j!F → j∗F → i∗i
∗j∗F

[1]−→ .

Since j!F and j∗F are perverse (by [Ac3, Corollary 3.5.9], which is applicable
here because j is an affine morphism), using this triangle we obtain that pH −1(i∗j∗F )
identifies with the kernel of the canonical map j!F → j∗F . Now, by definition of
the functor j!∗ this kernel is also the kernel of the surjection j!F ↠ j!∗F , and con-
siderations similar to those above show that the latter kernel is pH −1(i∗j!∗F ), as
desired.
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9.2. Bĕılinson’s construction of unipotent nearby cycles

In this section, we describe Bĕılinson’s alternative construction [Bĕı2] of the
“unipotent part” Ψun

f of Ψf , following the exegesis in [Re] (see also [Mo]). Because

the proofs in [Re] assume that we are working with field coefficients, we include
proofs below of the statements we will need.

9.2.1. The unipotent nearby cycles functor. — If F ∈ Perv(X×,k), then by
Theorem 9.1.3(2) Ψf (F ) is also a perverse sheaf. We define the unipotent nearby
cycles sheaf of F , denoted by Ψun

f (F ), by

(9.2.1) Ψun
f (F ) = lim−→

a

ker(1−mF )a.

Let us explain why this limit exists. We clearly have an increasing chain of subobjects

ker(1−mF ) ⊂ ker(1−mF )2 ⊂ ker(1−mF )3 ⊂ · · ·

of Ψf (F ). Since Perv(X0,k) is a noetherian category (see [Ac3, Theorem 3.4.4]), this
sequence is eventually constant, which justifies the existence of the limit in (9.2.1).

By construction, the automorphismmF of Ψf (F ) preserves the subobject Ψun
f (F ).

Moreover, the endomorphism

mun
F : Ψun

f (F )→ Ψun
f (F )

induced by mF is unipotent (in the sense that (1 − mun
F )a = 0 for a ≫ 0), and the

endomorphism of Ψf (F )/Ψun
f (F ) induced by 1−mF is injective. In fact, Ψun

f (F ) is

characterized (among subobjects of the perverse sheaf Ψf (F )) by these properties.
In view of the definition and the distinguished triangle (9.1.7), we have canonical

isomorphisms

(9.2.2) ker(1−mun
F ) = ker(1−mF ) ∼= pH −1(i∗j∗F )

and

(9.2.3) cok(1−mF ) ∼= pH 0(i∗j∗F ).

If k is an artinian ring (e.g. a field), then the category Perv(X0,k) is artinian as
well (see [Ac3, Theorem 3.4.5(3)], whose proof applies to any artinian ring), so that
the sequence

(9.2.4) im(1−mF ) ⊃ im(1−mF )2 ⊃ im(1−mF )3 ⊃ · · ·

must be eventually constant. Denoting by Ψn-un
f (F ) its limit, it is not difficult to

check that we have a canonical decomposition

(9.2.5) Ψf (F ) = Ψun
f (F )⊕Ψn-un

f (F )

preserved by mF . In particular, in this case the functor Ψun
f is a direct summand of

Ψf , and then Theorem 9.1.3(2) implies that Ψun
f is an exact functor.

For general k, Ψun
f is at least left exact, but it may fail to be exact.
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9.2.2. Bĕılinson’s construction. — We identify the fundamental group π1(C×, 1)
with Z in such a way that the canonical generator from §9.1.3 corresponds to 1 ∈ Z.
For a ≥ 0 we set La := k[x]/(xa), which we regard as a Z-module on which 1 ∈ Z
acts by multiplication by 1 − x. Via the identification π1(C×, 1) ∼= Z, La can be
regarded as a k-representation of π1(C×, 1), and we denote by La the associated k-
local system. (Below, we will sometimes write L k

a instead of La when we want to
emphasize the base ring under consideration.). We will denote by Ta : La → La the
automorphism corresponding to multiplication by 1 − x. Note that (id − Ta)a = 0.
If a ≤ b, multiplication by xb−a induces an embedding of k-representations La ↪→ Lb
whose quotient is Lb−a, and hence an embedding of local systems

(9.2.6) La ↪→ Lb

whose quotient is Lb−a.

Proposition 9.2.1. — Let X be a separated C-scheme of finite type, let f : X → C
be an algebraic map, and let F ∈ Perv(X×,k).

1. For any a ≥ 0, there exists a canonical isomorphism

pH −1(i∗j∗(F
L
⊗ (f×)∗La))

∼−→ ker(1−mun
F )a ⊂ Ψun

f (F )

that intertwines the map induced by T−1
a with mun

F . Moreover, under these iso-
morphisms the map induced by (9.2.6) corresponds to the embedding ker(1 −
mun

F )a ↪→ ker(1 −mun
F )b. In particular, for a ≫ 0 we have a canonical isomor-

phism

(9.2.7) pH −1(i∗j∗(F
L
⊗ (f×)∗La))

∼−→ Ψun
f (F ).

2. For any a ≥ 0, there exists a canonical isomorphism

pH 0(i∗j∗(F
L
⊗ (f×)∗La))

∼−→ cok(1−mF )a

that intertwines the map induced by T−1
a with mF . Moreover, under these iso-

morphisms the map induced by (9.2.6) corresponds to the map cok(1−mF )a →
cok(1−mF )b induced by (1−m−1

F )b−a.

In particular, if the sequence (9.2.4) is eventually constant,(1) then for a≫ 0
we have a canonical isomorphism

pH 0(i∗j∗(F
L
⊗ (f×)∗La))

∼−→ Ψun
f (F ).

3. For any a ≥ 0 and any n ∈ Z ∖ {0,−1} we have

pH n(i∗j∗(F
L
⊗ (f×)∗La)) = 0.

If the sequence (9.2.4) is eventually constant, then for any a ≥ 0 there exists
b ≥ a such that the map

(9.2.8) pH 0(i∗j∗(F
L
⊗ (f×)∗La))→ pH 0(i∗j∗(F

L
⊗ (f×)∗Lb))

(1)As noted in §9.2.1, this assumption is automatically satisfied if k is artinian. It is also true of

course if Ψun
f (F ) = Ψf (F ).
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induced by (9.2.6) vanishes.

Proof. — (1) It is clear that the complex F ⊗L (f×)∗La is a perverse sheaf.
By (9.2.2), we have a canonical isomorphism

(9.2.9) pH −1(i∗j∗(F
L
⊗ (f×)∗La)) ∼= ker(1−mun

F⊗L(f×)∗La
).

On the other hand, since exp∗(La) ∼= La ⊗k kC, we have a natural isomorphism

(9.2.10) Ψf (F
L
⊗ (f×)∗La) ∼= Ψf (F )

L
⊗k La

that identifies mF⊗L(f×)∗La
with mF ⊗ (1− x). The endomorphism mF ⊗ (1− x) of

Ψf (F )⊗La stabilizes Ψun
f (F )⊗La, its restriction to this subobject is unipotent, and

the endomorphism of (Ψf (F )⊗ La)/(Ψun
f (F )⊗ La) induced by 1− (mF ⊗ (1− x))

is invertible. Therefore, the isomorphism (9.2.10) restricts to an isomorphism

(9.2.11) Ψun
f (F

L
⊗ (f×)∗La) ∼= Ψun

f (F )
L
⊗k La

that identifies mun
F⊗L(f×)∗La

with mun
F ⊗ (1− x).

In the rest of the proof, to avoid heavy notation it will be convenient to treat
Ψun
f (F ) informally as though it had “elements.” (We leave it to interested readers to

translate our informal arguments into rigorous ones using the language of abelian cat-
egories.) Thus, in view of (9.2.11), any element of Ψun

f (F⊗L (f×)∗La) can be written

as
∑a−1
i=0 mi ⊗ xi, where m0, . . . ,ma−1 are elements of Ψun

f (F ). In this language, the
operator 1−mun

F⊗L(f×)∗La
is given by

(9.2.12) (1−mun
F⊗L(f×)∗La

)
( a−1∑
i=0

mi ⊗ xi
)

= (m0 −mun
F (m0))⊗ 1 +

a−1∑
i=1

(mi −mun
F (mi) +mun

F (mi−1))⊗ xi,

so that our element
∑a−1
i=0 mi⊗xi lies in the kernel of 1−mun

F⊗L(f×)∗La
if and only if

(9.2.13)
(1−mun

F )(m0) = 0 and mi −mun
F (mi) +mun

F (mi−1) = 0 for i = 1, . . . , a− 1.

Since mun
F is invertible, the latter equation can be rewritten as

mi−1 = (1− (mun
F )−1)mi,

and then we deduce that mi = (1 − (mun
F )−1)a−1−ima−1 for all i. In particular,

m0 = (1−(mun
F )−1)a−1ma−1. In light of this, the first equation in (9.2.13) is equivalent

to (1 − (mun
F )−1)ama−1 = 0. To summarize,

∑a−1
i=0 mi ⊗ xi lies in the kernel of

1−mun
F⊗L(f×)∗La

if and only if

(9.2.14)
(1− (mun

F )−1)ama−1 = 0 and mi = (1− (mun
F )−1)a−1−ima−1 for i = 0, . . . , a− 1.

Now, consider the surjection

(9.2.15) Ψun
f (F

L
⊗ (f×)∗La) ↠ Ψun

f (F )
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sending
∑a−1
i=0 mi ⊗ xi to ma−1. From (9.2.14) we see that this map is injective on

ker(1−mun
F⊗L(f×)∗La

), and that its image is ker(1− (mun
F )−1)a = ker(1−mun

F )a. In

view of (9.2.9), this provides the desired isomorphism.
It is clear from the construction that these isomorphisms are compatible with the

maps induced by (9.2.6) in the expected way, and an easy computation shows that
they intertwine Ta with (mun

F )−1.
(2) The construction is “dual” to the one above. Namely, using a nonunipotent

version of (9.2.12) we see that the embedding

Ψf (F ) ↪→ Ψf (F
L
⊗ (f×)∗La)

sending m to m⊗ 1 (where we tacitly use (9.2.10)) induces an isomorphism

cok(1−m−1
F )a

∼−→ cok(1−mF⊗L(f×)∗La
).

Since cok(1−m−1
F )a = cok(1−mF )a, using (9.2.3) we deduce the desired isomorphism.

We leave it to the reader to check the stated compatibilities with the maps induced
by Ta and by (9.2.6).

For the last assertion, we can make use of the decomposition (9.2.5). In this
expression, 1−mF restricts to an automorphism on Ψn-un

f (F ). It follows that

(9.2.16) cok(1−mF )a = cok(1−mun
F )a.

for any a ≥ 1. Since 1 − mun
F is nilpotent, the right-hand side above identifies with

Ψun
f (F ) for a≫ 0.

(3) Since j is an affine embedding, the complexes j!(F ⊗L (f×)∗La) and j∗(F ⊗L
(f×)∗La) are perverse sheaves. Considering the canonical distinguished triangle

j!(F
L
⊗ (f×)∗La)

α−→ j∗(F
L
⊗ (f×)∗La)→ i∗i

∗j∗(F
L
⊗ (f×)∗La)

[1]−→

we deduce that pH n(i∗j∗(F ⊗L (f×)∗La)) = 0 for n /∈ {−1, 0}.
Now, consider the case n = 0. In this case, in view of (2) together with (9.2.16),

what we have to prove is that given a ≥ 0, for sufficiently large b ≥ a the map
cok(1 − mun

F )a → cok(1 − mun
F )b induced by (1 − (mun

F )−1)b−a vanishes. But this is
obvious, since 1− (mun

F )−1 is nilpotent.

Remark 9.2.2. — Here is an alternative description of Bĕılinson’s construction.
Let pa : La → k be the k-linear map given by

pa(x
i) =

{
0 if i = 0, 1, . . . , a− 2,

1 if i = a− 1.

Of course, this is not Z-equivariant, and it does not correspond to any map of local
systems on C×. However, it does correspond to a map of local systems exp∗ La → kC
on C. This gives rise to a natural map exp∗X(F ⊗L (f×)∗La)→ exp∗X F , and then,
by adjunction, to a map

F
L
⊗ (f×)∗La → expX∗ exp

∗
X F .
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Applying pH −1(i∗j∗(−)) to this map yields a map

(9.2.17) pH −1(i∗j∗(F
L
⊗ (f×)∗La))→ Ψf (F ).

The map pa above is closely related to the formula for (9.2.15). Using this observa-
tion, it can be checked that (9.2.17) coincides with the map considered in Proposi-
tion 9.2.1(1).

The following proposition should be compared with Proposition 9.1.4.

Proposition 9.2.3. — Let X, Y be separated C-schemes of finite type, and let
f : X → C and g : Y → X be algebraic maps.

1. Assume that g is proper. Let F ∈ Perv(Y ×,k), and assume that (g|Y ×)∗F is
perverse. Suppose either that k is artinian, or that Ψun

f◦g(F ) = Ψf◦g(F ). Then
there is a natural isomorphism

Ψun
f ((g|Y ×)∗F )

∼−→ (g|Y0
)∗Ψ

un
f◦g(F ).

2. Assume that g is smooth of relative dimension r, and let F ∈ Perv(X×,k).
There is a natural isomorphism

(g|Y0
)∗Ψun

f (F )[r]
∼−→ Ψun

f◦g((g|Y ×)∗F [r]).

Proof. — (1) In the case where Ψun
f◦g(F ) = Ψf◦g(F ), the claim is immediate from

Proposition 9.1.4. Assume now that k is artinian. Then, by Proposition 9.2.1 and the
discussion in §9.2.1, for large enough a we have a truncation distinguished triangle

Ψun
f◦g(F )[1]→ i∗Y jY ∗(F

L
⊗ ((f ◦ g)×)∗La)→ Ψun

f◦g(F )
[1]−→ .

Apply (g|Y0
)∗ to this triangle. By proper base change and the projection formula, we

can rewrite the middle term to obtain a distinguished triangle

(9.2.18) (g|Y0
)∗Ψ

un
f◦g(F )[1]→ i∗XjX∗((g|Y ×)∗F

L
⊗ (f×)∗La)

→ (g|Y0
)∗Ψ

un
f◦g(F )

[1]−→ .

As in the proof of Proposition 9.2.1(3), the middle term has the property that

pH n(i∗XjX∗((g|Y ×)∗F
L
⊗ (f×)∗La)) = 0 unless n = −1, 0.

We claim that (g|Y0
)∗Ψ

un
f◦g(F ) is perverse. If this were not the case, then by

considering the minimum or maximum k such that pH k((g|Y0
)∗Ψ

un
f◦g(F )) ̸= 0 and

examining the long exact sequence in perverse cohomology associated with (9.2.18),
one arrives at a contradiction.

Another application of Proposition 9.2.1 yields the distinguished triangle

(9.2.19) Ψun
f ((g|Y ×)∗F )[1]→ i∗XjX∗((g|Y ×)∗F

L
⊗ (f×)∗La)→ Ψun

f ((g|Y ×)∗F )
[1]−→ .

A standard argument with truncation shows that (9.2.18) and (9.2.19) are canonically
isomorphic, which implies the desired claim.
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(2) Recall that g∗[r] is t-exact for the perverse t-structures. Using this and the
base change theorem we obtain for any a ≥ 0 an isomorphism

(g|Y0
)∗pH −1(i∗XjX∗(F

L
⊗(f×)∗La))[r] ∼= pH −1(i∗Y jY ∗((g|Y ×)∗F [r]

L
⊗((f ◦g)×)∗La)).

The result follows from this by taking a large enough and using Proposition 9.2.1.

As an application of Proposition 9.2.1, we obtain the following generalization of
Lemma 9.1.9. (Its proof is based on similar ideas to those in the proof of Lemma 9.1.9,
and is therefore left to the reader; this statement is not used in this book.)

Lemma 9.2.4. — Let X be a separated C-scheme of finite type, let f : X → C be
an algebraic map, and let F ∈ Perv(X×,k). Assume that (mun

F − id)a = 0 for some
a ≥ 0. Then there exists a canonical isomorphism

Ψun
f (F )

∼−→ pH −1(i∗j!∗(F
L
⊗ (f×)∗La)),

and an exact sequence of perverse sheaves

i∗Ψ
un
f (F ) ↪→ j!(F

L
⊗ (f×)∗La) ↠ j!∗(F

L
⊗ (f×)∗La).

9.3. Monodromic complexes

In this section (which is used in an essential way only for a technical lemma in
Part II of the book), we review a rather different notion of “monodromy” for certain
complexes of sheaves on a variety acted on by a torus. In a special case, the kind of
monodromy discussed here will match the notion that arises in the context of nearby
cycles (which we recalled in §9.1.3).

The discussion below is inspired by [Ve] as well as [BeY, Appendix A], but because
we are working with sheaves in the classical topology, we can take advantage of some
nonalgebraic constructions to significantly simplify the development.

Remark 9.3.1. — In most of this book, we work only with constructible complexes
of sheaves, and thus the term “equivariant derived category” has implicitly been
treated as synonymous with “equivariant constructible derived category.” In this sec-
tion, however, because we will work with some nonalgebraic actions and nonalgebraic
maps, more care is required. For this section only, equivariant derived categories
should not be assumed to implicitly consist only of constructible complexes; instead,
constructibility will be explicitly indicated in the notation when we wish to impose
it.

9.3.1. Definitions. — Let T be a complex algebraic torus. Regarded as a Lie group
or a topological group, it admits a universal cover exp : T̃ → T . In concrete terms,
we have T̃ = X∗(T )⊗ZC, and if we identify T with X∗(T )⊗ZC× then exp : T̃ → T is

induced by the map C→ C× sending z to exp(2iπz). The group T̃ is contractible, and

the kernel of exp : T̃ → T is canonically identified with X∗(T ) (i.e., with π1(T, 1)).
Let X be a separated C-scheme of finite type equipped with an algebraic action of

T . Then we can let T̃ act on X via exp. This action is usually not algebraic, but it
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is at least continuous, so following [BL], it makes sense to consider the T̃ -equivariant

derived categoryDb
T̃
(X,k). Since T̃ is contractible, we know from [BL, Theorem 3.7.3]

that the forgetful functorDb
T̃
(X,k)→ Db(X,k) is fully faithful. We may also consider

the constructible T̃ -equivariant derived category Db
T̃ ,c

(X,k) := Db
T̃
(X,k)∩Db

c (X,k).
We call this the T -monodromic category of X, and we introduce the notation

Db
T -mon(X,k) := Db

T̃ ,c
(X,k).

This is a full triangulated subcategory of Db
c (X,k).

Next, consider the constructible T -equivariant derived category Db
T,c(X,k). The

unipotent T -monodromic category of X, denoted by

Db
c (X( T, k),

is defined to be the full triangulated subcategory of Db
c (X,k) generated by the image

of the forgetful functor

(9.3.1) Db
T,c(X,k)→ Db

c (X,k).

