A stabilized finite element projection scheme for incompressible fluid flow

T. Dubois, R. Touzani
Université Blaise Pascal
Clermont-Ferrand, France

Stokes Equations

Consider the time-dependent Stokes equations :

$$
\begin{array}{ll}
\frac{\partial \mathbf{u}}{\partial t}-\Delta \mathbf{u}+\nabla p=\mathbf{f} & \text { in } \Omega \times(0, T) \\
\operatorname{div} \mathbf{u}=0 & \text { in } \Omega \times(0, T) \\
\mathbf{u}=0 & \text { on } \Gamma \times(0, T)
\end{array}
$$

where $\Omega \subset \mathbb{R}^{d}, \Gamma=\partial \Omega, \mathbf{f} \in L^{2}(\Omega)^{d}$.

A projection scheme

$$
\begin{aligned}
& \begin{cases}\frac{\widetilde{\mathbf{u}}^{n+1}-\mathbf{u}^{n}}{\delta t}-\Delta \widetilde{\mathbf{u}}^{n+1}=\mathbf{f}^{n+1}-\nabla p^{n} & \text { in } \Omega \\
\widetilde{\mathbf{u}}^{n+1}=0 & \text { on } \Gamma\end{cases} \\
& \begin{cases}\frac{\mathbf{u}^{n+1}-\widetilde{\mathbf{u}}^{n+1}}{\delta t}+\nabla\left(p^{n+1}-p^{n}\right)=0 & \text { in } \Omega \\
\operatorname{div} \mathbf{u}^{n+1}=0 & \text { in } \Omega \\
\mathbf{u}^{n+1} \cdot \mathbf{n}=0 & \text { on } \Gamma\end{cases}
\end{aligned}
$$

Remarks :

- This scheme is of first order $(O(\delta t))$
- We have :

$$
\begin{array}{ll}
-\Delta\left(p^{n+1}-p^{n}\right)=-\frac{1}{\delta t} \operatorname{div} \widetilde{\mathbf{u}}^{n+1} & \text { in } \Omega \\
\frac{\partial\left(p^{n+1}-p^{n}\right)}{\partial n}=0 & \text { on 「 }
\end{array}
$$

No inf-sup condition is required.

Remarks :

- This scheme is of first order $(O(\delta t))$
- We have :

$$
\begin{array}{ll}
-\Delta\left(p^{n+1}-p^{n}\right)=-\frac{1}{\delta t} \operatorname{div} \widetilde{\mathbf{u}}^{n+1} & \text { in } \Omega \\
\frac{\partial\left(p^{n+1}-p^{n}\right)}{\partial n}=0 & \text { on } \Gamma
\end{array}
$$

Then

$$
\mathbf{u}^{n+1}=\widetilde{\mathbf{u}}^{n+1}+\delta t \nabla\left(p^{n+1}-p^{n}\right) \quad \text { in } \Omega
$$

No inf-sup condition is required.

Remarks :

- This scheme is of first order $(O(\delta t))$
- We have :

$$
\begin{array}{ll}
-\Delta\left(p^{n+1}-p^{n}\right)=-\frac{1}{\delta t} \operatorname{div} \widetilde{\mathbf{u}}^{n+1} & \text { in } \Omega \\
\frac{\partial\left(p^{n+1}-p^{n}\right)}{\partial n}=0 & \text { on } \Gamma
\end{array}
$$

Then

$$
\mathbf{u}^{n+1}=\widetilde{\mathbf{u}}^{n+1}+\delta t \nabla\left(p^{n+1}-p^{n}\right) \quad \text { in } \Omega
$$

No inf-sup condition is required.

