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1. Where are Kloosterman coming from?

1.1. Poincaré series.

Source: [Kow10, IK04]

If a group  acts on a set X, a general interesting problem is the
construction of complex valued functions on X invariant under the
action of , in other words, functions ƒ : X→ C such that

∀γ ∈  ∀ ∈ X ƒ (γ) = ƒ ().

Assume that we have at our disposal a normal subgroup B of  and
a function F : X → C that is invariant under the action of B, then the
averaging process allow to build

 7→
∑

g∈B\
F(g)

that is -invariant... if the sum is actually convergent which is less
likely the smaller B is, and therefore the easier it is to find F!

Let’s be a bit more specific and take for X the upper-half plane H, for
 any congruence subgroup

0(N) =
��

 b
c d

�

∈ SL(2,Z) : N | c
	

.

acting on H by z 7→ z+b
cz+d . For B take the stabilizer of the cusp i∞ given

by
i∞ =

�

±
�

1 n
0 1

�

: n ∈ Z
	

.

For any integer m, the function

em : H → C

z 7→ e2πimz

is invariant by i∞. The averaging process would lead to consider

z 7→
∑

g∈i∞\0(N)
em(gz).

However, there is no value of m for which this function is absolutely
convergent.

Poincaré got the intuition that it would be more easy to build auto-
morphic functions of even weight k, meaning ƒ : H→ C such that

∀g ∈ 0(N) ∀z ∈ H ƒ (gz) = j(g, z)kƒ (z) j
��

 b
c d

�

, z
�

= cz + d
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and to deduce an invariant function by taking the quotient of two au-
tomorphic functions. The corresponding averaged function is the now
names Poincaré series after he intriduced them in a paper (published
in 1911, after his death):

Pm(z) =
∑

g∈i∞\0(N)
j(g, z)−k em(gz).

Form< 0, the series does not converge, form = 0 we get the important
Eisenstein series (fully described by the Eisenstein series on SL(2,Z))
but shall not focus on them and so we assume m ≥ 1 and k ≥ 4 also
for convergence reasons.

The Poincaré series is automorphic of weight k. Its Fourier expansion
is given by

Pm(z) =
+∞
∑

n=1

dPm(n)en(z)

where

dPm(n) = δ(m,n) + 2πik
� n

m

�(k−1)/2 +∞
∑

c=1
N|c

S(m,n; c)

c
Jk−1

�

4π

p
mn

c

�

.

Here

• Jℓ is the J Bessel function defined for example by
∑+∞

r=0
(−1)r
r!(r+ℓ)!

� z
2

�ℓ+2r

• S is the Kloosterman sum

S(m,n; c) =
∑

d (c)
(d,c)=1
dd=1 (c)

e

 

md + nd

c

!

(e( ) = e1( )).

This is essentially a consequence of the Poisson summation formula.

The Poincaré series are of crucial importance in the analytic number
theory of modular forms since their set spans the finite dimensional
space of the cuspidal modular forms of weight k over 0(N), thanks to
the following formula: if ƒ is a cuspidal modular form of weight k over
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0(N), then its Fourier expansion is

ƒ (z) =
+∞
∑

n=1

(4πn)k−1

(k − 2)!
〈ƒ , Pn〉en(z) 〈ƒ , Pn〉 =

∫

0(N)\H
ƒ (z)Pn(z)yk

ddy

y2

(〈 , 〉 is the Petersson scalar product). By elementary linear algebra,
a basis space of the space of cuspidal modular forms of weight k
over 0(N) should exist made of Poincaré series. However, it is not
even known if some Poincaré series are indeed identically vanishing.
Nor a description of the linear relations between Poincaré series is
known. These problems are mentionned by Iwaniec [Iwa97, p. 54].
Rhoades [Rho12] relates the question of the description of linear re-
lations with the existence of a so-called weakly holomorphic forms
with prescribed principal part. To my knowledge at least, no explicit
linear relation between Poincaré series is however known yet (for
general weight and N. For values of k sufficiently small so that no
nonzero cuspidal form exist, the Poincaré series vanish identically ; see
also [CS17, Theorem 8.2.3]).

The Fourier expansion of the Poincaré series and the expression of
the Fourier implies the following so-called “Petersson trace formula"
that is the departure point of most of the analytical studies of modular
forms:

(k − 2)!

(4π
p
mn)k−1

∑

ƒ∈Hk(N)

bƒ (n)bƒ (m)

‖ƒ‖2

= δ(m,n) + 2iπ−k
+∞
∑

c=1
N|c

S(m,n; c)

c
Jk−1

�

4π
p
mn

c

�

.

where Hk(N) is any orthonormal basis of the space of cuspidal forms of
weight k over 0(N).