(For a justification of this terminology, see Corollary 9.3.5 below.) This functor factors
through Db

T̃ ,c
(X,k), so we have

Db
c (X( T, k) ⊂ Db

T -mon(X,k).

In the case when X is a principal T -bundle over some other variety Y = X/T , the
category Db

T,c(X,k) can be identified with Db
c (Y, k), and the forgetful functor (9.3.1)

with pullback along the quotient map X → Y . This observation shows that our
definition generalizes that in [BeY, Ve].

9.3.2. Monodromy. — The definition of monodromy in this setting will be based
on the following construction.

Proposition 9.3.2. — Let X be a separated C-scheme of finite type equipped with
an algebraic action of T . For any object F in Db

T̃
(X,k), there is a canonical group

homomorphism

µF : X∗(T )→ Aut(F ).

Moreover, for any morphism ϕ : F → G in Db
T̃
(X,k) we have ϕ ◦ µF = µG ◦ ϕ.

Of course, by restriction, the same result applies to objects and morphisms in
Db
T -mon(X,k) or Db

c (X( T, k).

Proof. — Let a, p : T̃ ×X → X be the action and projection maps, respectively. As
in any equivariant derived category (see e.g. [Ac3, Lemma 6.4.6]), for every object

F ∈ Db
T̃
(X,k) we have a natural isomorphism θF : p∗F → a∗F in Db

T̃
(T̃ × X,k),

where T̃ acts on T̃ × X via g · (h, x) = (ghg−1, g · x), i.e. (since T̃ is abelian) via
the action on the second factor X. Here, “natural” means in particular that for any
morphism ϕ : F → G in Db

T̃
(X,k) we have

(9.3.2) a∗ϕ ◦ θF = θG ◦ p∗ϕ.



322 CHAPTER 9. REVIEW OF THE MAIN PROPERTIES OF NEARBY CYCLES

Now let γ ∈ X∗(T ), regarded as a point in T̃ . Because γ acts trivially on X, the

restriction to {γ} ×X ⊂ T̃ ×X of either p∗F or a∗F is canonically identified with
F . We set

µF (γ) := (θF )|{γ}×X : F → F .

It is easy to see that µF is a group homomorphism X∗(T )→ Aut(F ). The fact that
it commutes with all morphisms follows from (9.3.2).

In more pedantic terms, Proposition 9.3.2 says that monodromy defines a k-algebra
morphism from the group algebra k[X∗(T )] to the center of the category Db

T̃
(X,k)

(or Db
T -mon(X,k), or Db

c (X( T, k), by restriction). This construction enjoys various
“functoriality” properties. In particular, if X and Y are T -varieties and f : X → Y
is a T -equivariant morphism, then the functors f∗, f!, f

∗ and f ! send monodromic
complexes to monodromic complexes, and moreover, for F in Db

T -mon(X,k) and G in
Db
T -mon(Y,k) we have

(9.3.3) µf∗F = f∗(µF ), µf!F = f!(µF ), µf∗G = f∗(µG ), µf !G = f !(µG ).

Similarly, if X is a T -variety and F ,F ′ belong to Db
T -mon(X,k), then F ⊗Lk F ′ and

RHom(F ,F ′) are monodromic as well, and we have

(9.3.4)
µF⊗L

k F ′(λ) = µF (λ)
L
⊗k µF ′(λ),

µRHom(F ,F ′)(λ) = RHom(µF (−λ), µF ′(λ))

for any λ ∈ X∗(T ).

Remark 9.3.3. — The following observations are immediate from the construction:

1. If F lies in the image ofDb
T (X,k), then µF (γ) = idF for all γ ∈ X∗(T ) (because

θF is the pullback of a similar isomorphism on T ×X).
2. Suppose X = T (with its natural T -action), and let L be a local system on
T . Then L belongs to Db

T -mon(X,k). Any such local system corresponds to a
representation of the fundamental group ϱ : π1(T, 1) → Aut(L1), where L1 is
the stalk of L at the base point 1 ∈ T . Then we have a commutative triangle

Aut(L )

π1(T, 1) = X∗(T )

Autπ1(T,1)(L1).

≀

µL

ϱ

The object L belongs to Db
c (X( T, k) iff X∗(T ) acts on L1 by unipotent auto-

morphisms. This observation will be generalized in Corollary 9.3.5 below.

9.3.3. Monodromic perverse sheaves. — Recall that the forgetful functor

Db
T,c(X,k)→ Db

c (X,k)

restricts to a fully faithful functor on perverse sheaves, see e.g. [Ac3, Proposi-
tion 6.2.15]. Given an object F in PervT -mon(X,k), it can be important to determine
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whether F is equivariant or not. The answer to this problem is provided by the
following lemma.

Lemma 9.3.4. — Let X be a separated C-scheme of finite type equipped with an
algebraic action of T . A perverse sheaf F ∈ PervT -mon(X,k) lies in PervT (X,k) if
and only if µF (λ) = id for all λ ∈ X∗(T ).

Before proceeding to the proof of Lemma 9.3.4, we need to recall a few facts about
equivariant perverse sheaves. (For this material, see also [Ac3, Theorem 6.4.10].)
Consider a separated C-scheme of finite type equipped with an algebraic action of a
complex algebraic group H. Following [BL, §5], we define the category PervH(Y, k)
of H-equivariant perverse sheaves to be the full subcategory of Db

H,c(Y,k) consisting
of objects whose image under the forgetful functor ForH : Db

H,c(Y,k) → Db
c (Y, k) is

perverse.
An alternative, and more elementary, approach to defining equivariant perverse

sheaves is to instead follow the pattern for ordinary equivariant sheaves. Let a, p :
H × Y → Y be the action and projection maps, respectively. Note that since
a and p are smooth of relative dimension dim(H), the functors a∗[dim(H)] and
p∗[dim(H)] take perverse sheaves to perverse sheaves (see [Ac3, Proposition 3.6.1]).
Let Perv′H(Y,k) be the category consisting of pairs (F , θ), where F ∈ Perv(Y,k) is

a (nonequivariant) perverse sheaf, and θ : p∗F [dim(H)]
∼−→ a∗F [dim(H)] is an iso-

morphism in Perv(H × Y, k) satisfying an appropriate cocycle condition (see [Ac3,
Definition 6.2.3] for details). Morphisms in Perv′H(Y,k) are simply morphisms in
Perv(Y, k) that “commute with θ” in the appropriate sense.

Since all objects of Db
H,c(Y,k) come equipped with such an isomorphism (see

again [Ac3, Lemma 6.4.6]), there is an obvious functor

(9.3.5) PervH(Y,k)→ Perv′H(Y,k).

We claim that this functor is an equivalence of categories. To prove this, we must
construct a functor Perv′H(Y, k) → PervH(Y, k) that is inverse to (9.3.5). Fix an
integer N > dimY , so that Perv(Y,k) ⊂ Db

c (Y, k)[−N,0]. Choose an N -acyclic H-
resolution r : P → Y in the sense of [Ac3, Definition 6.1.17]. (For existence, see [Ac3,
Proposition 6.1.23].) By definition r is a smooth morphism (say, of relative dimension
d) and P is a principal H-bundle; we therefore have a quotient morphism q : P → P̄
which is smooth (see [Ac3, Proposition 6.1.11]). We also have a cartesian square

(9.3.6)

H × P P

P P̄

ã

p̃ q

q

where ã and p̃ are the action and projection maps, respectively. Now let (F , θ) be
an object of Perv′H(Y, k), and consider the perverse sheaf G = r∗F [d]. The map

θ gives rise to an isomorphism θ̃ : p̃∗G
∼−→ ã∗G satisfying a suitable cocycle condi-

tion. The map θ̃ can be thought of as a descent datum with respect to the smooth
map q : P → P̄ . Because perverse sheaves satisfy smooth descent (see [BBDG,
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Théorème 3.2.4] or [Ac3, Theorem 3.7.4]), the pair (G , θ̃) determines a unique per-

verse sheaf F̄ ∈ Perv(P̄ ,k) together with an isomorphism β : G
∼−→ q∗F̄ [dimH].

The triple (F , F̄ [dimH − d], β[−d]) is an object of Db
H,c(Y, k). It clearly lies in

PervH(Y, k), so this construction gives us a functor Perv′H(Y,k)→ PervH(Y,k), which
can be seen to be an inverse to (9.3.5).

There is another setting in which the same considerations apply, which we will
require in the proof of Lemma 9.3.4, and which we explain now. Assume that Y is a
complex analytic space, that H is a discrete group, and that we are given an action
of H on Y which is free (in the sense that each point has a trivial stabilizer) and
proper (in the sense that the morphism H × Y → Y × Y given by (g, y) 7→ (y, g · y)
is such that the preimage of any compact set is compact; see [Lee, Proposition 12.9]
for alternative characterizations). Then by [Lee, Theorem 12.11] the quotient Y/Γ
is Hausdorff, and the quotient morphism Y → Y/H is a covering map. The proof of
this theorem shows that this action satisfies the conditions considered in [Ca, §4], so
that Y/H has a canonical structure of a complex analytic space.

There is a nice theory of perverse sheaves on complex analytic spaces (see e.g. [Sc,
§6.0.2]), and the constructions of the equivariant derived category (and its perverse
t-structure) in [BL] also apply in this setting; in fact, our assumptions imply that Y is
a free H-space in the sense of [BL, §0.3], so that by [BL, Proposition 2.2.5] we have
Db
H,c(Y,k) ∼= Db

c (Y/H,k). We deduce an equivalence of categories PervH(Y,k) ∼=
Perv(Y/H,k).

On the other hand we can consider the category Perv′H(Y,k) defined as above. (In
this case, the datum of an isomorphism a∗F ∼= p∗F is equivalent to the datum of an
isomorphism α∗

hF
∼= F for any h ∈ H, where αh is the action of h. We leave it to

the reader to translate the cocycle condition into these terms.) In this setting each
map in the diagram (9.3.6) is a covering map. Now perverse sheaves have a descent
property for covering maps (this follows from the fact that they satisfy descent for the
analytic topology; see [BBDG, Corollaire 2.1.23]), so that the same considerations
as above allow us to also identify Perv′H(Y,k) with Perv(Y/H,k) (and hence also to
PervH(Y, k)).

Proof of Lemma 9.3.4. — The “only if” direction is just a restatement of Re-
mark 9.3.3(1). We now consider the “if” direction. Let a, p : T̃ × X → X be

the action and projection maps. Since F is T̃ -equivariant, it is equipped with an
isomorphism θ : p∗F → a∗F that satisfies a certain cocycle condition.

We now consider the natural action of the discrete group X∗(T ) on the complex

analytic space T̃ ×X, with quotient T ×X. We can forget part of the equivariance,
and regard F as an X∗(T )-equivariant perverse sheaf. The maps a and p are both
X∗(T )-equivariant, so a

∗F and p∗F are both X∗(T )-equivariant complexes as well.
In fact, a∗F [dimT ] and p∗F [dimT ] are X∗(T )-equivariant perverse sheaves. For
brevity, we will suppress the shift [dimT ] throughout this proof, while still informally
referring to a∗F and p∗F as “perverse sheaves.”

We will show below that θ : p∗F → a∗F is an X∗(T )-equivariant morphism. Let
us first explain how this claim implies the lemma. Let ā, p̄ : T ×X → X be the action
and projection maps, and let e : T̃ ×X → T ×X be the map induced by the quotient
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map T̃ → T . As explained above, since X∗(T ) acts freely on T̃ × X, we have an
equivalence of categories

e∗ : Perv(T ×X,k) ∼−→ PervX∗(T )(T̃ ×X,k).

Thus, if θ isX∗(T )-equivariant, then it must arise by applying e∗ to some isomorphism
θ̄ : p̄∗F → ā∗F . The map θ̄ makes F into a T -equivariant perverse sheaf.

To show that θ is X∗(T )-equivariant, consider the diagram

(9.3.7)

X∗(T )× T̃ ×X X∗(T )×X

T̃ ×X X

id×a

id×p
bq r

a

p

where the maps b, q, and r are given by

b(λ, t, x) = (λt, x), q(λ, t, x) = (t, x), r(λ, x) = x.

Note that a ◦ b = r ◦ (id × a) = a ◦ q (because X∗(T ) acts trivially on X) and
p ◦ b = r ◦ (id× p) = p ◦ q. These equalities give rise to canonical isomorphisms

ψ : b∗a∗F
∼−→ q∗a∗F , ϕ : b∗p∗F

∼−→ q∗p∗F .

Indeed, these are the structure morphisms that give the X∗(T )-equivariant structure
on a∗F and p∗F , respectively.

The cocycle condition satisfied by θ : p∗F → a∗F involves a diagram similar
to (9.3.7), but with the upper-left (resp. upper-right) corner replaced by T̃ × T̃ ×X
(resp. T̃ ×X). When restricted to the subspace X∗(T )× T̃ ×X, the cocycle equation
says that

(id× a)∗θ|X∗(T )×X ◦ q∗θ = b∗θ.

This equation involves some implicit identifications. If we spell those out explicitly,
the cocycle condition says that the following diagram commutes:

(9.3.8)

b∗p∗F q∗p∗F

b∗a∗F (id× a)∗r∗F (id× a)∗r∗F q∗a∗F

b∗θ

ϕ

∼

q∗θ

∼ ((id×a)∗θ|X∗(T )×X)
−1

∼

From the definition of µF in the proof of Proposition 9.3.2, we see that the assumption
that µF (λ) = id for all λ ∈ X∗(T ) means that θ|X∗(T )×X = id. Therefore, the
composition of the maps along the bottom of (9.3.8) is ψ, and so we have

ψ ◦ b∗θ = q∗θ ◦ ϕ.

This equation says exactly that θ is X∗(T )-equivariant.

As a consequence of Lemma 9.3.4, we obtain the following characterization of
objects in Db

c (X( T, k) among those in Db
T -mon(X,k).
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Corollary 9.3.5. — Let X be a separated C-scheme of finite type equipped with an
algebraic action of T . An object F ∈ Db

T -mon(X,k) lies in Db
c (X( T, k) if and only if

µF (λ) is a unipotent operator for all λ ∈ X∗(T ).

Proof. — The “only if” follows easily from Remark 9.3.3(1). For the “if” direction,
it is enough to prove the claim when F is a perverse sheaf. Suppose therefore that F
is perverse, and that all µF (λ) are unipotent. Choose a basis γ1, . . . , γn for X∗(T ).
Using the fact that the operators µF (γ1), . . . , µF (γn) commute, one can show that
F admits a finite filtration

0 ⊂ F1 ⊂ · · · ⊂ Fm = F

such that µFi/Fi−1
(γk) is the identity map for all i and k. It follows from this that

µFi/Fi−1
(λ) = id for all λ ∈ X∗(T ). By Lemma 9.3.4, each Fi/Fi−1 is T -equivariant,

so F lies in Perv(X( T, k), as desired.

9.3.4. Monodromic complexes and nearby cycles. — We can now finally ex-
plain the promised relationship between the monodromy for nearby cycles and that
for monodromic complexes.

Proposition 9.3.6. — Let X be a separated C-scheme of finite type, and let f :
X → C be an algebraic map. Suppose X admits an (algebraic) action of C× such that
f is C×-equivariant (with respect to the natural action on C). Then the nearby cycles
functor Ψf : Db

c (X
×,k)→ Db

c (X0,k) can be upgraded to a functor

Ψf : Db
C×,c(X

×,k)→ Db
C×-mon(X0,k),

such that for any F ∈ Db
C×(X×,k) we have mF = µΨf (F)(−1). Similarly, Ψun

f :

Perv(X×,k)→ Perv(X0,k) can be upgraded to a functor

Ψun
f : PervC×(X×,k)→ Perv(X0( C×,k).

Proof. — The maps i, j, and expX in (9.1.1) are all equivariant for the group C = C̃×,
so Ψf sends any C×-equivariant object at least to Db

C(X0,k). By Theorem 9.1.3(1),
it actually takes values in Db

C×-mon(X0,k).
To compute mF , we recall an alternative formula for Ψf . Using the fact that

exp∗X
∼= exp!X , we have

Ψf (F ) = (i∗j∗ expX∗ exp
!
X F )[1] ∼= i∗j∗ expX∗ RHom(kX̃× , exp

!
X F )[1]

∼= i∗j∗RHom(expX! kX̃× ,F )[1] ∼= i∗j∗RHom((f×)∗ exp! kC,F )[1].

By definition, the monodromy map mF is the map induced by µexp! kC(1). Since µF

is trivial (see Remark 9.3.3(1)), we see from (9.3.3) and (9.3.4) that this coincides
with µΨf (F)(−1).

Finally, if F is perverse, by construction the automorphism mF restricts to a
unipotent automorphism of Ψun

f (F ). Using Corollary 9.3.5 and the equality mF =

µΨf (F)(−1), this implies that Ψun
f (F ) belongs to Perv(X0( C×,k).



9.4. NEARBY CYCLES OVER A TWO-DIMENSIONAL BASE 327

Remark 9.3.7. — In the setting of Proposition 9.3.6, suppose F ∈ PervC×(X×,k)
has the property that Ψf (F ) admits a filtration whose subquotients are C×-
equivariant perverse sheaves on X0. Then Ψf (F ) lies in Db

c (X0( C×,k), and then
Corollary 9.3.5 implies that mF is unipotent, i.e. that Ψun

f (F ) = Ψf (F ).

If the preceding condition holds for all F ∈ PervC×(X×,k), then the monodromy
operators mF are unipotent for all F ∈ Db

C×,c(X
×,k). In this case, we may write

Ψun
f = Ψf : Db

C×,c(X
×,k)→ Db

c (X0( C×,k).

9.4. Nearby cycles over a two-dimensional base

In this section we present a theory of “unipotent nearby cycles over C2,” following
Gaitsgory [G2]. This theory should not be considered as fully satisfactory and appli-
cable in all situations, but rather as an ad-hoc construction which is sufficient for our
purposes in the setting of the construction of central sheaves.