Remarks :

- This scheme is of first order $(O(\delta t))$
- We have :

$$
\begin{array}{ll}
-\Delta\left(p^{n+1}-p^{n}\right)=-\frac{1}{\delta t} \operatorname{div} \widetilde{\mathbf{u}}^{n+1} & \text { in } \Omega \\
\frac{\partial\left(p^{n+1}-p^{n}\right)}{\partial n}=0 & \text { on } \Gamma
\end{array}
$$

Then

$$
\mathbf{u}^{n+1}=\widetilde{\mathbf{u}}^{n+1}+\delta t \nabla\left(p^{n+1}-p^{n}\right) \quad \text { in } \Omega
$$

No inf-sup condition is required.
Solution by this formulation gives poor results : One must first discretize in space :

$$
\begin{aligned}
& \frac{1}{\delta t} \mathbf{M}\left(\widetilde{\mathbf{u}}_{h}^{n+1}-\mathbf{u}_{h}^{n}\right)+\mathbf{A} \widetilde{\mathbf{u}}_{h}^{n+1}=\mathbf{b}^{n+1}-\mathbf{B}^{T} p_{h}^{n} \\
& \frac{1}{\delta t} \mathbf{M}\left(\mathbf{u}_{h}^{n+1}-\widetilde{\mathbf{u}}_{h}^{n+1}\right)+\mathbf{B}^{T}\left(p_{h}^{n+1}-p_{h}^{n}\right)=0 \\
& \mathbf{B u} \mathbf{u}_{h}^{n+1}=0
\end{aligned}
$$

Whence

$$
\mathbf{B M}^{-1} \mathbf{B}^{T}\left(p_{h}^{n+1}-p_{h}^{n}\right)=\frac{1}{\delta t} \mathbf{B} \widetilde{\mathbf{u}}_{h}^{n+1}
$$

$$
\begin{aligned}
& \frac{1}{\delta t} \mathbf{M}\left(\widetilde{\mathbf{u}}_{h}^{n+1}-\mathbf{u}_{h}^{n}\right)+\mathbf{A} \widetilde{\mathbf{u}}_{h}^{n+1}=\mathbf{b}^{n+1}-\mathbf{B}^{T} p_{h}^{n} \\
& \frac{1}{\delta t} \mathbf{M}\left(\mathbf{u}_{h}^{n+1}-\widetilde{\mathbf{u}}_{h}^{n+1}\right)+\mathbf{B}^{T}\left(p_{h}^{n+1}-p_{h}^{n}\right)=0 \\
& \mathbf{B u} u_{h}^{n+1}=0
\end{aligned}
$$

Whence

$$
\mathbf{B M}^{-1} \mathbf{B}^{T}\left(p_{h}^{n+1}-p_{h}^{n}\right)=\frac{1}{\delta t} \mathbf{B} \widetilde{\mathbf{u}}_{h}^{n+1}
$$

Remarks.

- $\mathbf{B M}{ }^{-1} \mathbf{B}^{T}$ is an analog of $-\operatorname{div}_{h} \nabla_{h}$ (not $-\Delta_{h}$!!). This matrix is sparse if a mass lumping is used. In general, it is less sparse than $-\Delta_{h}$.
- An inf-sup condition is to be satisfied to ensure stability.

$$
\begin{aligned}
& \frac{1}{\delta t} \mathbf{M}\left(\widetilde{\mathbf{u}}_{h}^{n+1}-\mathbf{u}_{h}^{n}\right)+\mathbf{A} \widetilde{\mathbf{u}}_{h}^{n+1}=\mathbf{b}^{n+1}-\mathbf{B}^{T} p_{h}^{n} \\
& \frac{1}{\delta t} \mathbf{M}\left(\mathbf{u}_{h}^{n+1}-\widetilde{\mathbf{u}}_{h}^{n+1}\right)+\mathbf{B}^{T}\left(p_{h}^{n+1}-p_{h}^{n}\right)=0 \\
& \mathbf{B} \mathbf{u}_{h}^{n+1}=0
\end{aligned}
$$

Whence

$$
\mathbf{B M}^{-1} \mathbf{B}^{T}\left(p_{h}^{n+1}-p_{h}^{n}\right)=\frac{1}{\delta t} \mathbf{B} \widetilde{\mathbf{u}}_{h}^{n+1}
$$

Remarks.