1.2. Kloosterman variant of the circle method.

Source: [Kow10, Iwa97]

In 1926, Kloosterman developed a version of the circle method to
estimate the number of solutions (1, 2, 3, 4) ∈ Z4 of the equation

1
2
1 + 1

2
1 + 1

2
1 + 1

2
1 = n (1, 2, 3, 4, n) ∈ Z5>0. (1.1)
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His estimation rely on a estimation of S(m,n; c) that he deduced from
an evaluation of the fourth moment

V4(p) =
∑×

 (p)

S(,1;p)4, p prime

He computed V4(p) = 2p3 − 3p2 − 3p − 1 and got

|S(,1;p)| < 2p3/4.

From this, he obtained that the number of solutions of (1.1) is

π2

p
1234

nS(n) + O
�

n17/18+ϵ
�

where S(n) is the so-called singular series whose size varies between
log log(n)−1 and log log(n).

The computation of explicit forms of the moments of S(,1;p) is still
an ongoing task. For a survey of what is knonwn and new results, see
a recent work by Sayed & Kalita [SK23].

2. Bounds

If c =
∏

p|c p
p(c), let cp = c/pp(c), then we have a multiplicative

relation

S(m,n; c) =
∏

p|c
S
�

mcp
2, n;pp(c)

�

, cpcp = 1 (pp(c)).

We now focus on S(m,n;pα).

If m and n are coprime with p, if c ≥ 1, then

S
�

pm,pbn, pc
�

=










pS
�

mn,1;pc−
�

if  = b < c

pmin(,b,c)
�

1 −
1

p

�δ(c≤min(,b))

μ
�

pc−min(,b,c)� otherwise.

We now focus on S(m,1;p).

Assume  ≥ 2, then

S(m,1;p) =
p−1
∑×

=1

e

�

m + 

p

�

.



6 E. ROYER

Write uniquely  = h+ jp−1 with 0 ≤ j ≤ p− 1 and 1 ≤ h ≤ p−1 − 1, we
have  = h − jh

2
p−1 (here, we use  ≥ 2), and hence

S(m,1;p) =
p−1−1
∑×

h=1

e

 

mh + h

p

!

p−1
∑

j=0

e





m − h
2

p





j

= p

p−1−1
∑×

h=1
m=h

2
(p)

e

 

mh + h

p

!

In particular, S(m,1;p) is zero if m is not a square modulo p.

Remark. Since the kernel of the homomorphism  7→ 2 of
�

Z/p
�× is

{−1,1}, exactly half of the sums S(m,1;p) vanish. These sums with
 non square modulo p will be called trivially vanishing.

If m is a nonzero square modulo p (and hence also a square modulo
p), let m = s2 (p), we have

S(m,1;p) = 2
Æ

p cos
�

4π
s

p
+ θp,

�







1 if  is even
�

s

p

�

if  is odd

where

θs,p =







0 if  is even or p = 1 (4)
π

2
if  is odd and p = 3 (4).

In particular

∀m ∀p 6= 2 ∀ ≥ 2
�

�S(m,1;p)
�

� ≤ 2
Æ

p. (2.1)

If  = 1, the situation is more complex. We note that

S(m,1;p) =
∑

∈F×
p

e

�

m + 

p

�

=
∑

∈F×
p

ψ
�

m + 
�

where ψ :  7→ e(/p) is a character of the additive group Fp and we
introduce

S(m,q) =
∑

∈Fq

ΨFq/Fp
�

m + 
�

q power of p
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where ΨFq/Fp = ψ ◦ TrFq/Fp is a character of the additive group Fq. It
follows from the proof by Weil of the Riemann hypothesis for curves
over finite fields that

−
S(m,q)
p
q

= TrDm,q = 2
�

αm,q + αm,q
�

(
�

�αm,q

�

� = 1)

for some conjuguacy class Dm,q of U2(C); In particular, since S(m,1;p) =
S(m,p), we can remove the assumption on  in (2.1) and get

∀m ∀p 6= 2 ∀ ≥ 1
�

�S(m,1;p)
�

� ≤ 2
Æ

p.

Finally, we introduce the normalised Kloosterman sums

Kl(, b;q) =
1
p
q
S(, b;q) =

1
p
q

∑

 (q)
=1

e

�

 + b

q

�

for any power q of a prime number.

3. Kloosterman paths

We want to understand how the exponentials sum to the Kloosterman
sum. A bit more precisely, if  and b are chosen randomly, how behave
the sequence of partial sums that lead to Kl(, b;pn)?