9.4.1. Definition. — We will take Proposition 9.2.1 as the motivation for our con-
struction. Given a separated scheme of finite typeX over C2, with structure morphism
f : X → C2, we let X×× and X00 denote the preimages of C× × C× and of (0, 0),
respectively, and let j : X×× ↪→ X and i : X00 ↪→ X be the inclusion maps. Let
f×× := f ◦ j : X×× → C× × C×. For F a perverse sheaf on X×× we will say that
Υf (F ) is well defined if

1. the object

pH −2i∗j∗(F
L
⊗ (f××)∗(La ⊠ Lb))

does not depend on a, b (in the sense that the morphisms

pH −2i∗j∗(F
L
⊗ (f××)∗(La ⊠ Lb))→ pH −2i∗j∗(F

L
⊗ (f××)∗(La′ ⊠ Lb′))

induced by (9.2.6) are isomorphisms for a ≤ a′ and b ≤ b′) for a, b≫ 0;
2. for n ̸= −2, for any a, b ≥ 0 there exist a′ ≥ a and b′ ≥ b such that the morphism

pH ni∗j∗(F
L
⊗ (f××)∗(La ⊠ Lb))→ pH ni∗j∗(F

L
⊗ (f××)∗(La′ ⊠ Lb′))

induced by (9.2.6) vanishes.

If these conditions are satisfied the object pH −2i∗j∗(F ⊗ f∗(La ⊠ Lb)) for a, b≫ 0
will be denoted Υf (F ).

The following lemma shows that in condition (2) above, only the cases n = −1 and
n = 0 need to be considered.

Lemma 9.4.1. — For all F in Perv(X××,k) and all a, b ≥ 0 we have

pH n(i∗j∗(F
L
⊗ f∗(La ⊠ Lb))) = 0

unless n is one of −2, −1, or 0.
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Proof. — We begin with the following general observation: if h : U ↪→ Y is an affine
open embedding, and if k : Z ↪→ Y is the complementary closed embedding, then
if G is any perverse sheaf on Y , we have pH n(k∗G ) = 0 unless n ∈ {0,−1}. This
claim follows from the long exact sequence in perverse cohomology associated with
the distinguished triangle

h!(G|U )→ G → k∗k
∗G

[1]−→,

coupled with the fact that h! is t-exact (see [Ac3, Corollary 3.5.9]). More generally, by
the same considerations, if G is a complex that satisfies pH n(G ) = 0 unless a ≤ n ≤ b,
then pH n(k∗G ) = 0 unless a− 1 ≤ n ≤ b.

For brevity, let F ′ = F ⊗L f∗(La ⊠ Lb), and note that F ′ is perverse. The map
j is an affine open embedding, so j∗F ′ is perverse. Consider the maps

i02 : X00 → X0∗ and i′1 : X0∗ → X

obtained by base change from the obvious embeddings {(0, 0)} → {0} ×C and {0} ×
C → C2, so that i = i′1 ◦ i02. Both i′1 and i02 are closed embeddings complementary
to affine open embeddings, so by the previous paragraph, pH n((i′1)

∗j∗F ′) = 0 unless
−1 ≤ n ≤ 0, and then pH n((i02)

∗(i′1)
∗j∗F ′) = 0 unless −2 ≤ n ≤ 0, which implies

our claim.

9.4.2. Compatibility with proper pushforward and smooth pullback. —
The following proposition shows that the construction of the functor Υf considered
above behaves reasonably with respect to proper pushforward and smooth pullback,
as for ordinary nearby cycles (see Proposition 9.1.4).

Proposition 9.4.2. — Let X,Y be separated C-schemes of finite type, and let f :
X → C2 and g : Y → X be algebraic maps.

1. Assume that g is proper, and let F ∈ Perv(Y ××,k). Suppose that (g|Y ××)∗F
is perverse, that Υf◦g(F ) and Υf ((g|Y ××)∗F ) are well defined, and that the
complex (g|Y 00)∗Υf◦g(F ) is also perverse. Then there is a natural map

(g|Y 00)∗Υf◦g(F )→ Υf ((g|Y ××)∗F ).

2. Assume that g is smooth of relative dimension r. Let F ∈ Perv(X××,k), and
suppose that Υf (F ) is well defined. Then Υf◦g((g|Y ××)∗F [r]) is well defined,
and there is a natural isomorphism

(g|Y 00)∗Υf (F )[r]
∼−→ Υf◦g((g|Y ××)∗F [r]).

As with Proposition 9.1.4, the proof of Proposition 9.4.2 is an easy application
of proper or smooth base change. We omit further details. Of course, in favorable
situations, one expects the map in part (1) to be an isomorphism. See Corollary 9.4.8
below for an example of such a situation.
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9.4.3. Comparison with iterated nearby cycles. — We continue with our sep-
arated C-scheme X of finite type, and our algebraic map f : X → C2. Consider the
diagram

C× × C× C× C× {0} × C×

C× × C C2 ∖ {(0, 0)} {0} × C

C× × {0} C× {0} C2 {(0, 0)}
where all maps are the obvious embeddings. We define a number of subsets of X and
inclusion maps between them by pulling back the diagram above along f , as shown
in the diagram below:

(9.4.1)

X×× X∗× X0×

X×∗ X◦ X0∗

X×0 X∗0 X X00.

j1

j2 j′2
j×2

i1

j02

j′1

j×1 h i′1i2

j01

i′2

i

i02

The top row and the right-hand column of this diagram are both settings where we can
apply ordinary nearby cycles. Explicitly, let pr1,pr2 : C2 → C be the two projection
maps, and let f1 = pr1 ◦ f|X∗× : X∗× → C and f2 = pr2 ◦ f|X0∗ : X0∗ → C. Also let

f×1 = f1 ◦ j1 and f×2 = f2 ◦ j02 . If F is a perverse sheaf on X××, then we can consider
the “iterated (unipotent) nearby cycles”

Ψ
(2)
f (F ) := Ψun

f2 ◦Ψ
un
f1 (F ).

In view of (9.2.7), for a, b≫ 0 we have

Ψ
(2)
f (F ) = pH −1

(
(i02)

∗j02∗((
pH −1(i∗1j1∗(F

L
⊗ (f×1 )∗La)))

L
⊗ (f×2 )∗Lb)

)
.

The functors j02∗ and (−) ⊗L (f×2 )∗Lb are both t-exact for the perverse t-structure,
so we can rewrite this formula as

Ψ
(2)
f (F ) ∼= pH −1((i02)

∗pH −1(j02∗(i
∗
1j1∗(F

L
⊗ (f×1 )∗La)

L
⊗ (f×2 )∗Lb))).

Lemma 9.4.3. — Let F be a perverse sheaf of X××, and assume either that k is
artinian, or that Ψun

f1
(F ) = Ψf1(F ) and Ψf2 ◦Ψf1(F ) = Ψun

f2
◦Ψf1(F ).

1. For a, b≫ 0 there is a natural isomorphism

Ψ
(2)
f (F ) ∼= pH −2((i02)

∗j02∗i
∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb))).

On the other hand, for n ∈ Z ∖ {−2,−1, 0}, for any a, b ≥ 0 we have

pH n((i02)
∗j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb))) = 0,
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and if n ∈ {−1, 0}, given a, b ≥ 0 there exist a′ ≥ a and b′ ≥ b such that the
natural morphism

pH n((i02)
∗j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb)))

→ pH n((i02)
∗j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La′ ⊠ Lb′)))

vanishes.
2. If Υf (F ) is well defined, there is a natural transformation

Υf (F )→ Ψ
(2)
f (F ).

Proof. — Let L ∗×
b = (f|X∗×)∗(k⊠ Lb). We have (f×2 )∗Lb

∼= i∗1L
∗×
b , so

(i∗1j1∗(F
L
⊗ (f×1 )∗La))

L
⊗ (f×2 )∗Lb

∼= i∗1(j1∗(F
L
⊗ (f×1 )∗La)

L
⊗L ∗×

b ).

Next, observe that (by adjunction) there is a natural map

j1∗(F
L
⊗ (f×1 )∗La)

L
⊗L ∗×

b → j1∗(F
L
⊗ (f×1 )∗La

L
⊗ (L ∗×

b )|X××).

In fact, since Lb is an extension of copies of the constant local system, this map is an
isomorphism. Combining the remarks above with the observation that (f×1 )∗La ⊗L
(L ∗×

b )|X×× ∼= (f××)∗(La ⊠ Lb), we conclude that for r, s ∈ Z we have

(9.4.2) pH r((i02)
∗pH s(j02∗(i

∗
1j1∗(F

L
⊗ (f×1 )∗La)

L
⊗ (f×2 )∗Lb)))

∼= pH r((i02)
∗pH s(j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb)))).

The arguments in the proof of Lemma 9.4.1 show that the complex j02∗i
∗
1j1∗(F ⊗L

(f××)∗(La ⊠ Lb)) is concentrated in perverse degrees −1 and 0. We therefore have
a truncation triangle

pH −1(j02∗i
∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb)))[1]→ j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb))

→ pH 0(j02∗i
∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb)))

[1]−→ .

Applying the functor (i02)
∗ (which, again as in the proof of Lemma 9.4.1, sends perverse

sheaves to objects concentrated in perverse degrees −1 and 0) and taking the long
exact sequence in perverse cohomology, we deduce that

pH n((i02)
∗j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb))) = 0

unless n ∈ {−2,−1, 0}, and that we have isomorphisms

pH −2((i02)
∗j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb))) ∼=

pH −1((i02)
∗pH −1(j02∗(i

∗
1j1∗(F

L
⊗ (f×1 )∗La)

L
⊗ (f×2 )∗Lb))),
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pH 0((i02)
∗j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb))) ∼=

pH 0((i02)
∗pH 0(j02∗(i

∗
1j1∗(F

L
⊗ (f×1 )∗La)

L
⊗ (f×2 )∗Lb))),

and a short exact sequence of perverse sheaves

pH 0((i02)
∗pH −1(j02∗(i

∗
1j1∗(F

L
⊗ (f×1 )∗La)

L
⊗ (f×2 )∗Lb)))

↪→ pH −1((i02)
∗j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb)))

↠ pH −1((i02)
∗pH 0(j02∗(i

∗
1j1∗(F

L
⊗ (f×1 )∗La)

L
⊗ (f×2 )∗Lb))).

Using these, (1) is a consequence of Proposition 9.2.1.
For (2), we observe that the adjunction map id → i1∗i

∗
1 gives rise to a natural

transformation

i∗j∗ ∼= i∗j×2∗j1∗ → i∗j×2∗i1∗i
∗
1j1∗

∼= i∗i′1∗j
0
2∗i

∗
1j1∗

∼= (i02)
∗j02∗i

∗
1j1∗.

Applying this natural transformation to F ⊗L (f××)∗(La ⊠ Lb) for a, b ≫ 0 and

using (1), we obtain the desired natural map Υf (F )→ Ψ
(2)
f (F ).

Remark 9.4.4. — Let us note the following fact for later use. Consider the natural
distinguished triangle

j1!j
∗
1 → id→ i1∗i

∗
1

[1]−→ .

A minor variation on the calculation at the end of the preceding proof shows that for
any perverse sheaf F on X××, there is a natural distinguished triangle

i∗j×2∗j1!F → i∗j∗F → (i02)
∗j02∗i

∗
1j1∗F

[1]−→ .

9.4.4. Iterated-clean perverse sheaves. — We will now give a condition that

guarantees both that Υf (F ) is well defined and that the map Υf (F )→ Ψ
(2)
f (F ) of

Lemma 9.4.3(2) is an isomorphism.
By adjunction and base change, there exists a canonical morphism of functors

(9.4.3) j′1!j2∗ → j′2∗j1!.

We claim that this morphism is an isomorphism. In fact, by base change it is an
isomorphism over X×∗ and over X∗×. Since those two open sets cover X◦, this
proves the claim. Applying the natural transformation h! → h∗, we get a natural
map

(9.4.4) j×1!j2∗F → j×2∗j1!F

for any complex F on X××. The cone of this morphism identifies with i∗i
∗j×2∗j1!F .

Definition 9.4.5. — A complex F in Db
c (X

××,k) is said to be iterated-clean if
the map (9.4.4) is an isomorphism, or in other words if

i∗j×2∗j1!F = 0.
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For examples of iterated-clean objects, see Lemma 9.4.14 below.
The following lemma is an elementary exercise in using the smooth and proper

base change theorems. Its proof will be omitted.

Lemma 9.4.6. — Let X and Y be separated C-schemes of finite type, and let f :
X → C2 and g : Y → X be algebraic maps.

1. Assume that g is proper. If F ∈ Db
c (Y

××,k) is iterated-clean (with respect to
f ◦ g), then so is (g|Y ××)∗F (with respect to f).

2. Assume that g is smooth. If F ∈ Db
c (X

××,k) is iterated-clean (with respect to
f), then so is (g|Y ××)∗F (with respect to f ◦ g).

3. Assume that g is smooth and surjective. For F ∈ Db
c (X

××,k), we have that F
is iterated-clean if and only if (g|Y ××)∗F is iterated-clean.

The following proposition states that iterated-cleanness is the condition we were
looking for.

Proposition 9.4.7. — Let F be a perverse sheaf on X××, and assume either that
k is artinian, or that Ψun

f1
(F ) = Ψf1(F ) and Ψf2 ◦Ψf1(F ) = Ψun

f2
◦Ψf1(F ). If F is

iterated-clean, then Υf (F ) is well defined, and the natural map Υf (F ) → Ψ
(2)
f (F )

from Lemma 9.4.3 is an isomorphism.

Proof. — Observe first that F ⊗L (f××)∗(La ⊠ Lb) is iterated-clean for all a and
b. This claim holds by assumption when a = b = 1; the general case follows by
induction on a and b. Applying the distinguished triangle from Remark 9.4.4 to
F ⊗L (f××)∗(La ⊠ Lb), we obtain a natural isomorphism

i∗j∗(F
L
⊗ (f××)∗(La ⊠ Lb))

∼−→ (i02)
∗j02∗i

∗
1j1∗(F

L
⊗ (f××)∗(La ⊠ Lb)).

The result then follows from Lemma 9.4.3.

Corollary 9.4.8. — Let X and Y be separated C-schemes of finite type, and let
f : X → C2 and g : Y → X be algebraic maps, with g proper. Let F ∈ Perv(Y ××,k).
Assume that F is iterated-clean, and that (g|Y ××)∗F is perverse. Assume also either
that k is artinian, or that Ψun

(f◦g)1(F ) = Ψ(f◦g)1(F ) and Ψ(f◦g)2 ◦ Ψ(f◦g)1(F ) =

Ψun
(f◦g)2 ◦ Ψ(f◦g)1(F ). Then Υf◦g(F ) and Υf ((g|Y ××)∗F ) are well defined, and the

natural map

(g|Y 00)∗Υf◦g(F )→ Υf ((g|Y ××)∗F )

from Proposition 9.4.2 is an isomorphism.

Proof. — Before proving the claim, let us first check that both uses of Υ are defined.
For Υf◦g(F ), this is immediate from our assumptions and Proposition 9.4.7. For
Υf ((g|Y ××)∗F ), note first that (g|Y ××)∗F is also iterated-clean (by Lemma 9.4.6).
If k is artinian, we are done. Otherwise, consider the objects

Ψf1((g|Y ××)∗F ) ∼= (g|X0×)∗Ψ(f◦g)1(F ),

Ψf2 ◦Ψf1((g|Y ××)∗F ) ∼= (g|Y 00)∗Ψ(f◦g)2 ◦Ψ(f◦g)1(F ),
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where both isomorphisms come from Proposition 9.1.4. These isomorphisms are com-
patible with the monodromy automorphisms, so the monodromy of both left-hand
sides must be unipotent: we have

Ψun
f1 ((g|Y ××)∗F ) = Ψf1((g|Y ××)∗F ),

Ψun
f2 ◦Ψf1((g|Y ××)∗F ) = Ψf2 ◦Ψf1((g|Y ××)∗F ).

Now Proposition 9.4.7 tells us that Υf ((g|Y ××)∗F ) is defined. It is straightforward
to see that we have a commutative diagram

(g|Y 00)∗Υf◦g(F ) (g|Y 00)∗Ψ
(2)
f◦g(F )

Υf ((g|Y ××)∗F ) Ψ
(2)
f ((g|Y ××)∗F ).

∼

≀

∼

Here, the horizontal maps are isomorphisms by Proposition 9.4.7, and the right-hand
vertical map is an isomorphism by Proposition 9.2.3. We conclude that the left-hand
vertical map is an isomorphism as well.

9.4.5. Comparison with diagonal nearby cycles. — We continue with our sep-
arated C-scheme X of finite type, and our algebraic map f : X → C2. Consider the
diagram

(C× × C×)∖∆C× C× × C× ∆C×

C2 ∖∆C C2 ∖ {(0, 0)} ∆C

C2 {(0, 0)}

where a symbol ∆ means the diagonal copy, and all maps are the obvious embeddings.
We define a number of subsets of X and inclusion maps between them by pulling back
the diagram above along f , as shown in the diagram below:

X̆×× X×× X∆×

X̆◦ X◦ X∆

X X00

u

ȷ̆12 j12

j

k

j∆

u′

h k′

i

i∆

The right-hand column of this diagram is a setting in which one can apply ordinary
nearby cycles. Explicitly, there is a unique map f∆ : X∆ → C whose composition with
the diagonal embedding C = ∆C ↪→ C2 coincides with f|X∆ , and we set f×∆ = f∆◦j∆.

We will need the following lemma on unipotent Z-representations. The last part
of this lemma involves the map pa : La → k defined in Remark 9.2.2.
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Lemma 9.4.9. — For a, b ≥ 1, there is a natural map

La ⊗k Lb → La+b−1

with the following properties.

1. It intertwines Ta ⊗ Tb with Ta+b−1.
2. It is compatible with the inclusion maps from (9.2.6).
3. Its image contains Lmax{a,b}.
4. The following diagram commutes:

La ⊗ Lb La+b−1

k⊗ k k.

pa⊗pb pa+b−1

Of course, since the map in the lemma intertwines Ta ⊗ Tb with Ta+b−1, it gives
rise to a map of local systems

La

L
⊗Lb → La+b−1

whose image contains Lmax{a,b}.

Proof. — Consider the ring of Laurent polynomials k[z, z−1], i.e., the group ring of
the multiplicative group Gm over k. Let D be the distribution algebra of this group
scheme. This distribution algebra is described explicitly in [J1, §I.7.8]: it is the (free)
k-submodule of Homk(k[z, z−1],k) with basis

δ0, δ1, . . . : k[z, z−1]→ k given by δr(z
n) =

(
n
r

)
.(2)

The coalgebra structure on k[z, z−1] (which is given by ∆(z) = z ⊗ z) induces an
algebra structure on D, also described in [J1, §I.7.8]:

(9.4.5) δrδs =

min{r,s}∑
i=0

(r + s− i)!
(r − i)!(s− i)!i!

δr+s−i.

In particular, δ0 is the unit in this ring.
Let T : k[z, z−1] → k[z, z−1] be the k-linear map given by T (zn) = zn+1. This

is a coalgebra automorphism (but not a ring homomorphism). The induced ring
automorphism T : D → D (defined so that T (f) = f ◦ T for f ∈ D) satisfies

T (δr) = δr + δr−1,

with the convention that δ−1 = 0. (To see this, observe that both sides applied to zn

yield
(
n+1
r

)
.)

