Summary. We prove the predictable representation property for the filtration of the Brownian snake and give a representation of the martingales in the filtration associated to the historical Brownian motion. We deduce a representation of the martingale measure of the historical Brownian motion.

Key words: Super-Brownian motion, Brownian snake, predictable representation property, martingale measure
Representation of the martingales for the Brownian snake

Laurent Serlet

Laboratoire de Mathématiques
Université Blaise Pascal
Campus Universitaire des Cézeaux
63177 Aubière cedex, France
Laurent.Serlet@math.univ-bpclermont.fr

1 Introduction and statement of results

In this paper we deal with the Brownian snake introduced by Le Gall which can be seen as a continuous-time parametrization of a tree of branching trajectories. Abundant literature has shown the interest of this process to prove results on super-processes, to express solutions of certain semi-linear pde or to describe the limit behaviour of important interacting particle systems. See [Lg] for a comprehensive treatment of the subject. The definitions of the basic objects and the terminology used in the present introduction are however recalled in the next section.

The Brownian snake \((W_t)\) is a simple example of process taking its values in the space \(\mathcal{W}\) of stopped paths in \(\mathbb{R}^d\). In [DS] we have developed some tools of stochastic calculus for this process, in particular an Itô formula; a simplified form of this statement is as follows. Suppose \(F^{(2)} : \mathcal{W} \to \mathbb{R}\) is a continuous function and \(F^{(1)}, F : \mathcal{W} \to \mathbb{R}\) are defined by

\[
F^{(1)}(u) = \int_0^t F^{(2)}(w_{\leq r}) \, dr
\]

\[
F(u) = \int_0^t F^{(1)}(w_{\leq r}) \, dr = \int_0^t \int_0^r F^{(2)}(w_{\leq u}) \, du
\]

then, for \(0 \leq r < t\):

\[
F(W_t) = F(W_r) + \int_r^t F^{(1)}(W_s) \, d\kappa_s + \frac{1}{2} \int_r^t F^{(2)}(W_s) \, ds. \quad (1)
\]

The present paper is devoted to some applications of this formula concerning the representation of the martingales associated to the Brownian snake.
First, the filtration \((\mathcal{F}_t^W)\) of the Brownian snake has a surprising previsible representation property:

Theorem 1 For every random variable \(X \in L^2(\mathcal{F}_\infty^W)\), there exists a \((\mathcal{F}_s^W)\)-previsible process \((H_s)\) vanishing a.s. on \(\{s, \zeta_s = 0\}\) such that

\[
E \left(\int_0^\infty H_s^2 \, ds \right) < +\infty \quad \text{and} \quad X = E(X) + \int_0^\infty H_s \, d\zeta_s. \tag{2}
\]

The proof is given in section 3. By standard arguments (see [RY] V.3.4), we quickly deduce the following corollary

Proposition 2 For every local martingale \((M_s)\) with respect to the filtration \((\mathcal{F}_s^W)\), there exists a \((\mathcal{F}_s^W)\)-previsible process \((H_s)\) locally in \(L^2\) such that

\[
M_s = M_0 + \int_0^s H_r \, d\zeta_r. \tag{3}
\]

Note that the above stochastic integral is effectively a local martingale because the integrand \(H_r\) vanishes on \(\{s, \zeta_s = 0\}\) and we could write the integral with respect to the martingale part of the reflecting Brownian motion \((\zeta_s)\).

One of the interests of the Brownian snake lies in its connections with super-Brownian motion. More precisely, let us consider a Brownian snake starting from \(\bar{x}\) and set

\[
\forall t \geq 0, \quad X_t = \int_0^{\tau_t} d_s L_s^x(\zeta) \, d\bar{W}_s \quad \text{and} \quad H_t = \int_0^{\tau_t} d_s L_s^x(\zeta) \, d\zeta,
\]

where \(L_s^x(\zeta)\) is the local time of the lifetime process \((\zeta)\) at level \(\bar{x}\) and time \(s\), and \(\tau_t = \inf\{s \geq 0; L_s^x(\zeta) > 1\}\) is the hitting time of \(1\) by the local time of \(\zeta\) at level \(0\). The process \((X_t)\) [resp. \((H_t)\)] takes its values in the space \(\mathcal{M}_F(\mathbb{R}^d)\) [resp. \(\mathcal{M}_F(W)\)] and is called super-Brownian motion starting from \(\delta_{\bar{x}}\) [resp. historical Brownian motion starting from \(\delta_{\bar{x}}\)]. To be honest, the usual definitions include a factor \(1/4\) that we have dropped here to simplify notations, as we did in [DS]. From this definition emerges a new filtration to be considered. Let