Enumerating the representatives of { (pn) : (, p) = 1} in {1, . . . , pn−
1} with the usual order of Z, we build a sequence

1 < . . . < φ(pn).

The corresponding polynomial path is the concatenation of the closed
segments

1
p

pn







∑

≤1
(,p)=1

e

�

 + b

pn

�

,
∑

≤2
(,p)=1

e

�

 + b

pn

�






, . . .

. . . ,
1

p

pn









∑

≤φ(pn)−1
(,p)=1

e

�

 + b

pn

�

,
∑

≤φ(pn)
(,p)=1

e

�

 + b

pn

�









.
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We compute an affine parametrisation of these segments and deduce
a continuous map:

[0,1] → C

t 7→ Klpn (t; (, b)) .

Note that Klpn (0; (, b)) =
1

p

pn
e
�

+b
pn

�

and Klpn (1; (, b)) = Kl (, b;pn).

The parameters  and b can be seen as living in
�

Z/pn
�× and we

endow
�

Z/pn
�× ×

�

Z/pn
�× with the uniform probability measure

Prob(A) =
1

φ (pn)2
#A A ⊂

�

Z
�pn

�×
×
�

Z
�pn

�×
.

For any  and b, the map t 7→ Klpn (t; (, b)) is in C0 ([0,1],C). If this
space is given the supremum norm, it can be seen as a Banach space.

Finally, we an consider the following random variable:

Klpn :
�

Z/pn
�× ×

�

Z/pn
�× → C0 ([0,1],C)

(, b) 7→ t 7→ Klpn (t; (, b)) .

What can be said about the convergence of this random variable?

The question has been first studied by Kowalski & Sawin [KS16] for
the case of prime modulus. Their proof involves Deligne’s work on
the Riemann hypothesis for finite fields as well as many additional
results in algebraic and geometric number theory. With Ricotta [RR18],
I extended the study to the cas of prime power modulus. Contrary
to the prime case, we do not use deep results on algebraic geometry
since we have at our disposal an explicit formula. The cost is however
an important complexity on arithmetics, combinatorics and analysis.

We prove the following. Let n ≥ 2 be fixed, as p→ +∞ among prime
numbers, the random variable Klpn converges in law to an explicit
C0 ([0,1],C)-valued random variable Kl∞ that we shall described a bit
latter.

It must be noted that the limit random variable does not depend
on n. However, is is not the same than the one obtained by Kowalski
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& Sawin. This is further evidence that Kloosterman sums behave
differently depending on whether the module is prime or not.

An rephrasing of our result is the following: for any continuous
bounded functions Ψ: C0 ([0,1],C)→ C, we have

lim
p→+∞

1

φ (pn)2
∑

(,b)∈
�

Z/pn
�××

�

Z/pn
�×

Ψ
�

t 7→ Klpn (t; (, b))
�

= E (Ψ(Kl∞)) .

For example, fix g ∈ C0 (C,C) bounded and consider

Ψg : C0 ([0,1],C) → C

ƒ → g (ƒ (1))

then

lim
p→+∞

1

φ (pn)2
∑

(,b)∈
�

Z/pn
�××

�

Z/pn
�×

g
�

Kl(, b;pn)
�

= E (g (Kl∞(1))) .

Let us describe the limit variable Kl∞. Let
�

Uq
�

q be a sequence of
independent identically distributed random variables of probability law

∀ƒ ∈ C0 ([0,1],C) μ(ƒ ) =
1

2
δ0(ƒ ) + μ1(ƒ )

=
1

2
ƒ (0) +

1

2π

∫ 2

−2
ƒ ()

d
p

4 − 2

then, Kl∞ is the C0 ([0,1],C)-random variable defined by the almost
convergent (and hence in law) random series:

∀t ∈ [0,1] Kl∞(t) = tU0 +
∑

h∈Z∗

e(ht) − 1

2πih
Uh.

In the case of prime modulus considered by Kowalski & Sawin, the
result is the same with

�

Uq
�

q replaced by a sequence of independent
identically distributed random variables of probability law

∀ƒ ∈ C0 ([0,1],C) μST(ƒ ) =
1

2π

∫ 2

−2
ƒ ()

Æ

4 − 2 d.
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Let us continue our example. We have E
�

Ψg(Kl∞)
�

= E (g (Kl∞(1))).
We compute

Kl∞(1) = U0 +
∑

h∈Z∗

e(ht) − 1

2πih
︸ ︷︷ ︸

=0

Uh = U0

so E
�

Ψg(Kl∞)
�

= E (g(U0)) and finally

lim
p→+∞

1

φ (pn)2
∑

(,b)∈
�

Z/pn
�××

�

Z/pn
�×

g
�

Kl(, b;pn)
�

=
1

2
g(0) +

1

2π

∫ 2

−2
g(t)

dt
p

4 − t2
.