Recall that La = k[x]/(xa). Define a k-linear map

La → D by xi 7→ (−1)iδa−i−1 (i ∈ {0, . . . , a− 1}).

(2)We use the convention that
(n
r

)
=

n(n−1)···(n−k+1)
r(r−1)···1 for any n ∈ Z and r ∈ Z≥0, with an empty

product interpreted as 1.
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Since Tax
i = xi − xi+1, this map intertwines Ta : La → La with T : D → D. Note

also that for any a ≤ b the following diagram commutes, where the vertical arrow is
the map used in the definition of (9.2.6):

La

Lb D.

For the remainder of this proof, we identify La with its image under this map:

La = span{δ0, . . . , δa−1}.

It is immediate from (9.4.5) that the multiplication map D ⊗k D → D restricts to a
map

La ⊗k Lb → La+b−1

that intertwines Ta ⊗ Tb with Ta+b−1, and that is compatible with the inclu-
sions (9.2.6). It sends δi ⊗ δ0 to δi for any i, so the image contains La. By the same
reasoning, it also contains Lb, and hence Lmax{a,b}.

Finally, consider the k-linear map p : D → k given by

p(δr) =

{
0 if r ≥ 1,

1 if r = 0.

In particular, the restriction of p to La ⊂ D agrees with the map pa : La → k defined
in Remark 9.2.2. It follows from (9.4.5) that the span of δ1, δ2, . . . is an ideal in D, and
hence that p : D → k is a ring homomorphism. This fact implies the commutativity
of the diagram in part (4).

Proof. — OLD — TO DELETE. Mais une petite remarque: la preuve ci-dessous ne
marche pas au moment où on veut construire l’application La ⊗ Lb → La+b−1, sauf
si k est un corps de caractéristique 0. Mais dans ce dernier cas on a

φrφs =

min{r,s}∑
i=0

(−1)i (r + s− i)!
(r − i)!(s− i)!i!

φr+s−i.

Dans la nouvelle preuve, on garde cette formule pour définir l’application La ⊗Lb →
La+b−1, mais on abandonne l’anneau kZ.

Let kZ denote the space of all functions Z → k, and let T : kZ → kZ be the
automorphism given by (Tf)(n) = f(n − 1). Of course, more generally, we have
(T af)(n) = f(n − a) for any integer a. The space kZ is a ring (in fact, a k-algebra)
under pointwise multiplication, and the multiplication map

(9.4.6) kZ ⊗k kZ → kZ

intertwines T ⊗ T with T .
For an integer k ≥ 0, let φk ∈ kZ be the function given by

φk(n) =

(
n+ k

k

)
=

(n+ k) · · · (n+ 1)

k!
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for any n ∈ Z. It will sometimes be convenient to adopt the convention that φ−1 = 0.
Note that for any k ≥ 0 and n ∈ Z we have

(Tφk)(n) =

(
n+ k − 1

k

)
=

(
n+ k

k

)
−
(
n+ k − 1

k − 1

)
= (φk − φk−1)(n).

Recall that La = k[x]/(xa). Define a k-linear map

La → kZ by xi 7→ φa−1−i.

Since Tax
i = xi − xi+1, this map intertwines Ta : La → La with T : kZ → kZ. Note

also that for any a ≤ b the following diagram commutes, where the vertical arrow is
the map used in the definition of (9.2.6):

La

Lb kZ.

For the remainder of this proof, we identify La with its image under this map:

La = span{φ0, . . . , φa−1}.
We also let

L∞ =
⋃
a≥1

La = span{φ0, φ1, . . .}.

By induction on a, one can check that

(9.4.7) La = {f ∈ kZ | (1− T )af = 0},
and hence that

L∞ = {f ∈ kZ | for some a ≥ 1, we have (1− T )af = 0}.
We claim that the multiplication map (9.4.6) restricts to a map

(9.4.8) L∞ ⊗k L∞ → L∞.

Indeed, if (1− T )af = 0 and (1− T )bg = 0, a straightforward calculation shows that
(1 − T )a+b−1(fg) = 0. This calculation shows that (9.4.8) further restricts to the
desired map

La ⊗k Lb → La+b−1.

It is clear from the construction that this map intertwines Ta ⊗ Tb with Ta+b−1, and
that it is compatible with the inclusions (9.2.6). It sends φa−1 ⊗ φ0 to φa−1, so the
image contains La. By the same reasoning, it also contains Lb, and hence Lmax{a,b}.

Finally, consider the map p : kZ → k given by p(f) = f(−1). This map satisfies

p(φa) =

{
0 if a ≥ 1,

1 if a = 0.

In particular, the restriction of p to La ⊂ kZ agrees with the map pa : La → k defined
in Remark 9.2.2. The commutativity of the diagram in part (4) of the lemma follows
from the observation that p : kZ → k is a ring homomorphism.
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Remark 9.4.10. — If k is a field of characteristic 0, the map in Lemma 9.4.9 is
surjective, but it need not be surjective in general. For instance, if k is a field of
characteristic 2, the image of L2 ⊗L L2 → L3 is just L2.

Lemma 9.4.11. — Let F be a perverse sheaf on X×× with the property that
k∗F [−1] is a perverse sheaf on X∆×. If Υf (F ) is well defined, then there is a
natural morphism

Υf (F )→ Ψun
f∆(k

∗F [−1]).

Proof. — Under our assumptions, for any a, b ≥ 1, we have

k∗(F
L
⊗ (f××)∗(La ⊠ Lb)) ∼= k∗F

L
⊗ (f×∆ )∗(La

L
⊗Lb).

The adjunction map id→ k∗k
∗ gives rise to a natural transformation

i∗j∗ → i∗j∗k∗k
∗ ∼= i∗k′∗j

∆
∗ k

∗ ∼= (i∆)∗j∆∗ k
∗.

Combining this with the map from Lemma 9.4.9, we obtain a natural map

i∗j∗(F
L
⊗ (f××)∗(La ⊠ Lb))→ (i∆)∗j∆∗ (k∗F

L
⊗ (f×∆ )∗La+b−1).

Now apply pH −2 to this map. When a and b are sufficiently large, in view of Propo-
sition 9.2.1(1) this yields our desired map Υf (F )→ Ψun

f∆
(k∗F [−1]).

In the following statement we consider the constructions above for two different
schemes X and Y over C2. To distinguish the two cases, we write kX and kY for the
maps “k” in these two settings.

Proposition 9.4.12. — Let X and Y be separated C-schemes of finite type, and let
f : X → C2 and g : Y → X be algebraic maps.

1. Assume that g is proper, and let F ∈ Perv(Y ××,k). Assume that F is iterated-
clean, and that the complexes

k∗Y F [−1], (g|Y ××)∗F and k∗X(g|Y ××)∗F [−1]
are perverse. Assume also either that k is artinian, or that Ψun

(f◦g)1(F ) =

Ψ(f◦g)1(F ) and Ψ(f◦g)2 ◦ Ψ(f◦g)1(F ) = Ψun
(f◦g)2 ◦ Ψ(f◦g)1(F ). If the natural

map

Υf◦g(F )→ Ψun
(f◦g)∆(k

∗
Y F [−1])

is an isomorphism, then

Υf ((g|Y ××)∗F )→ Ψun
f∆(k

∗
X(g|Y ××)∗F [−1])

is as well.
2. Assume that g is smooth of relative dimension r. Let F ∈ Perv(X××,k) be

such that k∗XF [−1] is perverse, and suppose that Υf (F ) is well defined. Then
k∗Y (g|Y ××)∗F [r − 1] is perverse, and if the natural map

Υf (F )→ Ψun
f∆(k

∗
XF [−1])

is an isomorphism, then

Υf◦g((g|Y ××)∗F [r])→ Ψun
(f◦g)∆(k

∗
Y (g|Y ××)∗F [r − 1])
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is as well. If g is surjective, the opposite implication also holds.

Proof. — (1) Note that Υf◦g(F ) and Υf ((g|Y ××)∗F ) are well defined thanks to
Corollary 9.4.8. We have a commutative diagram

(g|Y 00)∗Υf◦g(F ) (g|Y 00)∗Ψ
un
(f◦g)∆(k

∗
Y F [−1])

Υf ((g|Y ××)∗F ) Ψun
f∆

(k∗X(g|Y ××)∗F ).

∼

≀ ≀

Here, the left-hand vertical arrow comes from Corollary 9.4.8, and the right-hand
vertical arrow from Proposition 9.2.3(1) and the proper base change theorem. The
top horizontal arrow is an isomorphism by assumption, so the bottom one is as well.

(2) Note that in this setting the complex Υf◦g((g|Y ××)∗F [r]) is well defined thanks
to Proposition 9.4.2(2). The first part of our assertion follows from a similar commu-
tative diagram to the one above, using Proposition 9.4.2(2) and Proposition 9.2.3(2).
The last part follows from the fact that if g is surjective, and if ρ is a morphism of
complexes on Y 00, then (g|Y 00)∗ρ is an isomorphism if and only if ρ is.

Remark 9.4.13. — In the setting of Proposition 9.4.12(1), if Ψun
(f◦g)1(F ) =

Ψ(f◦g)1(F ) and Ψ(f◦g)2 ◦Ψ(f◦g)1(F ) = Ψun
(f◦g)2 ◦Ψ(f◦g)1(F ) then we also have

Ψun
f1 ((g|Y ××)∗F ) = Ψf1((g|Y ××)∗F )

and

Ψf2 ◦Ψf1((g|Y ××)∗F ) = Ψun
f2 ◦Ψf1((g|Y ××)∗F ).

Similarly, in the setting of Proposition 9.4.12(2), if Ψun
f1
(F ) = Ψf1(F ) and Ψf2 ◦

Ψf1(F ) = Ψun
f2
◦ Ψf1(F ) (which guarantees that Υf (F ) is well defined by Proposi-

tion 9.4.7), then we also have

Ψun
(f◦g)1((g|Y ××)∗F ) = Ψ(f◦g)1((g|Y ××)∗F )

and

Ψ(f◦g)2 ◦Ψ(f◦g)1((g|Y ××)∗F ) = Ψun
(f◦g)2 ◦Ψ(f◦g)1((g|Y ××)∗F ).

If g is surjective, then the converse implication holds.

9.4.6. Products. — In this subsection, we assume that

X = Y(1) × Y(2),

where Y(1) and Y(2) are separated C-schemes of finite type. We also suppose that we
are given algebraic maps f(1) : Y(1) → C and f(2) : Y(2) → C, and we set

f := f(1) × f(2) : X → C2.

For i = 1, 2, we let

u(i) : Y
×
(i) ↪→ Y(i), s(i) : Y(i),0 ↪→ Y(i)

be the inclusion maps. Here, of course, we set Y ×
(i) = f−1

(i) (C
×) and Y(i),0 = f−1

(i) (0).
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Lemma 9.4.14. — Let G(1),G(2) be perverse sheaves on Y(1), Y(2), respectively. If

G(1) ⊠
L G(2) is perverse, then it is iterated-clean.

Proof. — By [Ac3, Propositions 1.4.21 and 2.9.1], both j×1!j2∗(G(1) ⊠
L G(2)) and

j×2∗j1!(G(1) ⊠
L G(2)) can be identified with u(1)!G(1) ⊠

L u(2)∗G(2). We then have

i∗j×2∗j1!(G(1)

L

⊠ G(2)) ∼= (u(1)!G(1))|Y(1),0

L
⊠ (u(2)∗G(2))|Y(2),0

= 0

since the left-hand term in the tensor product vanishes.

In this setting iterated nearby cycles can be easily computed, as shown in the
following lemma, where we denote by p(1) : Y(1)×Y(2) → Y(1) and p

0
(2) : Y(1),0×Y(2) →

Y(2) the projections.

Lemma 9.4.15. — Let G(1) ∈ Db
c (Y

×
(1),k) and G(2) ∈ Db

c (Y
×
(2),k). Then there exists

a canonical isomorphism

Ψf(1)(G(1))
L

⊠Ψf(2)(G(2))
∼−→ Ψf(2)◦p0(2) ◦Ψf(1)◦p(1)(G(1)

L

⊠ G(2)).

If G(1), G(2), and G(1)⊠
L G(2) are perverse, this isomorphism induces an isomorphism

Ψun
f(1)

(G1)
L

⊠Ψun
f(2)

(G2)
∼−→ Ψun

f(2)◦p02
◦Ψun

f(1)◦p1(G(1)

L

⊠ G(2)).

If moreover

Ψf(1)(G(1)) = Ψun
f(1)

(G(1)), Ψf(2)(G(2)) = Ψun
f(2)

(G(2)),

then in the notation of §9.4.3 we have

Ψf1(G(1)

L

⊠ G(2)) = Ψun
f1 (G(1)

L

⊠ G(2)),

Ψf2 ◦Ψf1(G(1)

L

⊠ G(2)) = Ψun
f2 ◦Ψf1(G(1)

L

⊠ G(2)).

Proof. — This follows from Lemma 9.1.8.

In the notation of §9.4.3, this lemma shows that if G(1), G(2) are perverse sheaves

on Y(1), Y(2), respectively, such that G(1) ⊠
L G(2) is perverse, then we have

(9.4.9) Ψ
(2)
f (G(1)

L

⊠ G(2)) ∼= Ψun
f(1)

(G1)
L

⊠Ψun
f(2)

(G2).

Remark 9.4.16. — Combining (9.4.9) with Proposition 9.4.7 and Lemma 9.4.14,
we see that if G(1), G(2) are perverse sheaves on Y(1), Y(2), respectively, such that

G(1) ⊠
L G(2) is perverse, and if either k is artinian or

Ψf(1)(G(1)) = Ψun
f(1)

(G(1)), Ψf(2)(G(2)) = Ψun
f(2)

(G(2)),

then Υf (G(1) ⊠
L G(2)) is well defined, and moreover there is a natural isomorphism

Υf (G(1)

L

⊠ G(2))
∼−→ Ψun

f(1)
(G(1))

L

⊠Ψun
f(2)

(G(2)).
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Here is an alternative description of this map, in the spirit of Remark 9.2.2. Let
pa,b : La ⊗ Lb → k be the linear map given by

pa,b(x
i ⊗ xj) =

{
0 if i < a− 1 or j < b− 1,

1 if i = a− 1 and j = b− 1.

This corresponds to a map of local systems exp∗ La ⊠
L exp∗ Lb → kC2 on C2. Next,

let exp(2) = expY(1)
× expY(2)

: Ỹ ×
(1) × Ỹ ×

(2) → X××. We obtain an induced map

exp(2)∗((G(1) ⊠
L G(2)) ⊗L (f××)∗(La ⊠

L Lb)) → exp(2)∗(G(1) ⊠
L G(2)), and then, by

adjunction, we have a natural map

(G(1)

L
⊠ G(2))

L
⊗ (f××)∗(La

L
⊠ Lb)→ exp

(2)
∗ exp(2)∗(G(1)

L
⊠ G(2)).

Now apply pH −2(i∗j∗(−)) to this map. When a and b are large enough, the left-

hand side is identified with Υf (G(1) ⊠
L G(2)). On the other hand, as explained in

Remark 9.1.7, the right-hand side is identified with Ψf(1)(G(1))⊠
L Ψf(2)(G(2)).

Proposition 9.4.17. — Let G(1),G(2) be perverse sheaves on Y(1), Y(2), respectively.
Assume that the complexes

G(1)

L

⊠ G(2), and k∗(G(1)

L

⊠ G(2))[−1]

are perverse, and that

Ψun
f(1)

(G(1)) = Ψf(1)(G(1)), Ψun
f(2)

(G(2)) = Ψf(2)(G(2)).

Then Υf (G(1) ⊠
L G(2)) is well defined, we have

Ψf∆(k
∗(G(1)

L

⊠ G(2))[−1]) = Ψun
f∆(k

∗(G(1)

L

⊠ G(2))[−1]),

and the natural map

Υf (G(1)

L

⊠ G(2))→ Ψun
f∆(k

∗(G(1)

L

⊠ G(2))[−1])

from Lemma 9.4.11 is an isomorphism.

Proof. — As explained in Remark 9.4.16, the complex Υf (G(1)⊠
LG(2)) is well defined,

and moreover we have an identification

Υf (G(1)

L

⊠ G(2))
∼−→ Ψun

f(1)
(G(1))

L

⊠Ψun
f(2)

(G(2)).

Under our assumptions, the right-hand side is Ψf(1)(G(1))⊠
LΨf(2)(G(2)), and by Propo-

sition 9.1.6(3) this complex identifies with Ψf∆(k
∗(G(1) ⊠

L G(2))[−1]). Since all these
identifications are compatible with the monodromy automorphisms in the natural
way, we deduce that

Ψf∆(k
∗(G(1)

L

⊠ G(2))[−1]) = Ψun
f∆(k

∗(G(1)

L
⊠ G(2))[−1]).

One checks that this identification of Υf (G(1)⊠
LG(2)) with Ψun

f∆
(k∗(G(1)⊠

LG(2))[−1])
coincides with the morphism of Lemma 9.4.11, which is therefore an isomorphism.
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9.5. Nearby cycles for étale sheaves

In this section we briefly recall the analogues of the constructions above in the
setting of étale sheaves, see [De1, I1].

9.5.1. Definition. — Let A be a henselian discrete valuation ring, with field of
fractions K and residue field k. Set S := Spec(A), so that S is a henselian trait with
closed point s := Spec(k) and generic point η := Spec(K). Denote by K a separable
closure of K, and set η := Spec(K). Also let A be the normalization of A in K; then
A is an absolutely integrally closed henselian valuation ring, with fraction field K and
residue field a separable closure k of k. We set S := Spec(A), s := Spec(k).

Let X be a separated S-scheme of finite type. We then consider the diagram

Xη X Xs

η S s

j

f

i

in which both squares are cartesian. We also set XS := X ×S S, and consider the
following diagram, where again all squares are cartesian:

Xη XS Xs

η S s.

ȷ ı

The morphism η → η induces a morphism ρ : Xη → Xη.
Now, let ℓ be a prime number invertible in k, and let k be one of the following:

– a finite commutative ring annihilated by ℓn for some n ∈ Z≥1;
– a finite extension of Qℓ;
– the ring of integers in a finite extension of Qℓ;
– an algebraic closure of Qℓ;
– or an algebraic closure of Fℓ.(3)

In all of these cases we can consider the bounded étale derived category of k-sheaves on
X, Xη, XS , Xη, or Xs. Of particular interest are the constructible derived categories

of sheaves onXη andXs, which will be denotedDb
c (Xη,k) andDb

c (Xs,k) respectively.
The nearby cycles functor associated with f is then the functor

Ψf : Db
c (Xη,k)→ Db

c (Xs,k) defined by Ψf (F ) := ı∗ȷ∗ρ
∗F [−1].