\[
\tau_s^\wedge = \inf\left\{u; \int_0^{u \wedge \tau_s} 1_{\{\zeta_s \leq t\}} \, dv > s\right\}
\]

be the inverse of the time spent by the lifetime \((\zeta_s)\) under level \(t\) with the convention \(\inf\{\emptyset\} = \tau_s\). We see that at least the following \(\sigma\)-algebras naturally arise:

\[
\mathcal{G}_t = \sigma(W^t_s, s \geq 0) \\
\mathcal{G}_s^x = \sigma(\zeta^t_s, s \geq 0) \\
\mathcal{G}_r^x = \sigma(X_r, r < t)
\]
\[G_t^H = \sigma(H_r, r \leq t) \]
\[\mathcal{F}_s^H = \sigma(W_{r\wedge\tau_1}, r \leq s) \]
\[\mathcal{F}_s^X = \sigma(\mathcal{G}_{r\wedge\tau_1}, r \leq s) \].

We note the following obvious relations
\[G_t^N = \mathcal{G}_t \cap \mathcal{F}_{\infty}^N, \quad G_t^X \subset G_t^H \subset G_t, \quad \mathcal{G}_{\infty} = \mathcal{F}_{\infty}. \]

A question now arises concerning the representation of the martingales in the “vertical” filtration \(\mathcal{G}_t \). Since super-Brownian motion (and historical Brownian motion) has often been studied via martingale problems we already know a class of \(\mathcal{G}_t \)-martingales : for every bounded \(\phi \) in the domain of the generator \(A \),
\[M_t(\phi) = X_t(\phi) - X_0(\phi) - \int_0^t X_s(A\phi) \, ds \]
defines a martingale and moreover the quadratic variation of this martingale is known to be
\[\langle M(\phi) \rangle_t = 4 \int_0^t X_s(\phi^2) \, ds. \] (4)

An interpretation with the Brownian snake can be given.

Proposition 3 ([DS] Lemma 10 and Theorem 7) We have
\[M_t(\phi) = 2 \int_0^{\tau_1} 1_{[s,t]}(\zeta_s) \phi(W_s) \, d\zeta_s \] (5)
and this process is a \(\mathcal{G}_t \)-martingale with quadratic variation given by (4).

A natural question is then to ask if any \(\mathcal{G}_t \)-martingale can be expressed in a way that generalizes the above expression.

Theorem 4 For every \(\mathcal{G}_t \)-martingale \((M_t) \) which is bounded in \(L^2 \), there exists a \(\mathcal{F}_s \)-previsible process \((H_s) \) such that
\[\mathbb{E} \left(\int_0^t H_s^2 \, ds \right) < +\infty \text{ and } \forall t \geq 0, \quad M_t = M_0 + \int_0^t H_s 1_{[0,t]}(\zeta_s) \, d\zeta_s. \]

By [Je] this result is known when it is restricted to the filtration \(\mathcal{G}_t^N \) i.e. considering only the lifetime. In that case it is essentially seen on Tanaka’s formula interpreted as a reflection equation. Our proof is given in section 4.

We deduce the corollary :

Proposition 5 For every \(Y \in L^2(\mathcal{G}_t) \), there exists a \(\mathcal{F}_s \)-previsible process \((H_s) \) such that
\[Y = \mathbb{E}(Y) + \int_0^{\tau_1} H_s 1_{[s,t]}(\zeta_s) \, d\zeta_s \text{ and } \mathbb{E} \left(\int_0^{\tau_1} H_s^2 1_{[0,t]}(\zeta_s) \, ds \right) < +\infty. \]
The representation given in (5) can be pushed a little further into the terminology of martingale measure as the notation already suggests. The notion of martingale measure of super-processes is explained for instance in [Da] Chapter 7; Example 7.1.3 covers the case of super-Brownian motion as it is defined here. In our setting the martingale measure of super-Brownian motion or even historical Brownian motion is easily described. It is stated in the following proposition where \(L \) denotes the generator of the so-called \(A \)-path process which is the process in \(\mathcal{W} \) whose lifetime increases at constant speed 1 and consists in a trajectory of the diffusion governed by \(A \).