In other words, we recover a result essentially found by Kelmer [Kel10].
again, the case of prime moduli is a consequence of Deligne’s theory
and is due to Katz. Note that the dual equidistribution problem:

fix  and b and compute lim
→+∞

1

#{pn ≤ }

∑

pn≤
g
�

Kl(, b;pn)
�

remains an open problem.

We have considered a random variable on
�

Z/pn
�× ×

�

Z/pn
�×, that

is on the two parameters  and b. However, we have seen in the
introduction that the Kloosterman sums are essentially described by a
single parameter. A natural question is then to fix the parameter b, let
us say to the value b0 and to consider the random variable

Klb0,pn :
�

Z/pn
�× → C0 ([0,1],C)

 7→ t 7→ Klpn (t; (, b0)) .

We prove with Ricotta & Shparlinski [RRS20] the following. Let n ≥ 31
be fixed, as p → +∞ among prime numbers, the random variable
Klb0,pn converges in law to Kl∞. This is indeed to be considered as
a substantial strengthening since, for example, the case when n = 1
remains open: Kowalski & Sawin can only prove, for Klb0,p a weaker
convergence (convergence in the sense of finite distributions).

In our results, we fixed n and let p grow. We could consider the situa-
tion when p is fixed and n grows. We wrote in our papers “the problem,
both theoretically and numerically, seems to be of a completely differ-
ent nature" which we saw as a politically correct way to say we thought
it was impossible to do. It appears we were wrong since, Milićević
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& Zhang [MZ23] proved last year the following: let p be a fixed odd
prime, let 0 and b0 be fixed. Then as n→ +∞ among prime numbers,
the random variable Kl0,b0,pn, which is Klb0,pn restricted to

§

 ∈
�

Z
�pn

�×
:  = 0 (p)

ª

,

converges in law to a limit random variable Kl0,b0,p,∞ defined the
following way:

Kl0,b0,p,∞ =
∑

h∈Z
cond

e(ht) − 1

2πih
U♯
h

where cond is the following “ (0 − h)b0 is an inversible square modulo
p", each U♯

h
being distributed with respect to the μ1 measure.

4. A repulsion phenomenon

The result with Shparlinsky implies that

lim
p→+∞

1

φ (pn)

∑

∈
�

Z/pn
�×

g
�

Kl(,1;pn)
�

=
1

2
g(0) +

1

2π

∫ 2

−2
g(t)

dt
p

4 − t2
.

Half of the values of  lead to a zero Kloosterman sum (see Remark 2),
and this is the reason of the term 1

2g(0) (or equivalently of the 1
2δ0 in

the definition of μ. In other word the Kloosterman sums that do not
trivially vanish (i.e. corresponding to  squares modulo p) distribute
according to the measure 1

π
dt

p

4−t2
. Equivalently

lim
p→+∞

1

#
¦

 ∈
�

Z/pn
�× :  = � (mod p)

©

∑

∈
�

Z/pn
�×

=� (mod p)

g
�

Kl(,1;pn)
�

=
1

π

∫ 2

−2
g(t)

dt
p

4 − t2
.
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(a) q = 361201 = 6012
(b) q = 6012 nonsquare  re-
moved

(c) q = 361211

Figure 1. Distribution of  7→ Kl(,1;q)

If we compare this by the distribution of  7→ Kl(,1;p) due to Katz:

lim
p→+∞

1

#
¦

 ∈
�

Z/pn
�×©

∑

∈
�

Z/pn
�×

g
�

Kl(,1;pn)
�

=
1

π

∫ 2

−2
g(t)

dt
p

4 − t2
.

we see that, for prime levels, the Kloosterman sums tend to concen-
trate around 0, whereas for prime-power levels, they tend to con-
centrate around ±2. In the case of prime-power level, the trivially
vanishing sums have a repulsion effect on the others. See figures 1.
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5. Ideas of proof

We give ideas of proof for the first result, the one where the random
variable depends on the two parameters  and b.

To prove the convergence in law, we use the following criterion due
to Prokhorov: a sequence (Xq)q of C0 ([0,1],C)-random variables that
converges to X in the sense of finite distribution and tight converges
in law.