(In [De1] this functor is denoted RΨη[−1].) Here the fact that the result is a con-
structible complex follows from [HS, Corollary 4.2]; more specifically, this reference

(3)This case is perhaps less familiar than the other ones. Here one can simply define the constructible
derived category as the category whose objects are pairs (F , k0) where k0 is a finite subfield of k
and F a complex in Db

c (X, k0), and where the space of morphisms from (F , k0) to (F ′, k′0) is

k⊗k′′0
HomDb

c (X,k′′0 )(k′′0 ⊗k0 F , k′′0 ⊗k′0
F ′) where k′′0 is a finite subfield of k containing k0 and k′0.
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proves that the functor ı∗ȷ∗ sends constructible complexes to constructible com-
plexes, and it is clear from definitions that ρ∗ also has this property. (See also [De2,
Théorème 3.2] for an earlier result of this sort.)

Remark 9.5.1. — In the cases we will actually encounter, we will start with a
smooth k-curve C (in fact, equal to A1

k), a k-point c of C (usually 0), and a separated
k-scheme X of finite type endowed with a map f : X → C. We will then chose for
A the henselization of the local ring of C at c, and apply the above construction for
the fiber product X̃ = X ×C Spec(A) and the map f̃ : X̃ → Spec(A) induced by f .

The projection X̃ → X induces a morphism X̃η → X× := f−1(C ∖ {c}), and we will
denote by

Ψf : Db
c (X

×,k)→ Db
c (X ×C Spec(k),k)

the composition of the pullback under this map with Ψf̃ . (Here, the fiber product on

the right-hand side is defined with respect to the composition Spec(k)→ Spec(k)
c−→

C.)

9.5.2. Monodromy action. — As in the complex setting, the objects Ψf (F ) for
F in Db

c (Xη,k) come with some extra structure gathered under the name “mon-
odromy.”

We have a surjective morphism

(9.5.1) Gal(K/K) ↠ Gal(k/k),

whose kernel is denoted I. We then have a canonical surjective morphism

tℓ : I → Zℓ(1),

whose kernel is a profinite group of order prime to ℓ, see e.g. [I1, §1.1]. Here, Zℓ(1)
is the inverse limit of the groups of ℓn-th roots of unity in k for all n ∈ Z≥1 (a free

Zℓ-module of rank 1). This group (with the natural action of Gal(k/k)) defines a Zℓ-
sheaf on Spec(k); we will denote by k(1) the k-sheaf obtained from this by extension
of scalars. (In practice, we will consider this sheaf only when k is finite and k = Qℓ;
in this case one can choose a square root of this sheaf, which will be denoted Qℓ( 12 ).)

As explained in [De1], the functor Ψf factors through an appropriate derived
category of k-sheaves on the 2-fibered product of topoiX×sη. (See in particular [De1,
Construction 1.2.4] for a “concrete” description of sheaves on this topos, in terms of a
continuous action of Gal(K/K) compatible with the action of Gal(k/k) on Xs.) For
us, this fact will have two consequences:

1. For any F in Db
c (Xη,k), the complex Ψf (F ) is endowed with a canonical

action of I, which factors through an action of Zℓ(1). In particular, after fixing
a topological generator γ of Zℓ(1) one obtains a canonical automorphism mF

of Ψf (F ), which will be called the monodromy.
2. Assume that k is a finite field. Then one can choose a splitting of the surjec-

tion (9.5.1). Once this splitting is chosen, in view of [De1, Rappel 1.1.3] one
obtains a factorization of Ψf through a functor

Ψ◦
f : Db

c (Xη,k)→ Db
c (Xs,k).
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(The fact that this factorization takes values in constructible complexes follows
from the fact that constructibility is local for the pro-étale topology, see [BS,
Lemma 6.3.13].) In fact, we will only consider this construction in the case
k = Qℓ; then we will twist the “natural” lift of Ψf by Qℓ(− 1

2 ) so that the
resulting functor Ψ◦

f commutes with Verdier duality.

With these constructions at hand, the results and constructions considered in Sec-
tions 9.1, 9.2 and 9.4 have natural analogues in the étale setting. See e.g. [De1] for
the analogue of Proposition 9.1.4, [I1, §4] for the analogue of Proposition 9.1.6 (see
also [BB, Lemma 5.1.1]), [Bĕı2] for the analogue of Proposition 9.2.1.

The counterpart of Section 9.3 requires is treated in the next subsection.

9.5.3. Monodromic étale sheaves. — In this subsection, we briefly discuss the
theory monodromic sheaves in the étale setting, following [Ve]. This theory necessar-
ily looks rather different from its counterpart in Section 9.3, as there is no “exponential
map” in the étale setting.

Let k be an algebraically closed field, and consider a principal Gm-bundle Y . We
also fix a prime number ℓ invertible in k, and a coefficient ring k as in §9.5.1. Following
Verdier [Ve], a constructible étale k-sheaf on Y is called monodromic if its pullback
along each morphism

Gm → Y, t 7→ y · t
(with y ∈ Y ) is a tame local system. One then says that a complex F ∈ Db

c (Y,k) is
monodromic if H i(F ) is a monodromic sheaf for each i ∈ Z. Given a monodromic
complex F on Y , Verdier constructs in [Ve, §5] a canonical group homomorphism

µF : Zℓ(1)→ Aut(F ).

Consider now a k-scheme Z of finite type endowed with a morphism f : Z → A1
k.

One can then set Y := Z × Gm, considered as a principal Gm-bundle for the action
of the second factor, and consider the function g : Y → A1

k defined by g(x, t) =
t · f(x). We have g−1(0) = Z0×Gm, where Z0 = f−1(0). The following result is [Ve,
Proposition 7.1(a)]. (Here the nearby cycles functor is as in Remark 9.5.1).

Proposition 9.5.2. — For any F in Db
c (f

−1(A1
k ∖ {0}),k), the complex Ψg(F ⊠L

kGm
) is monodromic. Moreover, the action of Zℓ(1) on this complex coming from the

nearby cycles construction is given by α 7→ µΨg(F⊠LkGm
)(α

−1).

Finally, following [AB, §5.2], given a k-scheme X ′ of finite type endowed with a
Gm-action, the action map aX′ : Gm × X ′ → X ′ is Gm-equivariant if Gm acts on
Gm ×X ′ via multiplication on the first factor, and we will say that a perverse sheaf
F on X ′ is monodromic if its pullback a∗X′(F ) is monodromic in the sense above. In
this case we have the monodromy morphism µa∗

X′ (F). Since the pullback functor a∗X′

is fully faithful on perverse sheaves by [BBDG, §§4.2.5–4.2.6] (because aX′ is smooth
with connected fibers), from this morphism we obtain a canonical morphism

µF : Zℓ(1)→ Aut(F ).

We now assume given a k-scheme X of finite type endowed with a Gm-action, and
a Gm-equivariant morphism f : X → A1

k (for the obvious action of Gm on A1
k). As
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usual we set X× = f−1(A1
k ∖ {0}), and we consider the nearby cycles functor Ψf as

in Remark 9.5.1.

Corollary 9.5.3. — If F belongs to PervGm
(X×,k), then the perverse sheaf Ψf (F )

on X0 = f−1(0) is Gm-monodromic. Moreover, the action of Zℓ(1) on Ψf (F ) coming
from the nearby cycles construction is given by α 7→ µΨf (F)(α

−1).

Proof. — Since F is Gm-equivariant we have a∗XF ∼= kGm
⊠L F . Using Proposi-

tion 9.5.2 we deduce that Ψg(a
∗
XF ) is monodromic with the expected property of

monodromy, where g = f ◦ aX . Now by compatibility of nearby cycles with smooth
pullback (see Proposition 9.1.4(2)) we have Ψg(a

∗
XF ) = a∗X0

Ψf (F ), so that this
claim exactly translates into the desired statement.

Corollary 9.5.3 can be used as a substitute for Proposition 9.3.6 in the étale set-
ting. (Here we have to assume that F is perverse, but this will be the case in the
applications considered in this book.)

9.5.4. The case k = Qℓ. — The monodromy action on complexes Ψf (F ) has been

studied extensively in the case k = Qℓ, see e.g. [GH, §5] for a detailed overview. In
particular it is known in this case (due to results of Grothendieck, see e.g. [I3]) that
the action of I on each Ψf (F ) is quasi-unipotent, i.e. that there exists a subgroup
I ′ ⊂ I of finite index such that each element of I ′ acts by a unipotent automorphism.
One can then define the “logarithm of (the unipotent part of) the monodromy” as
the unique nilpotent(4) morphism

nF : Ψf (F )→ Ψf (F )(−1)
such that each γ′ ∈ I ′ acts on Ψf (F ) as exp(tℓ(γ

′) ·nF ). It is clear that this definition
does not depend on the choice of I ′. In any case, in the cases we will encounter the
whole action of I will be unipotent.

Now we specialize our setting to that considered in Remark 9.5.1. More precisely
we consider a finite field k, and assume that our henselian ring A◦ is the henselization
of the local ring at a k-point s◦ of a smooth curve C◦. Then, setting S◦ := Spec(A◦),
we have a natural map S◦ → C◦ sending the closed point of S◦ to s◦, and the generic
point η◦ of S◦ in U◦ := C◦ ∖ s◦. Given a C◦-scheme X◦ of finite type, with structure
morphism f : X◦ → C◦, we will still denote by Ψ◦

f the composition of the nearby

cycles functor associated with the morphism X◦ ×C◦ S◦ → S◦ induced by f (with
the further enrichment discussed in Item (2) in §9.5.2) with the pullback functor
associated with the natural morphism X◦×C◦ η◦ → X◦×C◦ U◦. In this way we obtain
a functor

Ψ◦
f : Db

c (X◦ ×C◦ U◦,Qℓ)→ Db
c (X◦ ×C◦ s◦,Qℓ).

In this setting, we have a notion of mixed complexes in Db
c (X◦ ×C◦ U◦,Qℓ) and

Db
c (X◦ ×C◦ s◦,Qℓ), see [BBDG, §5.1.5]. The following result is due to Deligne,

see [De3, Théorème 6.1.13].

Theorem 9.5.4. — The functor Ψ◦
f sends mixed complexes to mixed complexes.

(4)Here, when writing “nilpotent” we mean that nF (−n) ◦ · · · ◦ nF (−1) ◦ nF = 0 for some n ∈ Z≥0.
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Consider now the scheme X := X◦×Spec(k) Spec(k) over C := C◦×Spec(k) Spec(k),

where as usual k is a separable closure of k. The morphism X → C induced by f
will still be denoted f . Then one can play the same game as above by considering
S = Spec(A) with A the henselization of the local ring at the k-point s of C obtained
from s◦, the associated nearby cycles functor, and the induced functor

Ψf : Db
c (X ×C U,Qℓ)→ Db

c (X ×C s,Qℓ)
where U = Spec(k)×Spec(k) U◦ = C ∖ s.

Lemma 9.5.5. — The following diagram commutes up to an isomorphism of func-
tors, where the vertical arrows are the pullback functors associated with the morphisms
X ×C U → X◦ ×C◦ U◦ and X ×C s→ X◦ ×C◦ s◦:

Db
c (X◦ ×C◦ U◦,Qℓ) Db

c (X◦ ×C◦ s◦,Qℓ)

Db
c (X ×C U,Qℓ) Db

c (X ×C s,Qℓ).

Ψ◦
f

κ κ

Ψf

Proof. — To define Ψ◦
f , resp. Ψf , we need to choose a separable closure K◦ of the

fraction field K◦ of A◦, resp. a separable closure K of the fraction field K of A. By the
universal property of the henselization we have a canonical morphism A◦ → A, and
an associated “base change” morphism for nearby cycles functors, see [De1, (2.1.7.5)].
More specifically, the morphism A◦ → A induces an embedding K◦ ↪→ K. We can
then assume that K◦ embeds in K, so that the normalization A◦ of A◦ in K◦ is a
subring in the normalization A of A in K. The fact that our base change morphism
is an isomorphism then follows from [De2, Proposition 3.7].

We conclude this chapter with a deep result of Gabber, see [BB, §5.1], compar-
ing the weight filtration, for which we refer to [BBDG, Théorème 5.3.5], and the
Jacobson–Morozov–Deligne filtration, which we now review. Given a Qℓ-perverse
sheaf F on X ×C s and a morphism N : F → F (−1) that is “nilpotent” in the
sense considered above, the Jacobson–Morozov–Deligne filtration associated to N is
the unique increasing filtration (Fi(F ))i∈Z of F such that Fi(F ) = 0 for i ≪ 0,
Fi(F ) = F for i ≫ 0, N(Fi(F )) ⊂ Fi−2(F )(−1) for any i, and such that for i ≥ 0
the i-th power N i induces an isomorphism

grFi (F )
∼−→ grF−i(F )(−i).

The existence and uniqueness of this filtration are proved in [De3, Proposition 1.6.1]
(which treats more generally an object of an abelian category equipped with a nilpo-
tent endomorphism).

Theorem 9.5.6. — If F◦ is a pure perverse sheaf of weight 0, then the Jacobson–
Morozov–Deligne filtration of Ψf (κ(F )) associated to nF is the image under κ of the
weight filtration on the mixed perverse sheaf Ψ◦

f (F◦).





CHAPTER 10

EQUIVARIANT DERIVED CATEGORIES IN FAMILIES

If G is a complex algebraic group and X is a G-variety, there is a well known theory
of G-equivariant sheaves on X and of the G-equivariant derived category Db

G(X,k),
following Bernstein–Lunts [BL]. In this chapter, we develop an analogous theory
“relative to a curve.” That is: given a smooth connected complex affine curve C, a
smooth group scheme G over C, and a scheme X of finite type over C equipped with
a G-action (over C), we explain how to define the “G-equivariant derived category of
X,” denoted by Db

G(X,k). We will also treat a minor generalization, in which C, G,
and X all carry compatible actions of a complex algebraic group K.

A key technical tool in this chapter, as in [BL], is the notion of “acyclic G-
resolutions ofX,” to be defined in Section 10.1. As a prerequisite to definingDb

G(X,k),
one must show that every scheme X as above admits a rich enough family of acyclic
resolutions. In [BL], this problem is solved in two steps: (i) if G = GLn, then one
can use Stiefel manifolds to construct enough acyclic resolutions; and (ii) for general
G, one can reduce to the previous case by choosing a closed embedding G ↪→ GLn.
It turns out that both steps go through over a curve C as well: step (i) is essen-
tially covered by [LMB, Lemma 18.7.5], and step (ii) follows from a comment in
unpublished notes of Milne [Mi2]. In Section 10.1, we will review the steps of this
construction carefully, and we will include full details of proofs whenever they differ
from the corresponding proofs in [BL].

In Section 10.2, we give the actual definition of Db
G(X,k) (as well as its K-

equivariant variant). This section also discusses how to define equivariant sheaf
functors, and it contains fundamental results such as the quotient and induction
equivalences. Lastly, Section 10.3 contains a discussion of the nearby cycles functor
and monodromy automorphisms in a G-equivariant context.

10.1. Acyclic bundles

In this section we fix a coefficient ring k which is (as usual) noetherian, commuta-
tive, of finite global dimension.
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10.1.1. Acyclic morphisms. — The following definition is the starting point for
this section.

Definition 10.1.1. — Let n ∈ Z≥0, and X,Z be separated C-schemes of finite type.
A morphism of C-schemes f : X → Z is said to be n-acyclic if the following condition
holds: for any morphism of C-schemes g : Y → Z (with Y separated of finite type),
and for any sheaf F of k-modules on Y , if f ′ : Y ×ZX → Y is the morphism induced
by f then the natural map

F →H 0(f ′∗(f
′)∗F )

is an isomorphism, and moreover

H n(f ′∗(f
′)∗F ) = 0 for i = 1, . . . , n.

The morphism f : X → Z is said to be ∞-acyclic if it is n-acyclic for all n.

Remark 10.1.2. — 1. For smooth maps, n-acyclicity can be checked “fiber-
wise”: according to [BL, Criterion 1.9.4],(1) a sufficient condition for a smooth
map f : X → Z to be n-acyclic is as follows: for any point z ∈ Z, we have

H0(p−1(z);Z) ∼= Z,

Hi(p−1(z);Z) = 0 for i = 1, . . . , n,

Hn+1(p−1(z);Z) is torsion-free.
2. It is easily seen that a composition of n-acyclic morphisms is n-acyclic, and that

the base change of an n-acyclic morphism is n-acyclic. We also have a partial
converse to this statement: given a cartesian square

X Y

X ′ Y ′

f

π′ π

f ′

where π is smooth and surjective, if f is n-acyclic then f ′ is n-acyclic. (This
can be checked by noticing that a morphism in the derived category is invertible
iff the induced morphism on each stalk is invertible, and then using the smooth
base change theorem; see e.g. [We, Proposition 2.12].)

10.1.2. Stiefel and Grassmannian schemes. — In this subsection, C can be any
affine scheme. Let V be a locally free O(C)-module of finite rank. Let GL(V) be the
smooth group scheme over C defined as follows: for any O(C)-algebra R, we set

GL(V)(R) = {R-module automorphisms of V ⊗O(C) R}.
For any integer k ≥ 0, the Grassmannian scheme of V, denoted by G(k,V), is the
functor sending an O(C)-algebra R to

G(k,V)(R) =
{ isomorphism classes of surjective maps V ⊗O(C) R↠ Q,

where Q is a locally free R-module of rank k

}
.

(1)Note that a smooth morphism of algebraic varieties is “fibered” in the sense of [BL, §1.4.7],
e.g. by [Ac3, §1.4.7].
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It is well known that G(k,V) is represented by a projective (and hence separated)
scheme over C. (In fact, it suffices to treat the case when V is free; in this setting,
the representability in the case C = Spec(Z) is treated in [SP, Tag 089T], and the
general case follows by base change. See also [GW, §8.4].)

Next, let V ′ be another locally free O(C)-module of finite rank. The Stiefel scheme
St(V,V ′) is the functor sending an O(C)-algebra R to

St(V,V ′)(R) =
{ injective R-module homomorphisms V ⊗O(C) R→ V ′ ⊗O(C) R

whose cokernel is locally free

}
.

Once again, this functor is represented by a scheme, which is moreover smooth and
quasi-affine (in particular, of finite type) over C. (Here also one can assume that
V and V ′ are free, and then that C = Spec(Z); then the Stiefel scheme is the open
subscheme in the space of (rk(V ′) × rk(V))-matrices defined by the invertibility of
some minor of size rk(V).) There is an obvious action of GL(V) on St(V,V ′) by
precomposition with automorphisms of V ⊗O(C) R.