Proposition 6 Let us set, for \(t \geq 0 \) and \(\Omega \in \mathcal{B}(\mathcal{W}) \),

\[
M_t(\Omega) = 2 \int_0^{T_t} 1_{(0,t]}(\zeta_r) \, 1_\Omega(W_r) \, d\zeta_r.
\]

Then, \((M_t(\Omega), t \geq 0, \Omega \in \mathcal{B}(\mathcal{W})) \) defines an \(L^2 \)-martingale measure \(M(ds \, dw) \). It is associated to the historical Brownian motion, that is, for every \(\phi : \mathcal{W} \to \mathbb{R} \) in the domain of \(L \) and bounded,

\[
H_\phi(\phi) = H_\phi(\phi) + \int_0^t H_\phi(L \phi) \, ds + \int_0^t \int_\mathcal{W} \phi(w) \, M(ds \, dw).
\]

This martingale measure is orthogonal and its intensity is the random measure \(\nu \) on \(\mathbb{R}_+ \times \mathcal{W} \) given by

\[
\int_{\mathbb{R}_+ \times \mathcal{W}} \psi(t, w) \, \nu(dt \, dw) = 4 \int_0^{T_t} \psi(\zeta_s, W_s) \, ds.
\]

We recall that the intensity of a martingale measure is defined so that \(\nu([0,t] \times \Omega) \), for \(\Omega \) Borel subset of \(\mathcal{W} \), is the quadratic variation of the martingale \((M_t(\Omega)) \).

2 Basic objects and notations

We will use the following common notations:

- \(\mathbb{N} = \{1, 2, 3, \ldots \} \), \(\mathbb{Z}^+ = \{0, 1, 2, \ldots \} \), \(\mathbb{R}^+ = [0, +\infty) \).
- \(\mathcal{C}(X, Y) \): set of continuous functions from metric space \(X \) to metric space \(Y \).
- \(\sigma(X_i, i \in I) \): \(\sigma \)-algebra generated by the random variables \(X_i \), \(i \in I \) in a fixed probability space, completed with all negligible sets.
- \(\mathcal{B}(X) \): Borel \(\sigma \)-algebra of the metric space \(X \).
- \(\mathcal{M}_F(X) \): set of all finite measure on the metric space \(X \) equipped with the (metrizable) topology of weak convergence and its Borel \(\sigma \)-algebra \(\mathcal{B}(\mathcal{M}_F(X)) \).

A stopped path is a couple \((w, \zeta) \), where \(\zeta \geq 0 \) is called the lifetime of the path, and \(w : \mathbb{R}^+ \to \mathbb{R}^d \) is a continuous mapping, which is constant.
on \([\zeta, +\infty)\). We denote by \(\mathcal{W}\) the set of all stopped paths. We sometimes abbreviate \((w, \zeta]\) into \(w\) and denote \(\zeta(w)\) the lifetime. The distance on \(\mathcal{W}\) is
\[
d(u, v) = \sup_{t \geq 0} |u(t) - v(t)| + |\zeta(u) - \zeta(v)|,
\]
making \(\mathcal{W}\) a Polish space. We denote by \(w = w(\zeta)\) the endpoint of \(w\), and \(x\) the path of lifetime 0 started at \(x \in \mathbb{R}^d\). Finally, we denote by \(w \leq_r\) the path of lifetime \(\zeta(w) \wedge r\) such that for \(u \geq 0\), \(w \leq_r(u) = w(u \wedge r)\).

Let us fix a diffusion in \(\mathbb{R}^d\) with generator \(A\). The Brownian snake started at \(x\) with spatial motion governed by \(A\) is the strong Markov continuous process \(W = (W_s, s \geq 0)\) with values in \(\mathcal{W}\) characterized by the following properties:

1. \(W_0(0) = x\) for every \(s\);
2. The lifetime process \(\zeta_s = \zeta(W_s)\) is a reflecting Brownian motion in \(\mathbb{R}_+\);
3. Conditionally on \((\zeta_s, s \geq 0)\), the distribution of \((W_s, s \geq 0)\) is that of an inhomogeneous Markov process whose transition kernels are described as follows: for every \(s < s'\),
 - \(W_{s'}^{\leq m} = W_{s'}^{\leq m}\) where \(m = \inf_{t \leq s'} \zeta_t\);
 - \((W_s(m + t), 0 \leq t \leq \zeta_s - m)\) is independent of \(W_s\) conditionally on \(W_s(m)\) and has the law of a diffusion in \(\mathbb{R}^d\) with generator \(A\), starting from \(W_s(m)\) and stopped at time \(\zeta_s - m\).