- $\mathbf{B M} \mathbf{M}^{-1} \mathbf{B}^{T}$ is an analog of $-\operatorname{div}_{h} \nabla_{h}$ (not $-\Delta_{h}$!!). This matrix is sparse if a mass lumping is used. In general, it is less sparse than $-\Delta_{h}$.
- An inf-sup condition is to be satisfied to ensure stability.

Stabilized Methods

Aim : Avoid the inf-sup condition by modifying in a consistent way the variationsl formulation
\Rightarrow Possibility of using arbitrary combinations of velocity and pressure spaces.
Example: Method of Hughes, Balestra, Franca for steady state Stokes equations:

Stabilized Methods

Aim : Avoid the inf-sup condition by modifying in a consistent way the variationsl formulation
\Rightarrow Possibility of using arbitrary combinations of velocity and pressure spaces.
Example: Method of Hughes, Balestra, Franca for steady state Stokes equations:

$$
\left\{\begin{array}{rl}
\left(\nabla \mathbf{u}_{h}, \nabla \mathbf{v}\right)-(p, \operatorname{div} \mathbf{v})=(\mathbf{f}, \mathbf{v}) & \mathbf{v} \in V_{h} \\
\left(\operatorname{div} \mathbf{u}_{h}, q\right)+\alpha \sum_{T} h_{T}^{2}\left(\left(\nabla p_{h}, \nabla q\right)_{T}\right. & \\
\left.-\left(\Delta \mathbf{u}_{h}, \nabla q\right)_{T}\right)=\alpha \sum_{T} h_{T}^{2}(\mathbf{f}, \nabla q)_{T} & q \in Q_{h}
\end{array}\right.
$$

A Stabilisation of the projection equation

(Hughes, Masud)
The projection equation is a Darcy equation (porous media) : Projection of $H_{0}^{1}(\Omega)^{d}$ on the space $\left\{\mathbf{v} \in L^{2}(\Omega)^{d} ; \operatorname{div} \mathbf{v}=0\right\}$:

Given $\mathrm{u} \in H_{0}^{1}(\Omega)^{d}$, Find $\mathrm{v} \in H(\operatorname{div} ; \Omega), p \in L_{0}^{2}(\Omega)$ such that

A Stabilisation of the projection equation

(Hughes, Masud)
The projection equation is a Darcy equation (porous media) : Projection of $H_{0}^{1}(\Omega)^{d}$ on the space $\left\{\mathbf{v} \in L^{2}(\Omega)^{d} ; \operatorname{div} v=0\right\}$:

Given $\mathbf{u} \in H_{0}^{1}(\Omega)^{d}$, Find $v \in H(\operatorname{div} ; \Omega), p \in L_{0}^{2}(\Omega)$ such that :

$$
\begin{cases}\mathbf{v}+\nabla p=\mathbf{u} & \text { in } \Omega \\ \operatorname{div} \mathbf{v}=0 & \text { in } \Omega \\ \mathbf{v} \cdot \mathbf{n}=0 & \text { on } \Gamma\end{cases}
$$

The Stokes equations

Stabilization of the projection equation A stabilization of the Darcy equation Implementation
A stabilization of the Stokes equations

Mixed Formulation :

\mathcal{T}_{h} : A mesh of Ω (triangles or tetrahedra).

$$
\begin{aligned}
& V_{h}=\left\{\mathbf{w} \in H(\operatorname{div}, \Omega) ; \mathbf{w}_{\mid T} \in R T_{0}(T), T \in \mathcal{T}_{h}\right\} \\
& Q_{h}=\left\{q \in L^{2}(\Omega) ; q_{\mid T} \in P_{0}, T \in \mathcal{T}_{h}, \int_{\Omega} q=0\right\} \\
& R T_{0}(T)=\left\{\mathbf{w}: T \rightarrow \mathbb{R}^{2} ; \mathbf{w}(\mathbf{x})=\mathbf{a}+b \mathbf{x}, \mathbf{a} \in \mathbb{R}^{2}, b \in \mathbb{R}\right\} \quad T \in \mathcal{T}_{h}
\end{aligned}
$$