The sequence (Xq)q converges to X in the sense of finite distribution
if:

∀k ∀0 ≤ t1 < . . . < tk ≤ 1
�

Xq(t1), . . . , Xq(tk)
�

︸ ︷︷ ︸

sequence of Ck-
valued random
variables

law−−−−→
q→+∞

(X(t1), . . . , X(tk))

or, rephrased,

∀k ∀0 ≤ t1 < . . . < tk ≤ 1 ∀h ∈ C0 �
C
k,C

�

E

�

h
�

Xq(t1)
�

, . . . , h
�

Xq(tk)
��

−−−−→
q→+∞

E (h (X(t1)) , . . . , h (X(tk))) .

For the tightness we give only a criterion due to Kolmogorov: if there
exist α > 0, δ > 0 and C > 0 such that

∀q ∀(s, t) ∈ [0,1]2 E

�
�

�Xq(s) − Xq(t)
�

�

α
�

≤ C|s − t|1+δ

then (Xq)q is tight.

To prove the tightness of Klpn, we prove that

1

φ(pn)2
∑

(,b)∈
�

Z/pn
�××

�

Z/pn
�×

�

�Klpn (t; (, b)) − Klpn (s; (, b))
�

�

4 ≤ Cn|t − s|2

where C is some constant independent on any of the variables. This
inequality is proved by careful explicit computation and does not
present extraordinary difficulties. This is however deeply related to
the fact that we have indeed an explicit expression of the Kloosterman
sum.

The main part is the proof of the convergence in the sense of finite
distribution, and we can even prove the convergence in the sense
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of finite distribution for the one parameter random variable (which
implies the one for the two parameters random variable). We use the
method of moments, that is we prove the equivalent:

lim
p→+∞

1

φ(pn)

∑

∈
�

Z/pn
�×

k
∏

j=1

Klpn
�

tj; (, b0)
�mj Klpn

�

tj; (, b0)
�nj

= E

 

k
∏

j=1

Kl∞(tj)mj Kl∞(tj)nj
!

.

The first step in the proof is to replace the segments of the Klooster-
man paths by a constant function, replacing the continuous function
by a step function: we prove that, up to an admissible error term,
Klpn (t; (, b)) can be replaced by

ßKlpn (t; (, b)) :=
∑

h∈Z/pn
αpn
︸︷︷︸

e(ht)−1
2πih +O

�

1
pn

�

Klpn( − h, b;pn)

So, our proof reduces to the evaluation of

1

φ(pn)

∑

∈
�

Z/pn
�×

k
∏

j=1

ßKlpn
�

tj; (, b0)
�mj

ßKlpn
�

tj; (, b0)
�nj .

6. Computing the moments

Our objective is to prove that

1

φ(pn)

∑

∈
�

Z/pn
�×

k
∏

j=1

ßKlpn
�

tj; (, b0)
�mj

ßKlpn
�

tj; (, b0)
�nj

= E

 

k
∏

j=1

Kl∞(tj)mj Kl∞(tj)nj
!

+ error.

We replace ßKlpn by its definition, expand the powers and are led to
evaluate sums of terms having the following shape:

1

φ(pn)

∑

∈
�

Z/pn
�×

∏

τ∈Z/pn
Kl( + τ, b;pn)μ(τ)
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for some non negative integers μ(τ) with bounded sum. We get a
principal term

♯Apn(μ)

φ(pn)

∏

τ∈Z/pn
δ2|μ(τ)

�

μ(τ)

μ(τ)/2

�

where

Apn =
§

 ∈
�

Z
�pn

�×
: ∀τ ∈ Z�pn, μ(τ) ≥ 1⇒  + τ is a square mod pn

ª

.

In particular, we find
1

φ(pn)

∑

∈
�

Z/pn
�×

Kl(, b;pn)m =
δ2|m

2

�

m

m/2

�

︸ ︷︷ ︸

Moment
of any
real vari-
able of
law μ

+error.

Ultimately, the evaluation of ♯Apn(μ) requires the estimation of the
number of  (p) such that ,  + 1, . . . ,  + k are square modulo p. An
estimation has been given by Davenport (1931) [Kat80, §1.4.2] using
Weil’s proof of the Riemann’s hypothesis for curves in its following
corollary: let ƒ ∈ Z[X], and for p 6= 2, consider the following sum of
Legendre symbols:

Sp(ƒ ) =
∑

∈Fp

�

ƒ ()

p

�

.

Assume that ƒ is unitary, without multiple roots in C and such that its
reduction modulo p has no multiple roots in Fp. Then

�

�Sp(ƒ )
�

� ≤ (deg(ƒ ) − 1)
p

p.
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