The filtration \(\mathcal{F}_t^W\) used in the introduction is the filtration associated to \((W_s)\), completed the usual way (see [RY] p. 45 and 93 for precisions on completion) and
\[
\mathcal{F}_t^W = \sigma(\bigcup_{t \geq 0} \mathcal{F}_t^W).
\]

3 Proof of the previsible representation property
(Theorem 1)

This proof is inspired by Exercise 3.15 of [RY], dealing with the classical Brownian filtration. In that case a step of the proof is to solve a linear differential equation. This is replaced in our path space setting by an integral equation that we first discuss.

Lemma 7 Let \(\alpha > 0\) and
\[
\mathcal{E}_\alpha = \left\{ \psi \in \mathcal{C}(\mathcal{W}, \mathbb{R}); \sup_{w \in \mathcal{W}} e^{-\alpha \zeta} |\psi(w)| < +\infty \right\}.
\]
For all \(\lambda > 0\), if \(\alpha > \sqrt{2\lambda}\) and \(f \in \mathcal{E}_\alpha\) then there exists \(\varphi \in \mathcal{E}_\alpha\) such that
\[
\forall w \in \mathcal{W}, \quad \frac{1}{2} \varphi(w) - \lambda \int_{\zeta - u}^\zeta \varphi(w \leq u) \, du = f(w).
\]
Proof. It is easy to see that the formula \(\|\varphi\|_{c} = \sup_{w \in \mathcal{W}} e^{-\alpha \xi} |\varphi(w)| \) defines a norm on the vector space \(\mathcal{E}_{\alpha} \) which makes this space complete. The result of the lemma consists in finding a fixed point for the map

\[
\theta : \varphi \rightarrow \left(w \rightarrow 2 f(w) + 2\int_{0}^{\xi} (\zeta - u) \varphi(w_u) \, du \right).
\]

It is easy to verify that \(\theta \) maps \(\mathcal{E}_{\alpha} \) into itself. In order to apply the classical Lipschitz fixed point theorem to \(\theta \) in the Banach space \(\mathcal{E}_{\alpha} \), it remains to check that \(\theta \) satisfies the Lipschitz condition. For \(\varphi_1, \varphi_2 \in \mathcal{E}_{\alpha} \),

\[
\| \theta(\varphi_1) - \theta(\varphi_2) \|_{\alpha} = \sup_{w \in \mathcal{W}} e^{-\alpha \xi} \left(2 \int_{0}^{\xi} (\zeta - u) (\varphi_1(w_u) - \varphi_2(w_u)) \, du \right)
\leq \sup_{w \in \mathcal{W}} e^{-\alpha \xi} \left(2 \int_{0}^{\xi} (\zeta - u) e^{\alpha u} \| \varphi_1 - \varphi_2 \|_{\alpha} \, du \right)
\leq 2\lambda \| \varphi_1 - \varphi_2 \|_{\alpha} \sup_{\zeta > 0} \left\{ e^{-\alpha \xi} \int_{0}^{\xi} (\zeta - u) e^{\alpha u} \, du \right\}
\leq 2\lambda \| \varphi_1 - \varphi_2 \|_{\alpha} \int_{0}^{+\infty} v e^{\alpha v} \, dv = \frac{2\lambda}{\alpha} \| \varphi_1 - \varphi_2 \|_{\alpha}.
\]

Since the last ratio is by assumption smaller than 1, the proof of the lemma is complete.

We now denote \(\bar{\mathcal{E}} \) the increasing limit of the sets \(\mathcal{E}_{\alpha}, \alpha > 0 \), that is \(\bar{\mathcal{E}} = \bigcup_{\alpha > 0} \mathcal{E}_{\alpha} \). We are now ready to give a previsible representation for certain variables, namely the type on the left-hand side of the following equality.

Lemma 8 For every \(f \in \mathcal{E} \) and every \(\lambda > 0 \), there exist \(g_{\bar{0}}, g_{\bar{1}} \in \mathcal{E} \) such that, for every \(r > 0 \),

\[
\int_{-r}^{r} e^{-\lambda s} f(W_s) \, ds = e^{-\lambda r} g_{\bar{0}}(W_r) + \int_{-r}^{r} e^{-\lambda s} g_{\bar{1}}(W_s) \, d\zeta_s. \quad (9)
\]

Moreover \(g_{\bar{0}} \) vanishes at 0 in the following sense : \(g_{\bar{0}}(w) = 0 \) if \(\zeta(w) = 0 \) and identically for \(g_{\bar{1}} \).