Suppose now that V has rank k, and V ′ has rank k + n. There is an obvious map

St(V,V ′)→ G(n,V ′)

given by (V ϕ−→ V ′) 7→ (V ′ ↠ cokϕ). The following lemma can be proved by a minor
variation on the proof that G(n,V ′) is representable.

Lemma 10.1.3. — The map St(V,V ′) → G(n,V ′) makes St(V,V ′) into a Zariski
locally trivial principal GL(V)-bundle over G(n,V ′).

Remark 10.1.4. — If K is an affine group scheme acting on C, and if V and
V ′ have the structure of K-equivariant locally free O(C)-modules, then there is an
obvious action of K on St(V,V ′) and on G(n,V ′), and the map St(V,V ′)→ G(n,V ′)
considered above is K-equivariant.

In the following lemma we assume that C is an affine C-scheme of finite type.

Lemma 10.1.5. — Let V be a locally free O(C)-module of rank k. For any n ∈ Z≥0,
the structure map St(V,V ⊕ O(C)⊕n)→ C is 2n-acyclic.

Proof. — Let M be the space of injective linear maps Ck → Ck+n. This is a smooth
complex variety, and as a topological space, it is homotopy-equivalent to the tradi-
tional complex Stiefel manifold of k-frames in a Hermitian (k+n)-space, see e.g. [Hat,
Example 4.53]. Now it is well known that the integral cohomology of the latter man-
ifold is an exterior algebra, with generators in degrees 2n + 1, . . . , 2(k + n) − 1. In
particular, this cohomology satisfies the conditions in Remark 10.1.2(1), and so the
same holds for M .

To deduce the lemma, we can replace C by an open subset over which V is trivial,
and fix a trivialization V ∼= O(C)⊕k. Then St(V,V⊕O(C)⊕n) is isomorphic to C×M ,
and the desired claim follows from Remark 10.1.2(1).

https://stacks.math.columbia.edu/tag/089T
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10.1.3. Embedding a group scheme in a general linear group. — In this
subsection, let C be an smooth connected complex affine curve, and let G be a flat
affine group scheme of finite type over C. Our goal is to prove that G is isomorphic to
a closed subgroup scheme of GL(V) for some vector bundle V over C. The argument
is based on a sketch of a proof in [Mi2, Chap. VIII, Aside 9.4] (see also [BT, §1.4.5]).

In fact, our argument will also apply in the presence of supplemental action of
an affine group scheme K of finite type over C. In more detail: suppose K acts
on C, and suppose it acts on G in such a way that the structure morphism G →
C and the multiplication map G ×C G → G are K-equivariant. In the following
statements, “K⋉G-representation” should be understood to mean a G-representation
(i.e., an O(C)-module that is also an O(G)-comodule in a compatible way) M that
is equipped with an action of the group scheme K such that the multiplication and
comultiplication maps

O(C)⊗C M →M and M →M ⊗O(C) O(G)

are K-equivariant. (The notation “K ⋉ G” is a convenient shorthand, but the reader
should beware that there is no literal algebro-geometric object called K ⋉ G.)

On a first reading, the reader may wish to assume that K is trivial; however, some
applications of this theory in the main part of the book require nontrivial K.

Lemma 10.1.6. — Let M be a K ⋉ G-representation, and let V0 ⊂ M be a finite-
dimensional K-subrepresentation. Then there exists a K ⋉ G-subrepresentation V ⊂
M that contains V0 and is finitely generated over O(C).

(The following proof actually goes through when C is any affine C-scheme, not just
for smooth affine curves, but we will not need this generality.)

Proof. — Choose a basis v1, . . . , vk for V0, and write their coproducts as

∆(vi) =
∑
j

vij ⊗ aij ∈M ⊗O(C) O(G).

Let V1 be the C-span of the elements v1, . . . , vk together with all the vij ’s; then
there exists a finite-dimensional K-subrepresentation V ′

1 of M containing V1, see [J1,
I.2.13(3)]. Let V + ⊂M be the O(C)-submodule generated by V ′

1 . Note that V + is a
K-submodule of M , and that it is finitely generated over O(C).

Since O(G) is flat over O(C), we can identify V + ⊗O(C) O(G) with a subset of
M ⊗O(C) O(G). Let

V = {v ∈M | ∆(v) ∈ V + ⊗O(C) O(G)}.

According to [Se, §1.4, Proposition 3], V is a G-subrepresentation of M contained in
V +. In particular, it is finitely generated over O(C). It also clearly contains V0.

It remains to check that V is a K-subrepresentation. However V is the kernel of
the composition of the maps

M
∆−→M ⊗O(C) O(G) ↠ (M/V +)⊗O(C) O(G).

Both maps here are K-equivariant, so V is indeed a K-subrepresentation.



10.1. ACYCLIC BUNDLES 351

Lemma 10.1.7. — There exist a K-equivariant locally free O(C)-module V and a
K-equivariant closed embedding of group schemes G ↪→ GL(V) over C.

Proof. — Since G is of finite type, again by [J1, I.2.13(3)] there exists a finite-
dimensional subspace V0 ⊂ O(G) that is K-stable and that generates O(G) as an
O(C)-algebra. Applying Lemma 10.1.6 to M = O(G) (i.e., to the regular represen-
tation) we find a K ⋉ G-subrepresentation V ⊂ O(G) which is finitely generated over
O(C) and contains V0.

Since O(G) is a flat O(C)-module, it is torsion-free, and hence its submodule V
is also torsion-free. Since C is a connected smooth affine curve, its coordinate ring
O(C) is a Dedekind domain: see [SP, Tag 09IG]. By [SP, Tag 0AUW], a finitely
generated torsion-free module over a Dedekind domain is automatically locally free.
We conclude that V is locally free (and of finite rank).

We can then consider the C-group scheme GL(V) as in §10.1.2. The K-action on V
gives rise to a K-action on the group scheme GL(V)→ C, and of course the G-action
on V gives rise to a K-equivariant map G → GL(V).

It remains to show that our map G → GL(V) is a closed embedding, i.e. that the
associated morphism of O(C)-algebras O(GL(V)) → O(G) is surjective. (The K-
action plays no role in this assertion, and we will ignore it for the rest of the proof.)
By [Mi2, Chap. VII, Proposition 2.3], it is enough to check this Zariski-locally over
C; so, we can assume that V is free over O(C). Let e1, . . . , em be an O(C)-basis for
V, and write their coproducts as

∆(ei) =
∑
j

ej ⊗ aij ∈ V ⊗ O(G).

According to [Mi2, Chap. VIII, Corollary 6.9], the image of the map O(GL(V)) →
O(G) contains the elements aij . Next, using the counit ϵ : O(G)→ O(C), we have

ei = ((ϵ⊗ id) ◦∆)(ei) =
∑

ϵ(ej)aij .

This calculation shows that the image of the O(C)-algebra morphism O(GL(V)) →
O(G) contains V. Since by construction V generates O(G) as an O(C)-algebra, this
morphism is surjective, as desired.

The rest of this subsection is devoted to the proof of a refined version of
Lemma 10.1.7 (see Proposition 10.1.9). This version is not used in this chapter, but
is required to solve some representability questions in Chapter 2. The proofs are
adapted from those in [PR, §1.b] and [PZ, §11].

Lemma 10.1.8. — Let H ⊂ G be a K-stable closed subgroup scheme that is itself
flat over C. There exists a K ⋉ G-representation V that is locally free of finite rank
over O(C), along with a direct summand V ′ ⊂ V that is locally free of rank 1, and
such that the normalizer of V ′ in G is H.

In this statement, the normalizer of V ′ is the subgroup functor NG(V ′) ⊂ G defined
as follows: for any O(C)-algebra R, let V ′

R = R⊗O(C) V ′, and set

NG(V ′)(R) = {g ∈ G(R) | g · V ′
R ⊂ V ′

R}.

https://stacks.math.columbia.edu/tag/09IG
https://stacks.math.columbia.edu/tag/0AUW
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It follows from [Mi2, Chap. V, Theorem 6.9] that NG(V ′) is represented by a closed
subgroup scheme of G.

Proof. — Note thatH is automatically affine and of finite type over C. Let J ⊂ O(G)
be the defining ideal of H. Then J is K-stable and finitely generated as an ideal in
O(G), so it contains a finite-dimensional K-stable subspace J that generates J as
an ideal. By Lemma 10.1.6, we can find a K ⋉ G-subrepresentation V1 ⊂ O(G) that
contains J and is finitely generated over O(C). As in the proof of Lemma 10.1.7, V1
is locally free of finite rank over O(C). Now consider the commutative diagram of
short exact sequences

0 V1 ∩ J V1 V1/(V1 ∩ J ) 0

0 J O(G) O(H) 0

in which the vertical maps are all injective. Since H is flat over C, O(H) is torsion-
free, and (again as in the proof of Lemma 10.1.7), V1/(V1 ∩ J ) is locally free, and
hence projective, so the top short exact sequence splits. We conclude that V1 ∩ J is
a direct summand of V1, and hence also locally free.

Let d be the rank of V1 ∩ J . Set V := ∧dV1, and set V ′ := ∧d(V1 ∩ J ). Then
both V and V ′ are locally free; V ′ is a direct summand of V; and the rank of V ′ is 1.
It is easy to see that the normalizer NG(V ′) of V ′ in V coincides with the normalizer
NG(V1 ∩ J ) of V1 ∩ J in V1.

To finish the proof, we must show that NG(V1 ∩ J ) = H. It is clear that H ⊂
NG(V1 ∩ J ). Conversely, since V1 ∩ J generates J as an ideal (because it contains
J), the normalizer of V1∩J must normalize all of J (because G acts on O(G) by ring
automorphisms). That is, NG(V1 ∩ J ) ⊂ NG(J ), and the latter normalizer is easily
seen to coincide with H.

Proposition 10.1.9. — There exist a K-equivariant locally free O(C)-module V
and a K-equivariant closed immersion of group schemes G ↪→ GL(V) over C such
that the quotient fppf sheaf GL(V)/G is represented by a quasi-affine scheme over C.

Proof. — Apply Lemma 10.1.7 to obtain a K-equivariant closed embedding ι : G ↪→
GL(V1). Then apply Lemma 10.1.8 to the pair G ⊂ GL(V1) to obtain a representation
ρ : GL(V1) → GL(V2) where V2 is locally free of finite rank, along with a direct
summand V ′

2 ⊂ V2 of rank 1 whose normalizer is G. Restricting ρ, we obtain a
morphism ϕ : G → GL(V ′

2). Combining these, we obtain a morphism of group schemes

(ι, ϕ) : G ↪→ GL(V1)×C GL(V ′
2),

which is a closed immersion by [SP, Tag 07RK]. By [An, Théorème 4.C], the fppf
quotient (GL(V1)×C GL(V ′

2))/G is represented by a scheme over C.
We will now show that (GL(V1) ×C GL(V ′

2))/G is quasi-affine over C. Since this
property is Zariski-local (see e.g. [SP, Tag 01SM]), we may replace C by a Zariski-
open subscheme and assume that V1, V2, and V ′

2 are free. Let GL(V1)×C GL(V ′
2) act

https://stacks.math.columbia.edu/tag/07RK
https://stacks.math.columbia.edu/tag/01SM
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on V2 ⊗O(C) V ′
2 by

(g, h) · (x⊗ y) = ρ(g)(x)⊗ h−1y.

Next, choose an O(C)-basis vector v for V ′
2, and consider the vector v⊗v ∈ V2⊗O(C)V ′

2.
We can see V2⊗O(C)V ′

2 as a scheme over C (an affine space), and v⊗v as a C-point of
this scheme. The stabilizer of this point is G, so the quotient (GL(V1)×C GL(V ′

2))/G
is identified with the image of the action map

f : GL(V1)×C GL(V ′
2)→ V2 ⊗O(C) V ′

2 given by (g, h) 7→ ρ(g)(v)⊗O(C) h
−1v.

A routine argument (cf. [Bri2, Proposition 2.1.10]) shows that the image of f is open
in its closure, and hence quasi-affine.

Finally we set V := V1 ⊕ V ′
2, and consider the obvious closed immersion

GL(V1)×C GL(V ′
2) ↪→ GL(V).

As above the fppf quotient GL(V)/G is a scheme, and we have a natural morphism

GL(V)/G → GL(V)/GL(V1)×C GL(V ′
2),

which is quasi-affine since it is an fppf locally trivial fibration with fiber the quasi-
affine scheme (GL(V1) ×C GL(V ′

2))/G, and the property of being quasi-affine is fpqc
local on the base (see [SP, Tag 02L7]). On the other hand, GL(V)/GL(V1)×CGL(V ′

2)
is affine over C since it is Zariski locally a base change of an affine scheme GL(n +
m,C)/(GL(n,C)×GL(m,C)). Hence GL(V)/G is quasi-affine over C, which concludes
the proof.

10.1.4. Equivariant acyclic resolutions. — We continue with the assumptions
of §10.1.3: C is a connected smooth complex affine curve, G is a flat affine C-group
scheme of finite type, and K is a complex affine group scheme acting compatibly on C
and G. In the following definition, a “K-equivariant principal G-bundle” is a principal
G-bundle in which the source and target are both equipped with actions of K, and
the associated map is K-equivariant. A “K ⋉ G-equivariant map” is just a map that
is both K- and G-equivariant. (Recall that there is no scheme called K ⋉ G.)

Definition 10.1.10. — Let X be a separated C-scheme of finite type endowed
with a morphism of C-schemes X → C and of compatible actions of G and K. A
K-equivariant G-resolution of X is a triple

(P̄ , q : P → P̄ , p : P → X)

where

– P̄ is a separated C-scheme of finite type endowed with an action of K and a
K-equivariant morphism P̄ → C;

– q : P → P̄ is a K-equivariant principal G-bundle over P̄ ;
– p : P → X is a K ⋉ G-equivariant map.

Note that in this setting, the scheme P is automatically separated and of finite
type by Remark 2.1.2(2) and the fact that an affine morphism is separated (see [SP,
Tag 01S7]), so that it will make sense to consider sheaves on X, P and P̄ . Note also
that since C is separated of finite type, given a morphism of C-schemes f : Y → C,
Y is separated and of finite type over C iff f is separated and of finite type (see [SP,

https://stacks.math.columbia.edu/tag/02L7
https://stacks.math.columbia.edu/tag/01S7
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Tag 01KV] and [GW, Proposition 10.7]). For brevity, we often simply write the last
component p : P → X of a resolution.

Proposition 10.1.11. — Let X → C be as above, and assume that X admits a
G-equivariant line bundle which is relatively ample for the map X → C. Then for any
n ≥ 0, X admits an n-acyclic K-equivariant G-resolution (P̄ , q : P → P̄ , p : P → X)
in which the map p is smooth and quasi-affine.

Proof. — By Lemma 10.1.7, there exists a K-equivariant locally free O(C)-module
V together with a K-equivariant closed embedding G ↪→ GL(V). We then set

P = St(V,V ⊕ O(C)⊕n)×C X.
The K-actions on St(V,V ⊕ O(C)⊕n) and on X induce a K-action on P , such that
the projection P → X is K-equivariant. This projection is smooth and quasi-affine
as a base change of a smooth and quasi-affine morphism (see §10.1.2), and it follows
from (the proof of) Lemma 10.1.5 that it is 2n-acyclic.

It remains to construct the scheme P̄ and the morphism q : P → P̄ . Before
doing this, we will first construct a separated, finite-type C-scheme T equipped with
a K-action and a K-equivariant morphism

(10.1.1) St(V,V ⊕ O(C)⊕n)→ T

of schemes over C that makes St(V,V ⊕ O(C)⊕n) into a principal G-module over T .
(The scheme T plays the role of P̄ in the special case where X = C.) We define
T as the fppf sheafification of the functor sending a C-algebra R to the quotient
St(V,V ⊕ O(C)⊕n)(R)/G(R). Then T is an fppf sheaf, with a natural K-action
(obtained by functoriality of the sheafification process). To establish the desired
properties of T , we will make use of the following facts:

1. By [An, Théorème 4.C], the fppf sheafification of the functor sending R to
GL(V)(R)/G(R) is a scheme, which will be denoted GL(V)/G.

2. This property being known, the morphism GL(V)→ GL(V)/G is faithfully flat
and of finite presentation by [DG, III, §3, Proposition 2.5]. Since moreover we
have an isomorphism

GL(V)×GL(V)/G GL(V) ∼= GL(V)×C G
(see the proof of [DG, III, §3, Proposition 2.5]), by Remark 2.1.2(1) we deduce
that GL(V)→ GL(V)/G is a principal G-bundle over GL(V)/G.

3. The quotient GL(V)/G is separated over C; in fact we have a cartesian diagram

GL(V)×C G GL(V)×C GL(V)

GL(V)/G GL(V)/G ×C GL(V)/G

where the upper arrow is defined by (g, h) 7→ (g, gh), the bottom arrow is the
diagonal embedding, and the other arrows are the obvious maps. Here the upper
arrow is a closed immersion since G is a closed subgroup of GL(V). Since the
property of being a closed immersion is fpqc local on the base, see [SP, Tag

https://stacks.math.columbia.edu/tag/01KV
https://stacks.math.columbia.edu/tag/02L6
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02L6], we deduce that the diagonal embedding of GL(V)/G (over C) is a closed
immersion, i.e. that this scheme is separated.

4. The quotient GL(V)/G is of finite type; in fact, this follows from [EGA4.4,
Lemme 17.7.5(iii)] applied to the diagram

GL(V) GL(V)/G

C

where the upper arrow is faithfully flat and of finite presentation by (2).

Consider the morphism of functors T → G(n,V ⊕ O(C)⊕n) induced by the map
St(V,V ⊕ O(C)⊕n) → G(n,V ⊕ O(C)⊕n). Since the latter map is a Zariski locally
trivial principal GL(V)-bundle (see Lemma 10.1.3), there exists a (Zariski) covering
of G(n,V ⊕O(C)⊕n) by open subsets U over which St(V,V ⊕O(C)⊕n) identifies with
U×CGL(V). Over such an open subset, T identifies with the product U×CGL(V)/G,
and hence is a scheme by (1) above. By [GW, Theorem 8.9], we conclude that T is
a scheme. (The K-action on T as a functor now defines a K-action on T as a scheme
by full faithfulness of the assignment X 7→ hX , see §2.1.1.)

The map T → G(n,V ⊕O(C)⊕n) is separated by the “local” description of T and
property (3) above. Since G(n,V ⊕O(C)⊕n) is separated (see §10.1.2), it follows that
T is separated. Similar reasoning using property (4) shows that T is of finite type.