The Stokes equations

Stabilization of the projection equation A stabilization of the Darcy equation Implementation
A stabilization of the Stokes equations

$$
\begin{cases}\text { Find }\left(\mathbf{v}_{h}, p_{h}\right) \in V_{h} \times Q_{h} \text { such that : } & \\ \left(\mathbf{v}_{h}, \mathbf{w}\right)-\left(p_{h}, \operatorname{div} \mathbf{w}\right)=(\mathbf{u}, \mathbf{w}) & \forall \mathbf{w} \in V_{h} \\ \left(\operatorname{div} \mathbf{v}_{h}, q\right)=0 & \forall q \in Q_{h}\end{cases}
$$

Remark. An efficient method consists in using a mixed hybrid method (Dubois, Touzani, Zimmerman). It enables decoupling v and p

$$
\begin{cases}\text { Find }\left(\mathbf{v}_{h}, p_{h}\right) \in V_{h} \times Q_{h} \text { such that : } & \\ \left(\mathbf{v}_{h}, \mathbf{w}\right)-\left(p_{h}, \operatorname{div} \mathbf{w}\right)=(\mathbf{u}, \mathbf{w}) & \forall \mathbf{w} \in V_{h} \\ \left(\operatorname{div} \mathbf{v}_{h}, q\right)=0 & \forall q \in Q_{h}\end{cases}
$$

Remark. An efficient method consists in using a mixed hybrid method (Dubois, Touzani, Zimmerman). It enables decoupling v and p

The Stokes equations

A stabilization of the Darcy equation.

Let $V^{S}=L^{2}(\Omega)^{d}, Q^{S}=\left\{q \in H^{1}(\Omega) ; \int_{\Omega} q=0\right\}$.
The stabilized formulation reads :

Note that this implies

Whence $\operatorname{div} \mathbf{v}=0$. We also deduce $\mathbf{v} \cdot \mathbf{n}=0$ on Γ.

A stabilization of the Darcy equation.

Let $V^{S}=L^{2}(\Omega)^{d}, Q^{S}=\left\{q \in H^{1}(\Omega) ; \int_{\Omega} q=0\right\}$.
The stabilized formulation reads :

$$
\begin{cases}\text { Find }(\mathbf{v}, p) \in V^{S} \times Q^{S} \text { such that : } & \\ (\mathbf{v}, \mathbf{w})+(\nabla p, \mathbf{w})=(\mathbf{u}, \mathbf{w}) & \forall \mathbf{w} \in V^{S}, \\ -(\mathbf{v}, \nabla q)+(\nabla p, \nabla q)=(\mathbf{u}, \nabla q) & \forall q \in Q^{S} .\end{cases}
$$

Note that this implies

A stabilization of the Darcy equation.

Let $V^{S}=L^{2}(\Omega)^{d}, Q^{S}=\left\{q \in H^{1}(\Omega) ; \int_{\Omega} q=0\right\}$.
The stabilized formulation reads :

$$
\begin{cases}\text { Find }(\mathbf{v}, p) \in V^{S} \times Q^{S} \text { such that : } & \\ (\mathbf{v}, \mathbf{w})+(\nabla p, \mathbf{w})=(\mathbf{u}, \mathbf{w}) & \forall \mathbf{w} \in V^{S}, \\ -(\mathbf{v}, \nabla q)+(\nabla p, \nabla q)=(\mathbf{u}, \nabla q) & \forall q \in Q^{S} .\end{cases}
$$

Note that this implies:

$$
\begin{aligned}
& \mathbf{v}+\nabla p=\mathbf{u} \Rightarrow \operatorname{div} \mathbf{v}+\Delta p=\operatorname{div} \mathbf{u} \\
& \operatorname{div} \mathbf{v}-\Delta p=-\operatorname{div} \mathbf{u}
\end{aligned}
$$

Whence $\operatorname{div} \mathrm{v}=0$. We also deduce $\mathrm{v} \cdot \mathrm{n}=0$ on Γ.