Proof. Let us first remark that, since \(f \) belongs to a certain \(\mathcal{E}_{\alpha} \), we have

\[
\int_{-r}^{r} e^{-\lambda s} \| f(W_s) \| \, ds \leq \| f \|_{\alpha} \int_{-r}^{r} e^{-\lambda s} e^{\alpha \zeta_s} \, ds
\]

and the integral on the right-hand side is finite because the reflecting Brownian motion \((\zeta_s) \) satisfies the law of the iterated logarithm. Hence the integral appearing on the left-hand side of equation (9) is defined almost surely. So is the integral on the right-hand side using a similar argument and [RY] IV.1.26.
By increasing \(\alpha \) if necessary, we may suppose that \(\alpha > \sqrt{2\lambda} \). By Lemma 7, we can associate to \(f \in \mathcal{E}_\alpha \) a continuous function \(\varphi \in \mathcal{E}_\alpha \) as specified. Let \(F^{(2)} = \varphi \) and \(F^{(1)}, F \) be defined as in the assumptions of formula (1). Note that \(F^{(1)} \) and \(F \) vanish at 0, in the sense defined in the statement of the lemma. It is easy to check that \(F^{(1)}, F \in \mathcal{E}_\alpha \) and more precisely,

\[
|F(w)| \leq ||\varphi||_\alpha e^{\alpha \zeta}.
\]

(10)

We obtain, by formula (1) and the classical Itô formula for a product, for \(0 \leq r < t \):

\[
e^{-\lambda t} F(W_t) - e^{-\lambda r} F(W_r) = \int_r^t e^{-\lambda s} \left(\frac{1}{2} \left(\varphi - \lambda F \right)(W_s) \right) ds + \int_r^t e^{-\lambda s} F^{(1)}(W_s) d\zeta_s.
\]

We recall that \((1/2) \varphi - \lambda F = f \). Using the bound (10), the law of the iterated logarithm for \((\zeta_s) \) entails that \(\lim_{s \to +\infty} e^{-\lambda s} F(W_s) = 0 \), almost surely. Therefore we get

\[
\int_r^\infty e^{-\lambda s} f(W_s) ds = -e^{-\lambda r} F(W_r) - \left[\int_r^\infty e^{-\lambda s} F^{(1)}(W_s) d\zeta_s \right]
\]

We obtain the sought after representation, up to a change of notations.

Lemma 9 For all \(n \in \mathbb{N}, \lambda_1, \ldots, \lambda_n > 0, f_1, \ldots, f_n \in \mathcal{E} \), there exist \(h_0, h_1, h_2 > 0 \), \((1 \leq k \leq n - 1, 0 \leq j \leq k), g_0, g_1, g_2 \in \mathcal{E} \) \((1 \leq k \leq n - 1, 0 \leq j \leq k) \) with \(g_0, g_1, g_2 \) vanishing at 0, such that, for all \(r \geq 0 \),

\[
\int_{[r < s_1 < \ldots < s_n]} \left(\prod_{i=1}^n e^{-\lambda_i s_i} f_i(W_{s_i}) \right) ds_1 \ldots ds_n
\]

\[
\quad = e^{-h r} g_0(W_r) + \int_r^\infty \left\{ e^{-h s} g_1(W_s) + \sum_{k=1}^{n-1} e^{-h s} g_2(W_s) \right\} \int_{[r < s_1 < \ldots < s_k < s]} \left(\prod_{j=1}^k e^{-\lambda_j s_j} g_2(W_{s_j}) \right) ds_1 \ldots ds_k d\zeta_s
\]

with the convention that the sum over \(k \) disappears if \(n = 1 \).