Finally, the claim that the morphism St(V,V ⊕ O(C)⊕n) → T is a principal G-
bundle over T can be checked (Zariski) locally over T , and hence follows from prop-
erty (2) above. This finishes the proof of the desired properties of T .

We return to the problem of constructing q : P → P̄ . Using the principal bun-
dle (10.1.1) and our assumption on the existence of a suitable line bundle on X, we
can invoke Proposition 2.1.7 and set P̄ := St(V,V ⊕ O(C)⊕n) ×G

C X. (Note that
the K-action on P automatically descends to a K-action on P̄ by fpqc descent; see
e.g. [GW, §14.17].) By construction, this scheme fits into a cartesian square

P P̄

St(V,V ⊕ O(C)⊕n) T.

q

Since the properties of being separated or of finite type are local in the fpqc topology
(see [SP, Tag 02KU, Tag 02KZ]) and since the left vertical arrow is separated and of
finite type (because X → C has those properties), we deduce that P̄ → T is separated
and of finite type, and that hence that P̄ is separated and of finite type.

10.2. Definition of the equivariant derived category

In this section, we let C be a connected smooth complex affine curve, and we let
G be a smooth affine C-group scheme. We also let K be a smooth (and in particular,
finite type) affine group scheme over C, and we assume that C and G are equipped
with actions of K that make the structure map G → C and the multiplication map

https://stacks.math.columbia.edu/tag/02L6
https://stacks.math.columbia.edu/tag/02L6
https://stacks.math.columbia.edu/tag/02L6
https://stacks.math.columbia.edu/tag/02KU
https://stacks.math.columbia.edu/tag/02KZ
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G ×C G → G both K-equivariant. (Compared to the settings of §§10.1.3–10.1.4, we
are now imposing the additional requirement that G and K be smooth.)

A C-scheme X will be called a K⋉G-variety if it satisfies the following conditions:

– it is separated and of finite type (over C, or equivalently over C);
– it is equipped with an action of G over C;
– it is equipped with an action of K such that the structure map X → C and the

action map G ×C X → X are both K-equivariant;
– it admits a G-equivariant line bundle that is relatively ample for the structure

map X → C (so that Proposition 10.1.11 applies).

Let X be a K ⋉ G-variety. The goal of this section is to explain (following the
strategy of [BL, §2]) the definition and basic properties of the “K ⋉ G-equivariant
derived category of X,” to be denoted Db

K⋉G(X,k). When K is trivial, this notation

can be simplified to justDb
G(X,k). We reiterate that the notationK⋉G is a convenient

shorthand that does not refer to any algebro-geometric object.
Note that if Y is any separated, finite-type C-scheme equipped with a K-action,

the equivariant derived category Db
K(Y,k) is already available thanks to [BL].

10.2.1. Categories associated with resolutions. — Let X be a K ⋉ G-variety.
Following [BL, §2.1.3], given a K-equivariant G-resolution p : P → X, we define the
additive category

Db
K⋉G(X,P, k)

as follows. Its objects are triples (FX , F̄ , β) where FX ∈ Db
K(X,k) and F̄ ∈

Db
K(P̄ ,k), and where β : p∗FX

∼−→ q∗F̄ is an isomorphism in Db
K(P,k). A mor-

phism α : F → G in Db
K⋉G(X,P, k) is a pair α = (αX : FX → GX , ᾱ : F̄ → Ḡ ) such

that βG ◦p∗αX = q∗ᾱ◦βF . For integers a ≤ b, let D[a,b]
K⋉G(X,P, k) be the full additive

subcategory of Db
K⋉G(X,P, k) consisting of objects (FX , F̄ , β) with H i(FX) = 0 if

i < a or i > b.

Remark 10.2.1. — We have defined Db
K⋉G(X,P, k) in terms of the K-equivariant

derived categories of X, P , and P̄ . Those latter categories are, of course, defined
in [BL] in terms of K-resolutions of various spaces. One could unwrap that construc-
tion as well, and give an alternative definition of Db

K⋉G(X,P, k) directly in terms of
ordinary constructible complexes on spaces that carry compatible free actions of both
K and G. We will not go further in this direction.

It should be noted that Db
K⋉G(X,P, k) is not a triangulated category in general.

(The issue is that when one tries to form the cone of a morphism, the isomorphism
“β” is not well-defined in general.)

The following lemma is the analogue in our present setting of [BL, Lemma 2.3.2].

Lemma 10.2.2. — Let p : P → X be an n-acyclic resolution. Then if n ≥ b − a,
the functor

D
[a,b]
K⋉G(X,P, k)→ D

[a,b]
K (P̄ ,k)

sending (FX , F̄ , β) to F̄ is fully faithful, and its essential image consists of complexes
whose pullback to P belongs to the essential image of p∗.
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Proof. — Since p is an n-acyclic resolution, one checks as in [BL, Proposition 1.9.2]

that the pullback functor D
[a,b]
K (X,k) → D

[a,b]
K (P,k) is fully faithful. Hence a triple

(FX , F̄ , β) as in the definition of D
[a,b]
K⋉G(X,P, k) is entirely determined by the object

F̄ , and a complex in D
[a,b]
K (P̄ ,k) can be completed to such a triple iff its pullback to

P belongs to the essential image of p∗.

The following lemma is the analogue in our present setting of [BL, Proposi-
tion 2.2.1].

Lemma 10.2.3. — Let P → X be an n-acyclic resolution, and assume that X is a
K-equivariant principal G-bundle over some base Z. Then if n ≥ b− a, the canonical
functor

D
[a,b]
K (Z)→ D

[a,b]
K⋉G(X,P, k)

is an equivalence of categories.

Proof. — Since the morphism X → Z is smooth by our assumption on G, the
morphism P̄ → Z induced by our morphism P → X is also n-acyclic, see Re-
mark 10.1.2(2). As in [BL, Proposition 1.9.2], this implies that the pullback functor

D
[a,b]
K (Z)→ D

[a,b]
K (P̄ ,k) is fully faithful. Similarly, the pullback functor D

[a,b]
K (X)→

D
[a,b]
K (P,k) is fully faithful. Moreover, since the morphism P → P̄ is smooth, one

checks using the same considerations as for Remark 10.1.2(2) (see also [BL, §A.3])

that a complex inD
[a,b]
K (P̄ ,k) belongs to the essential image of the former functor iff its

pullback to P belongs to the essential image of the latter. This implies that the cate-

gory D
[a,b]
K (Z) identifies with the category of complexes in D

[a,b]
K (P̄ ,k) whose pullback

to P belongs to the essential image of the pullback functor D
[a,b]
K (X)→ D

[a,b]
K (P,k).

This finishes the proof, in view of Lemma 10.2.2.

The following lemma is our replacement for the discussion in [BL, §2.2.3].

Lemma 10.2.4. — For fixed a ≤ b, the category D
[a,b]
K⋉G(X,P, k) does not depend

(up to canonical equivalence) on the choice of n-acyclic K-equivariant G-resolution
P → X such n ≥ b− a.

Sketch of proof. — We will show that if p1 : P1 → X and p2 : P2 → X are two
n-acyclic K-equivariant G-resolutions and if p2 is quasi-affine, then the categories

D
[a,b]
K⋉G(X,P1,k) and D[a,b]

K⋉G(X,P2,k) are canonically equivalent. This will imply the
claim in view of Proposition 10.1.11.

As in [BL] we will consider the scheme

P := P1 ×X P2

and the natural map p : P → X. The first observation is that P is again an n-
acyclic K-equivariant G-resolution (for the diagonal K- and G-actions). Here, using
in particular Remark 10.1.2(2), the only thing which is not immediate is that P is
a principal G-bundle over some base which is separated and of finite type. However
by assumption p2 is quasi-affine, so the morphism P → P1 is quasi-affine. As in the
proof of Proposition 2.1.7, we can therefore apply descent (more specifically, [SGA1,
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Exp. VIII, Corollaire 7.9]) to obtain the scheme P̄ and the principal G-bundle P → P̄
over P̄ . Moreover, since p2 is separated and of finite type, so is P → P1. We then
deduce (using [SP, Tag 01KV] and [GW, Proposition 10.7], as in Remark 2.1.10)
that the morphism P̄ → P̄1 is also separated and of finite type, and hence that P̄ is
separated and of finite type over C.

Since P is now known to be a G-resolution, we can consider the category

D
[a,b]
K⋉G(X,P, k), and we have canonical functors

D
[a,b]
K⋉G(X,P1,k)→ D

[a,b]
K⋉G(X,P, k)← D

[a,b]
K⋉G(X,P2,k)

induced by pullback under the morphisms P̄ → P̄1 and P̄ → P̄2 respectively; so to
conclude it suffices to prove that each of these functors is an equivalence of categories.
The two cases are similar, and for notational simplicity we assume that i = 1.

By definition, an object of D
[a,b]
K⋉G(X,P1,k) is a triple (FX , F̄ , β) where β is an

isomorphism between the pullbacks to FX (a complex on X) and F̄ (a complex on
P̄1) to P1. Applying Lemma 10.2.3 to the resolution P → P1, we see that the datum
of F̄ is equivalent to the datum of a triple (GP1

, Ḡ , γ) where γ is an isomorphism
between the pullbacks of GP1 (a complex on P1) and Ḡ (a complex on P̄ ) to P . Here
β identifies GP1 with the pullback of FX , so these data are equivalent to the datum
of FX , Ḡ , and an isomorphism between their pullbacks to P . Such data are exactly

the objects of the category D
[a,b]
K⋉G(X,P, k), which finishes the proof.

10.2.2. Definition of the equivariant derived category. — Let X be a K⋉G-
variety. For any integers a ≤ b, we define

D
[a,b]
K⋉G(X,k) := D

[a,b]
K⋉G(X,P, k)

where p : P → X is any n-acyclic K-equivariant G-resolution, with n ≥ b − a. (By
Lemma 10.2.4, this category does not depend on the choice of P up to canonical
equivalence.) If a′ ≤ a ≤ b ≤ b′, there is a natural fully faithful functor

D
[a,b]
K⋉G(X,k) ↪→ D

[a′,b′]
K⋉G (X,k).

We then define

Db
K⋉G(X,k) = lim−→

[a,b]

D
[a,b]
K⋉G(X,k).

We define a distinguished triangle in Db
K⋉G(X,k) to be a triangle of the form

F1 → F2 → F3 → F1[1] where, for some choice of a ≤ b, the objects F1, F2, F3

and F1[1] belong to D
[a,b]
K⋉G(X,k) = D

[a,b]
K⋉G(X,P, k) (here P is a resolution as above),

and the triangle F1 → F2 → F3 → F1[1] is distinguished as a triangle inD
[a,b]
K (P̄ ,k),

see Lemma 10.2.2. One can check as in [BL] (see also [Ac3, Theorem 6.4.10]) that
this collection of triangles endows the category Db

K⋉G(X,k) with the structure of a
triangulated category.

We also have a natural “forgetful functor”

(10.2.1) ForG : Db
K⋉G(X,k)→ Db

K(X,k)

that sends a triple (FX , F̄ , β) to FX . This functor is easily seen to be triangulated.

https://stacks.math.columbia.edu/tag/01KV
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Note that if X has the structure of a K-equivariant principal G-bundle over some
base X̄ which is separated and of finite type, then the map id : X → X is an∞-acyclic
resolution of X. As a consequence, we obtain an equivalence of categories

Db
K⋉G(X,k) ∼= Db

K(X̄, k).

10.2.3. Basic properties. — We now prove a few properties of equivariant derived
categories, mainly with respect to change of groups.

Suppose we have a K-stable smooth closed subgroup scheme H ⊂ G. Recall that
our assumptions on C allow us to invoke [An, Theorem 4.C], which guarantees that
the fppf sheafification of the functor R 7→ G(R)/H(R) is represented by a C-scheme,
which we will denote by G/H. As in the proof of Proposition 10.1.11, the K-action
on G induces a K-action on G/H.

Lemma 10.2.5. — The quotient morphism G → G/H is a K-equivariant princi-
pal H-bundle over G/H, and the scheme G/H is smooth and of finite type over C.
Moreover, if H is a normal subgroup scheme of G, then G/H is an affine C-group
scheme.

Proof. — The first assertion follows from the generalities recalled in the proof of
Proposition 10.1.11. By Remark 2.1.2(2) this implies that this map is smooth, and
then (using [SP, Tag 02K5]) that G/H is smooth over C. By [SGA3.1, Exp. VIB,
Propositions 9.2(x) and 9.2(xiii)], this scheme is separated and of finite type over C.

If H is normal, this C-scheme has a natural structure of a group scheme. Then we
note that, if η is the generic point of C, by [SGA3.1, Exp. VIB, Proposition 9.2(v)]
we have

(G/H)η = Gη/Hη,
where the subscript η means the fiber at η, and the right-hand side denotes the fppf
sheafification of the natural quotient presheaf. This quotient is an affine group scheme
by [SGA3.1, Exp. VIB, Théorème 11.17]. In view of [An, Proposition 2.3.1], this
implies that G/H is affine over C.

Proposition 10.2.6 (Quotient equivalence). — Assume that H ⊂ G is a K-
stable normal subgroup scheme. Let X be a K⋉G-variety, and let Y be a K⋉ (G/H)-
variety. Suppose we have a commutative diagram

X Y

C

f

where f is equivariant with respect to the projection G → G/H, and which makes
X into a K-equivariant principal Hop-bundle over Y (for the right action of Hop

deduced from the left action of G via the embedding H → G). Then there is a canonical
equivalence of triangulated categories

Db
K⋉G(X,k) ∼= Db

K⋉(G/H)(Y, k).

https://stacks.math.columbia.edu/tag/02K5
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(From the definition of a K ⋉ G-variety, we see that the preceding proposition
assumes that X and Y both admit suitable equivariant line bundles. In fact, we
need only assume this for Y : the pullback of a G/H-equivariant relatively ample line
bundle on Y is a G-equivariant relatively ample line bundle on X because f is affine
by Remark 2.1.2(2); see [GW, Proposition 13.83].)

Proof. — In view of the definitions of Db
K⋉G(X,k) and Db

K⋉(G/H)(Y, k), as in [BL,

§2.6.2], to prove the proposition it suffices to prove that if p : P → X is a resolution,
then there exists a C-scheme Q and morphisms P → Q → P̄ which make P a
principal H-bundle over Q and Q a principal G/H-bundle over P̄ . (Indeed, if p is n-
acyclic for some n, the morphism Q→ Y provided by Remark 2.1.3 will be n-acyclic
by Remark 10.1.2(2).

We construct the scheme Q as the associated bundle P ×G
C (G/H), which is possible

thanks to Remark 2.1.8(1). We then have canonical smooth morphisms

P = P ×G
C G → Q→ P̄

induced by the smooth morphisms G → G/H → C. The fact that the first (resp. sec-
ond) of these morphisms is a principal H-bundle over Q, resp. a principal G/H-bundle
over P̄ , follows from the compatibility of associated bundles with fiber products,
see §2.1.4, and the fact that G → G/H is a principal H-bundle over G/H.

The following statement is given only for completeness. (It will not be used in the
rest of the book.) Let H ⊂ G be a K-stable closed subgroup scheme, and let X be a
K ⋉H-variety. (In particular, X admits a relatively ample H-equivariant line bundle
L .) Then we can apply Proposition 2.1.7 to the principal H-bundle G → G/H and
to X to obtain an “induced” scheme G ×H

C X, such that the map G ×H
C X → G/H

is separated and of finite type by Remark 2.1.10; as a consequence, G ×H
C X itself is

separated and of finite type over C.
This scheme is not quite a K ⋉ G-variety, because we are (potentially) missing

the equivariant relatively ample line bundle. But this line bundle is required only
to construct sufficiently many acyclic resolutions with the property that the mor-
phism to the given scheme is quasi-affine (as in Proposition 10.1.11), see the proof of
Lemma 10.2.4. In the present setting, the required resolutions can be constructed as
follows. Consider an n-acyclic resolution PX as in Proposition 10.1.11, for the action
of H on X. Since the morphism PX → X is quasi-affine, the pullback of L to PX is
relatively ample for the morphism PX → C by [GW, Proposition 13.83]. As above
we can therefore consider the quotient G ×H

C PX . The morphism G ×H
C PX → G×H

C X
is quasi-affine and n-acyclic by descent, and it is not difficult to check that the natural
map G ×H

C PX → P̄X is a principal G-bundle. From these considerations we obtain
that the category Db

K⋉G(G ×H
C X,k) is well defined.

Proposition 10.2.7 (Induction equivalence). — In the setting described above,
there is a canonical equivalence of triangulated categories

Db
K⋉G(G ×H

C X,k) ∼= Db
K⋉H(X,k).
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Sketch of proof. — We consider the scheme G ×C X, with the action of G ×C H
determined by (g, h) · (a, x) = (gah−1, h · x). Applying Proposition 10.2.6 to the
projection G ×C X → X (and the normal subgroup G ⊂ G ×C H) we obtain an
equivalence of categories

Db
K⋉H(X,k) ∼= Db

K⋉(G×CH)(G ×C X,k).

Then, applying the same proposition to the projection map G ×C X → G ×H
C X and

the subgroup H ⊂ G ×C H we obtain an equivalence

Db
K⋉(G×CH)(G ×C X,k) ∼= Db

K⋉G(G ×H
C X,k).

Combining these two equivalences we obtain the desired claim.

The following statement is a variant of [BL, Theorem 3.7.3].

Proposition 10.2.8. — Let H ⊂ G be a K-stable closed normal subgroup scheme
with the property that for any closed point x ∈ C, the fiber Hx is unipotent. Then,
for any K ⋉ (G/H)-variety X, there is an equivalence of triangulated categories

Db
K⋉(G/H)(X,k)

∼−→ Db
K⋉G(X,k),

where in the right-hand side X is regarded as a G-scheme via the quotient morphism
G → G/H.

Proof. — Recall that G/H is a smooth affine group scheme of finite type over C
by Lemma 10.2.5. Let (P̄ , q : P → P̄ , p : P → X) be an n-acyclic K-equivariant
G-resolution of X. Then as in the proof of Proposition 10.2.6 we can consider the
“associated bundle” Q = P ×G

C (G/H) and the K-equivariant principal G/H-bundle
Q → P̄ . By Remark 10.1.2(1) the quotient map G → G/H is ∞-acyclic (since a
complex unipotent algebraic group is contractible as a topological space), and using
Remark 10.1.2(2) we deduce that the natural map b : P → Q is also ∞-acyclic.

If p′ : Q→ X is the morphism induced by p, then since b is ∞-acyclic, for a sheaf
F on X, we have

p′∗(p
′)∗F ∼= p′∗b∗b

∗(p′)∗F ∼= p∗p
∗F .