Proof. By equation (9), we know that the lemma is true for \(n = 1 \). Then we proceed by induction. Admitting the result at rank \(n \geq 1 \), we examine the case of rank \(n + 1 \):

\[
\int_{[r < s_1 < \ldots < s_{n+1}]} \left(\prod_{i=1}^{n+1} e^{-\lambda_i s_i} f_i(W_{s_i}) \right) ds_1 \ldots ds_{n+1}
\]

\[
\quad = \int_r^\infty ds_1 e^{-\lambda_1 s_1} f_1(W_{s_1}) \int_{[s_1 < s_2 < \ldots < s_{n+1}]} \left(\prod_{i=2}^{n+1} e^{-\lambda_i s_i} f_i(W_{s_i}) \right) ds_2 \ldots ds_{n+1}
\]
\[\int_0^{\infty} ds \quad e^{-\lambda_1 s} f_1(W_{s_1}) \left[e^{-\mu_0 s_1} g_0(W_{s_1}) + \int_0^{\infty} \left\{ e^{-\mu s} g_1(W_s) + \sum_{k=2}^{n} e^{-\nu_k s} g_k(W_s) \int_{s_1 < s_2 < \cdots < s_k < s} \prod_{j=2}^{k} e^{-\mu_j s_j} g_j(W_{s_j}) \, ds_2 \ldots ds_k \right\} \, ds \right] \]

\[= \int_0^{\infty} ds \quad e^{-\lambda_1 s} f_1(W_{s_1}) \left(\int_0^{s} e^{-\lambda_1 s_1} f_1(W_{s_1}) \, ds_1 \right) \, ds \]

\[+ \sum_{k=2}^{n} \int_0^{\infty} ds \quad e^{-\nu_k s} g_k(W_s) \left(\int_0^{s} ds_1 e^{-\lambda_1 s_1} f_1(W_{s_1}) \left(\prod_{j=2}^{k} e^{-\mu_j s_j} g_j(W_{s_j}) \right) \, ds_2 \ldots ds_k \right) \, ds \]

The first equality is simply Fubini’s formula; then we use the induction hypothesis for the integral with respect to \(s_2, \ldots, s_{n+1} \); and for the last equality a stochastic version of Fubini’s theorem. To the first term obtained at the last equality we can apply the result at rank 1 i.e. Equation (9); the second and third term are the desired quantities to obtain the sought-after formula, up to a change of notations of course.

Lemma 10 For every \(s > 0 \), there exist, for every \(i \in \mathbb{N} \), coefficients \(m_i \in \mathbb{N} \), \(\alpha_j^i \in \mathbb{R} \), \(\lambda_j^i > 0 \) for \(1 \leq j \leq m_i \) such that, for every continuous function \(\gamma : \mathbb{R}_+ \to \mathbb{R} \) (absolutely) integrable over \(\mathbb{R}_+ \),

\[\int_0^{+\infty} \left(\sum_{j=1}^{m_i} \alpha_j^i e^{-\lambda_j^i s} \right) \gamma(s) \, ds \xrightarrow{i \to +\infty} \gamma(s). \]

Proof. We first consider an approximation \(p_i(s) \, ds \) of the Dirac measure \(\delta_1 \) with continuous density whose support is contained in \((0, 2s)\) so that we have

\[\int_0^{+\infty} p_i(s) \, ds \xrightarrow{i \to +\infty} \gamma(s) \]

for every continuous \(\gamma \). The set of functions over \(\mathbb{R}_+ \)

\[A = \left\{ \psi : s \to \sum_{j=1}^{m_i} \alpha_j^i e^{-\lambda_j^i s}; \, m_i \in \mathbb{N}, \, \alpha_j^i \in \mathbb{R}, \, \lambda_j^i > 0, \, \psi(0) = 0 \right\} \]

is a linear subspace, closed under multiplication. Let \(\arg z \in [-\pi, \pi] \) denote the value of the argument of \(z \in \mathbb{U} = \{ z \in \mathbb{C}; \, |z| = 1 \} \). On the compact
U, equipped with uniform topology, we can apply the classical Stone-Weierstrass approximation theorem to the set of continuous functions:

\[
\left\{ z \rightarrow a + \psi \left(\tan \frac{1}{4} (\arg z + \pi) \right) ; a \in \mathbb{R}, \ \psi \in A \right\}
\]

in order to approximate by functions of this set, the continuous function \(z \rightarrow \rho_i(\tan(\arg z + \pi)/4) \). It is thus possible to find \(a_i \in \mathbb{R}, m_i \in \mathbb{N}, \ \alpha_j \in \mathbb{R}, \ \lambda_j > 0 \) such that

\[
\sup_{s \in \mathbb{R}_+} |\rho_i(s) - \psi_j(s)| \xrightarrow{s \to +\infty} 0 \text{ with } \psi_j : s \rightarrow a_i + \sum_{j=1}^{m_i} \alpha_j e^{-\lambda_j s} \in A.
\]

By considering the value at 0 we may suppose that \(a_i = 0 \). We have found the desired sequence of functions.

Proof of Theorem 1. We denote by \(R \) the linear subspace of \(L^2(F_{\infty}^W) \) consisting of variables \(X \) admitting the specified representation (2) with \((H_s) \) a predictable process such that \(H_s = 0 \) a.s. on \(\{s ; \zeta_s = 0\} \). With such a representation we obtain

\[
E(X^2) = (EX)^2 + E \left(\int_0^{+\infty} H_s^2 \ ds \right).
\]

By a classical argument (cf [RY] p.199) we deduce that \(R \) is complete hence closed in \(L^2(F_{\infty}^W) \).

Lemma 9 implies that for all \(n \in \mathbb{N}, \lambda_1, \ldots, \lambda_n > 0, f_1, \ldots, f_n \) bounded and continuous on \(W \) (hence in \(E \)), the set \(R \) contains the variable

\[
\int \{0 < s_1 < \cdots < s_n \} \prod_{i=1}^{n} e^{-\lambda_i s_i} f_i(W_{s_i}) \ ds_1 \ldots ds_n
\]

hence also the variable

\[
\prod_{i=1}^{n} \int_{0}^{\infty} e^{-\lambda_i s} f_i(W_s) \ ds
\]

and, by linear combination, \(R \) contains also the variable:

\[
\prod_{i=1}^{n} \int_{0}^{\infty} \left(\sum_{j=1}^{m_i} \alpha_j e^{-\lambda_j s} \right) e^{-s} f_i(W_s) \ ds
\]

where the coefficients \(\alpha_j \in \mathbb{R}, \lambda_j > 0, m_i \in \mathbb{N} \) are arbitrary.

We deduce from Lemma 10 that, for every \(n \in \mathbb{N}, \) for all \(f_1, \ldots, f_n \) bounded and continuous and all \(s_1, \ldots, s_n > 0, \) the set \(R \) contains the variable
\[\prod_{i=1}^{n} f_i(W_i) \]

(dropping useless constant exponential factors) and this is clearly sufficient to claim that \(R = L^2(\mathcal{F}_\infty^W) \).

4 Representation in filtration (\(\mathcal{G}_t \))

4.1 Proof of Theorem 4

We first establish that a process \((M_t) \) given as in the statement of the theorem is effectively a martingale, that is, for all \(t, h > 0 \), for every \(\mathcal{G}_t \)-measurable \(U \),

\[
E[(M_{t+h} - M_t)\ U] = E \left(\left(\int_0^{T_1} H_s \ 1_{(t < \zeta_s \leq t+h)} \ d\zeta_s \right) U \right) = 0 \quad (11)
\]

We fix \(\varepsilon > 0 \) and introduce the successive time intervals of descent from \(t + \varepsilon \) down to \(t \), that is we consider the \((\mathcal{F}_s) \)-stopping times \((S_k, k \geq 0) \) and \((T_k, k \geq 0) \) defined by \(S_0 = T_0 = 0 \), and if \(k \geq 1 \),

\[
S_k = \inf \{ s \in (T_{k-1}, \tau_1) ; \zeta_s = t + \varepsilon \}, \\
T_k = \inf \{ s \in (S_k, \tau_1) ; \zeta_s = t \},
\]

with the convention \(\inf \emptyset = \tau_1 \). Equation (11) will be proved, by letting \(\varepsilon \downarrow 0 \), as soon as we can show that, for every \(k \in \mathbb{N} \),

\[
E \left(\left(\int_{S_k}^{T_k} H_s \ 1_{(t < \zeta_s \leq t+h)} \ d\zeta_s \right) U \right) = 0.
\]

By the definition of \(\mathcal{G}_t \), it is sufficient to prove that

\[
E \left[\left(\int_{S_k}^{T_k} H_s \ 1_{(t < \zeta_s \leq t+h)} \ d\zeta_s \right) X \ G(W_{T_k+\varepsilon}) \right] = 0
\]

where \(X \) is \(\mathcal{F}_{S_k} \)-measurable and bounded and \(G \) is a bounded measurable function. By applying the Markov property at time \(T_k \) the left hand side of the above expression reduces to

\[
E \left[X \left(\int_{S_k}^{T_k} H_s \ 1_{(t < \zeta_s \leq t+h)} \ d\zeta_s \right) E_{W_{T_k}}[G] \right].
\]