Hence from the fact that p is n-acyclic we deduce that p′ is n-acyclic as well. Thus,
(P̄ , Q → P̄ , p′ : Q → X) is an n-acyclic K-equivariant G/H-resolution of X. Using
Lemma 10.2.2 on both sides, we obtain an equivalence

D
[a,b]
K⋉(G/H)(X,Q, k) ∼= D

[a,b]
K⋉G(X,P, k)

whenever b− a ≤ n. The result follows.

The following lemma only has nontrivial content for group schemes over C; it does
not have an analogue purely in the context of algebraic groups.

Lemma 10.2.9. — Let C ′ ⊂ C be either a single point, or an affine open subset,
and let G′ = G ×C C ′. If X is a K ⋉ G-variety whose structure map X → C factors
through the inclusion C ′ ↪→ C, then there is a canonical equivalence of triangulated
categories

Db
K⋉G′(X,k) ∼= Db

K⋉G(X,k),
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where in the left-hand side X is regarded as a C ′-scheme.

Proof. — This follows from the observation that any n-acyclic G-resolution of X seen
as a scheme over C is, in fact, an n-acyclic G′-resolution of X seen as a scheme over
C ′.

10.2.4. Sheaf functors. — Let us briefly comment on how to construct pushfor-
ward and pullback functors associated with equivariant morphisms of schemes.

Let X, Y be K ⋉ G-varieties, and let f : X → Y be a K ⋉ G-equivariant map
of C-schemes. Also let F ∈ Db

K⋉G(X,k), and choose a ≤ b such that F lies in

D
[a,b]
K⋉G(X,k), and such that f∗For

G(F ) and f!For
G(F ) lie in D

[a,b]
K (Y,k), where ForG

is as in (10.2.1). Choose n ≥ b − a, and an n-acyclic resolution pY : P → Y such
that pY is smooth and P ′ := P ×Y X is a principal G-bundle(2) (e.g. a resolution
constructed as in the proof of Proposition 10.1.11). Let P̄ and P̄ ′ be the quotients of
P and P ′, and consider the commutative diagram

X P ′ P̄ ′

Y P P̄

f

pX

f̃

qX

f̄

pY qY

where both squares are cartesian. Here, the horizontal maps are all smooth. Write

F as a triple (FX , F̄ , β) ∈ D[a,b]
K⋉G(X,P

′,k). We then set

f∗F = (f∗FX , f̄∗F̄ , f̃∗β), f!F = (f!FX , f̄!F̄ , f̃!β).

Here, f̃∗β : f̃∗p
∗
XF

∼−→ f̃∗q
∗
XF̄ can be regarded as an isomorphism p∗Y f∗F

∼−→ q∗Y f̄∗F̄

by smooth base change. Similarly, by (ordinary) base change f̃!β can be regarded as an

isomorphism p∗Y f!F
∼−→ q∗Y f̄!F̄ . (In this case, the smoothness of pY is not required

in this construction.) It is obvious from the construction that the functors f∗, f!
commute with ForG .

The construction of the functors f∗ and f ! is similar: given a complex G ∈
D

[a,b]
K⋉G(Y, k), we choose the same data as above; then G is represented by a triple

(GY , Ḡ , β) ∈ D[a,b]
K⋉G(Y, P,k), and we set

f∗G = (f∗GY , f̄
∗Ḡ , f̃∗β), f !F = (f !FX , f̄

!F̄ , f̃ !β).

Here f̃∗β can be seen as an isomorphism p∗Xf
∗GY

∼−→ q∗X f̄
∗Ḡ by compatibility of

pullback functors with composition (we do not need the smoothness assumption on

pY here), and f̃ !β can be seen as an isomorphism p∗Xf
!GY

∼−→ q∗X f̄
!Ḡ by smoothness

of qX and pX (see [BL, §1.8]).
For further details on the traditional “six operations,” see [BL, §3] or [Ac3, §6.5].

(2)In the setting of group schemes over a field, one can check that the analogous condition is automatic

in case Y is quasi-projective, using the fact that a torsor under a smooth affine group scheme over
a field is locally isotrivial, see [Ra, Lemme XIV.1.4]. We do not know if a statement of this sort is

true over a curve.
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10.3. Equivariant nearby cycles and monodromy

Suppose we have a map f : X → A1
C, where X is a separated scheme of finite type

over C. Let X× = f−1(A1
C ∖ {0}), and let X0 = f−1(0). As in Section 9.1, we have

a nearby cycles functor

(10.3.1) Ψf : Db
c (X

×,k)→ Db
c (X0,k).

In this section, we consider the problem of upgrading this to a functor between equiv-
ariant derived categories, in the setting where an algebraic group (or group scheme)
acts on X.

10.3.1. The case of algebraic groups acting trivially on A1. — Consider first
the “classical” situation: let G be an algebraic group (i.e. an affine C-group scheme of
finite type, which is automatically smooth) acting onX. Assume also that f : X → A1

is G-equivariant, where G acts trivially on A1. Then X× and X0 are both G-stable,
and the method from [BL, §3] can be used to define a functor

(10.3.2) Ψf : Db
G(X

×,k)→ Db
G(X0,k).

The reason that we require G to act trivially on A1 is this: given a G-resolution
(P̄ , P → P̄ , P → X) of X, the definition of (10.3.2) involves the nonequivariant
nearby cycles functor for P̄—but there is no induced map P̄ → A1 unless the G-
action on the latter is trivial.

If G acts nontrivially on A1, there is in general no notion of “G-equivariant nearby
cycles.” However, there is an exception coming from Proposition 9.3.6: if G = Gm

acts on A1 by the natural dilation action, then we have functors

Ψf : Db
C×(X×,k)→ Db

C×-mon(X,k),(10.3.3)

Ψun
f : PervC×(X×,k)→ Perv(X( C×,k).(10.3.4)

10.3.2. The case of group schemes. — Now suppose we have a smooth affine
group scheme G → A1 of finite type. Let

G× := G ×A1 (A1 ∖ {0}), G0 := G ×A1 {0}.

If there is an action of the multiplicative group C× on G compatible with the natural
dilation action of C× on A1, then we have explained in Section 10.2 how to define the
equivariant derived category Db

C×⋉G(X,k), where X is a C× ⋉ G-variety.
On the other hand, following the construction of [BL] we have the equivariant de-

rived category Db
C×⋉G0

(X0,k). It is also possible to consider monodromic categories,
as in Section 9.3, but keeping the G0-equivariance condition. In this way one obtains
the C×-monodromic G0-equivariant derived category of X0, denoted by

Db
G0,C×-mon(X0,k).

Similarly,

Db
G0
(X0( C×,k) ⊂ Db

G0,C×-mon(X0,k)
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is defined to be the full triangulated subcategory generated by the image of the
forgetful functor from Db

C×⋉G0
(X0,k). The “monodromy” construction also works in

the setting, providing a canonical group morphism

µF : X∗(T )→ AutDb
G0

(X0,k)(F )

for any F in Db
G0,C×-mon(X0,k).

The following statement summarizes the circumstances under which it makes sense
to work with G-equivariant nearby cycles.

Proposition 10.3.1. — Let G → A1 be a smooth affine group scheme of finite
type, and let X be a G-variety. In particular, X is equipped with a structure map
f : X → A1.

1. There is a t-exact functor

Ψf : Db
G×(X×,k)→ Db

G0
(X0,k)

that corresponds to the “traditional” nearby cycles functor (10.3.1) under the
appropriate forgetful functors. Moreover, this functor admits an automorphism
mF that is mapped to the monodromy automorphism of §9.1.3 under the forgetful
functor ForG0 .

2. Suppose there is an action of C× on G such that G → A1 is equivariant with
respect to the natural dilation action of C× on A1, and suppose that X has the
structure of a C× ⋉ G-variety. Then there is a t-exact functor

Ψf : Db
C×⋉G×(X×,k)→ Db

G0,C×-mon(X0,k)

which corresponds to (10.3.3) under the appropriate forgetful functors, along
with a left exact functor

Ψun
f : PervC×⋉G×(X×,k)→ PervG0

(X0( C×,k).
Moreover, for both of these, we have

mF = µΨf (F)(−1).
3. In the setting of part (2), suppose that Ψun

f (F ) = Ψf (F ) for all F ∈
PervC×⋉G×(X×,k). Then Ψun

f extends to a t-exact triangulated functor

Ψun
f = Ψf : Db

C×⋉G×(X×,k)→ Db
G0
(X0( C×,k).

The proof consists in carrying out a construction that follows the pattern explained
at the end of the preceding section, or in [BL, §3]. (For part (2) we have to consider
the C×-monodromic G-equivariant derived category of X; this category is defined
to be Db

C̃×⋉G
(X,k), where the latter is defined as in Section 10.2, but using the

C̃×-equivariant derived categories of C× ⋉ G-resolutions of X, rather than their C×-
equivariant derived categories.) We omit further details.
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en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études
Sci. Publ. Math. No. 60 (1984), 197–376.

[Bry] R. Brylinski, Limits of weight spaces, Lusztig’s q-analogs, and fiberings of
adjoint orbits, J. Amer. Math. Soc. 2 (1989), 517–533.

[Brl] J.-L. Brylinski, Transformations canoniques, dualité projective, théorie
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[GW] U. Görtz and T. Wedhorn, Algebraic geometry I. Schemes. With exam-
ples and exercises, Advanced Lectures in Mathematics, Vieweg + Teubner,
2010.

https://arxiv.org/abs/1308.2604
https://arxiv.org/abs/1308.2604
https://arxiv.org/abs/2102.13459
https://arxiv.org/abs/alg-geom/9511007


370 BIBLIOGRAPHY
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France, 1982.

[Sp2] T. A. Springer, Linear algebraic groups, second ed., Progr. Math. 9,
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affine Grassmannian

GrG, local version, 33

GrBD
G , Bĕılinson–Drinfeld version,
89

GrCen
G , central version, 83

GrG(S), iterated global version, 90

aλ1,λ2
, canonical morphism from

J∗(λ1,k) ⋆GO
0 J∗(λ2,k) to

J∗(λ1 + λ2,k), 61
aλ1,λ2

, canonical morphism from
Nk(λ1)⊗k Nk(λ2) to Nk(λ1 + λ2),
61

α−,−,−, associativity isomorphism,
113

arc group

GO , associated with G, 33

L+G, associated with G, 81
L+GBD, Bĕılinson–Drinfeld version,
88

AvasphIW , functor from Pasph
I to PIW

induced by AvIW , 236

AvIW , Iwahori–Whittaker averaging
functor, 234

B, negative Borel subgroup, 35

B+, positive Borel subgroup, 35

B∨
k , negative Borel subgroup in G∨

k ,
52

∆I
w, standard extension functor, 142

δ0, unit object in P0
I , 245

∆ex
λ , standard exotic sheaf attached

to λ, 264

δGr, unit object in the Satake
category, 46

∆IW
λ , standard Iwahori–Whittaker

perverse sheaf attached to λ, 233

dλ, dimension of N(λ), 215

∂X , completion of the basic affine
space in X , 209

∂Xk, counterpart of ∂X over k, 283
E0X , trivial G-bundle over X, 81

F , Arkhipov–Bezrukavnikov functor,
230

F, fiber functor for the Satake
category, 47

F0
X , trivial G-bundle over X, 49

F asph, composition of Db(Πasph) and
F , 255

fF f , variant of F for N , 273

FIW , Arkhipov–Bezrukavnikov
equivalence, 255

F k
IW , Arkhipov–Bezrukavnikov

equivalence over k, 303
F k, Arkhipov–Bezrukavnikov functor

over k, 293
Fλ, direct factor of F attached to λ, 47
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fΛλ , highest weight arrow for
Z(J∗(λ,k)), 175

fλ, projection from Nk(λ) to its
highest weight line, 59

FlG, affine flag variety, 76
FlG,w, I-orbit on FlG associated with

w, 139

FlIWG,λ, I
+
u -orbits on FlG attached to

wλ, 233
F r, variant of F for the regular

nilpotent orbit, 268
FusG, fusion space, 49
G, reductive group, 35
Γy, graph of y, 49

Γ̂y, completion of CR along Γy, 49

Γ̂◦
y, complement of Γy in Γ̂y, 49

̂Γy1 ∪ Γy2 , completion of CR along
Γy1 ∪ Γy2 , 49

( ̂Γy1 ∪ Γy2)
◦, complement of Γy1 ∪ Γy2

in ̂Γy1 ∪ Γy2 , 49
G, global group scheme over C, 81

GradΛλ , k-module associated with grΛλ ,
155

grΛλ , λ-graded part of the Wakimoto
filtration, 155

GradΛX∨ , direct sum of the GradΛλ ’s,
155

GrcG, connected component associated
with c, 36

GrλG, spherical orbit attached to λ, 36
g∨, Lie algebra of G∨, 210
G∨

k , Langlands dual group over k, 52
g∨k , Lie algebra of G∨

k , 283
H, affine Hecke algebra, 189
Hf , Hecke algebra of Wf , 189
Hw, element of the standard basis of

H, 189
Hw, element of the canonical basis of
H, 193

I, Iwahori subgroup associated with
B, 76

I+, positive Iwahori subgroup, 232
I+u , pro-unipotent radical of I+, 232

IC IW
λ , Iwahori–Whittaker
intersection cohomology complex
attached to λ, 234

IC I
w, intersection cohomology
complex associated with w, 142

I, Iwahori group scheme, 78
JΛ
λ , Wakimoto functor, 149

jIWλ , embedding of FlIWG,λ in FlG, 233

jλ, embedding of GrλG, 45
J∗(λ, k), costandard spherical

perverse sheaf associated with λ,
45

J!(λ,k), standard spherical perverse
sheaf associated with λ, 45

J!∗(λ,k), simple spherical perverse
sheaf associated with λ, 45

jw, embedding of FlG,w, 142
Kλ, Koszul complex associated with

λ, 214
Λλ, elements bigger than λ for ⊴Λ,

149
LAS, Artin–Schreier local system, 233
≤Bru, Bruhat order, 140
≤geo, geometric order on X∨, 262
⪯Λ, order on X∨ attached to Λ, 141
⊴Λ, dominance order attached to Λ,

149
Lex
λ , simple exotic sheaf attached to λ,

265
Lλ, point of GrG attached to λ, 36
loop group
GK , associated with G, 33
LG, associated with G, 81
LGBD, Bĕılinson–Drinfeld version,

88
m, multiplication map for GrG, 46
m′, multiplication map for FlG, 77
mF , monodromy automorphism of

ΨS(F ), 104

Msph, spherical H-module, 192
µi,j , convolution map for GrG(S), 91
N , nilpotent cone, 254
n0, element in g∨ determined by Φ0,

246
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∇Iw, costandard extension functor, 142

∇ex
λ , costandard exotic sheaf attached

to λ, 263

∇IW
λ , costandard Iwahori–Whittaker

perverse sheaf attached to λ, 233

nF , logarithm of monodromy on
Ψf (F ), 344

Nk(λ), induced G
∨
k -module associated

with λ, 59

Ñ , Springer resolution, 210

N̂ , torsor over Ñ , 210

N̂X , “affine completion” of N̂ , 211

N̂k, torsor over Ñk, 283

Ñk, Springer resolution over k, 283
n∨, Lie algebra of U∨, 210

n∨k , Lie algebra of U∨
k , 283

Ω, elements of length 0 in W , 140

Or, regular nilpotent orbit in g∨, 253

Õr, preimage of Or in Ñ , 253

OÑ (λ), line bundle on Ñ attached to
λ, 210

PervΛI (FlG,k), category of
Wakimoto-filtered perverse
sheaves, 153

pGr, projection from GK to GrG, 34

ϕ−,−, monoidality isomorphism for Z,
126

Φ0, equivalence for P̃0
I , 246

PI , category of I-equivariant perverse
sheaves on FlG, 218

π, projection from FlG to GrG, 76

P0
I , “regular quotient” of PI , 244

Π0, quotient functor for P0
I , 244

Π0
asph, quotient functor from Pasph

I to

P0
I , 267

P̃0
I , full subcategory of P0

I , 246

Pasph
I , antispherical quotient of PI ,

232

Πasph, quotient functor for P
asph
I , 232

fPf
I , quotient of PI associated with

fW f , 273
fΠf , quotient functor for fPf

I , 273

fΠf
asph, quotient functor from Pasph

I to
fPf
I , 273

PIW , category of Iwahori–Whittaker
perverse sheaves on FlG, 233

ΨS , nearby cycles functor associated
with the iterated global affine
Grassmannian, 104

R, root system, 35

R+, positive roots, 35

RΛ, positive system attached to Λ,
141

R∨, coroot system, 35

R∨
+, positive coroots, 35

ρ, half-sum of the positive roots, 36

S, simple reflections in W , 140

S, Satake equivalence, 52

σ−,−, normalized centrality
isomorphism for Z, 129

σCom, commutativity constraint in
the Satake category, 50

σFus, commutativity isomorphism
constructed from FusG, 50

σ̃−,−, centrality isomorphism for Z,
115

Sλ, (negative) semiinfinite orbit
attached to λ, 42

⋆C , global convolution product over
C, 103

⋆GO , convolution product on GrG, 46

⋆GO
0 , perverse convolution on GrG, 46

⋆I , convolution product on GrG, 77

⋆I0, perverse convolution on FlG, 115
⃝⋆ , convolution product in P0

I , 245

SΛ
w, semiinfinite orbit in FlG attached

to w, 165

T , maximal torus, 35

t(λ), element of W attached to λ, 139

θΛλ , Bernstein element in H, 189
Tλ, (positive) semiinfinite orbit

attached to λ, 44

T∨
k , k-torus dual to T , 57
U , unipotent radical of B, 44

U+, unipotent radical of B+, 44
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u0, unipotent element in G∨
K

determined by vK, 299

Uk, unipotent variety over k, 300
UK, unipotent variety over K, 303

Ũk, multiplicative Springer resolution,
283

ÛX ,k, “affine completion” of Ûk, 284
Ûk, torsor over Ũk, 283
U∨, unipotent radical of B∨, 207

v, fiber functor on P̃0
I , 248

W , affine Weyl group, 139

w◦, longest element in Wf , 60

WCox, Coxeter part of W , 140

Wf , Weyl group, 35
fW , elements w in W minimal in

Wfw, 232

fW f , elements w minimal in WfwWf ,
273

wλ, minimal length element in
Wf · t(λ), 233

X, weight lattice, 35
X , affine completion of the basic

affine space, 208
Xk, variant of X over k, 283
xΛ, element of Wf attached to Λ, 141
X∨, coweight lattice, 35
X∨

+, dominant coweights, 35
Z, central functor, 106
Z 0, composition of Z and Π0, 245
Z , composition of Z with the inverse

of S, 218
Z IW , composition of Z with AvIW ,
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