But \(W_{T_k} = W_{S_k}^{T_k} \). The variable \(X \ E_{W_{S_k}}[G] \) is \(\mathcal{F}_{S_k} \)-measurable and bounded and we can represent it under the following form:

\[
 X \ E_{W_{S_k}}[G] = c + \int_{S_k}^{T_k} K_s \ d\zeta_s
\]
with a \((\mathcal{F}_s)\)-previsible process \((K_s)\). Therefore we have finally to prove that
\[
E \left[\left(\int_{S_0}^{T_0} H_s \, 1_{[t < \zeta_s \leq t+h]} \, d\zeta_s \right) \left(c + \int_{0}^{S_0} K_s \, d\zeta_s \right) \right] = 0.
\]
The contribution coming from the multiplication by \(c\) is null, by applying the stopping Theorem for martingale \(\int_0^s H_s \, 1_{[t < \zeta_s \leq t+h]} \, d\zeta_s\). The remaining term is equal to
\[
E \left[\int_0^{T_1} 1_{[S_0, T_1]}(s) \, H_s \, 1_{[t < \zeta_s \leq t+h]} \, 1_{[0, S_0]}(s) \, K_s \, d\zeta_s \right]
\]
which is clearly zero.

Now we denote by \((M_t)\) any \((\mathcal{G}_t)\)-martingale bounded in \(L^2\). Let \(M_\infty\) be the almost sure and \(L^2\) limit of \(M_t\). This variable of \(\mathcal{G}_\infty = \mathcal{F}_\infty\) can be represented as
\[
M_\infty = E(M_\infty) + \int_0^{T_1} H_s \, d\zeta_s
\]
with a \((\mathcal{F}_s)\)-previsible process \((H_s)\). Then
\[
M_t = E[M_\infty | \mathcal{G}_t] = E(M_\infty) + \int_0^{T_1} H_s \, 1_{[0 < \zeta_s \leq t]} \, d\zeta_s,
\]
the last equality resulting from the first part of the proof.

4.2 Comments on Proposition 6

It is straightforward that Formula (6) defines for every \(t > 0\), an \(L^2\)-valued finite measure. Firstly, it is finitely additive. Secondly we have, for every \(\Omega \in \mathcal{B}(\mathcal{W})\),
\[
\left\| M_t(\Omega) \right\|^2 = 4 \ E \left[\int_0^{T_1} 1_{[\mathcal{W}]}(\zeta_s) \, 1_{\mathcal{G}_0}(W_r) \, dr \right]
\]
\[
\leq 4 \ E \left[\int_0^{T_1} 1_{[\mathcal{W}]}(\zeta_s) \, d\zeta_s \right]
\]
\[
= 4 \ E \left[\int_0^t L^2_\zeta(\zeta) \, d\alpha \right] = 4 \int_0^t E \left[L^2_\zeta(\zeta) \right] \, d\alpha = 4t.
\]
The last equality follows from the Ray-Knight Theorem (or can be seen as the first moment of super-Brownian motion). Moreover it is clear by the dominated convergence Theorem that \(\left\| M_T(\Omega) \right\|_2\) converges to 0 if \(\Omega\) decreases to \(\emptyset\) and this proves the \(L^2\) countable additivity. Thus we are in the classical setting of martingale measures as described in [Da] Chapter 7. We have
\[
\int_0^t \int_{\mathcal{W}} \phi(w) \, M(ds \, dw) = 2 \int_0^{T_1} 1_{[\mathcal{W}]}(\zeta_s) \, \phi(W_r) \, d\zeta_r.
\]
Then Formulas (7) and (8) are essentially a reformulation of Proposition 3 for historical Brownian motion instead of super-Brownian motion, but this extension was also covered by [DS]. In particular, the quadratic variation of
\[\int_0^t \int_W \phi(w) M(ds, dw) \] is:

\[4 \int_0^t H_s(\phi^2) \, ds = 4 \int_0^t ds \int_0^{t_1} \phi^2(W_{t_r}) \, d[t_r] \, L^*_s(\zeta) \]

\[= 4 \int_0^{t_1} 1_{\{B \geq s \}} \phi^2(W_{t_r}) \, dr \]

and this leads to (8).

References