A stabilization of the Darcy equation.

Let $V^{S}=L^{2}(\Omega)^{d}, Q^{S}=\left\{q \in H^{1}(\Omega) ; \int_{\Omega} q=0\right\}$.
The stabilized formulation reads :

$$
\begin{cases}\text { Find }(\mathbf{v}, p) \in V^{S} \times Q^{S} \text { such that : } & \\ (\mathbf{v}, \mathbf{w})+(\nabla p, \mathbf{w})=(\mathbf{u}, \mathbf{w}) & \forall \mathbf{w} \in V^{S}, \\ -(\mathbf{v}, \nabla q)+(\nabla p, \nabla q)=(\mathbf{u}, \nabla q) & \forall q \in Q^{S} .\end{cases}
$$

Note that this implies :

$$
\begin{aligned}
& \mathbf{v}+\nabla p=\mathbf{u} \Rightarrow \operatorname{div} \mathbf{v}+\Delta p=\operatorname{div} \mathbf{u} \\
& \operatorname{div} \mathbf{v}-\Delta p=-\operatorname{div} \mathbf{u}
\end{aligned}
$$

Whence $\operatorname{div} \mathbf{v}=0$. We also deduce $\mathbf{v} \cdot \mathbf{n}=0$ on Γ.

The Stokes equations
A Projection Scheme Stabilized Methods

Stabilization of the projection equation A stabilization of the Darcy equation Implementation
A stabilization of the Stokes equations

We define the forms

$$
\begin{aligned}
\mathscr{B}((\mathbf{v}, p) ;(\mathbf{w}, q)) & =(\mathbf{v}, \mathbf{w})+(\nabla p, \mathbf{w})-(\mathbf{v}, \nabla q)+(\nabla p, \nabla q) \\
\mathscr{L}((\mathbf{w}, q)) & =(\mathbf{u}, \mathbf{w})+(\mathbf{u}, \nabla q)
\end{aligned}
$$

We have

We obtain the variational formulation

The Lax-Milgram lemma ensures existence and uniqueness of a solution of the continuous and the discrete problems if we chose finite element spaces $V_{h} \subset H_{0}^{1}(\Omega)^{d}$ and $Q_{h} \subset L_{0}^{2}(\Omega)$.

The Stokes equations
A Projection Scheme Stabilized Methods

Stabilization of the projection equation A stabilization of the Darcy equation Implementation
A stabilization of the Stokes equations

We define the forms

$$
\begin{aligned}
\mathscr{B}((\mathbf{v}, p) ;(\mathbf{w}, q)) & =(\mathbf{v}, \mathbf{w})+(\nabla p, \mathbf{w})-(\mathbf{v}, \nabla q)+(\nabla p, \nabla q) \\
\mathscr{L}((\mathbf{w}, q)) & =(\mathbf{u}, \mathbf{w})+(\mathbf{u}, \nabla q)
\end{aligned}
$$

We have

$$
\mathscr{B}((\mathbf{w}, q) ;(\mathbf{w}, q))=\|\mathbf{w}\|_{0}^{2}+\|\nabla q\|_{0}^{2}
$$

We obtain the variational formulation

Find $(V, P) \in V^{s} \times Q^{s}$ such that

The Lax-Milgram lemma ensures existence and uniqueness of a solution of the continuous and the discrete problems if we chose finite element spaces $V_{h} \subset H_{0}^{1}(\Omega)^{d}$ and $Q_{h} \subset L_{0}^{2}(\Omega)$.

We define the forms

$$
\begin{aligned}
\mathscr{B}((\mathbf{v}, p) ;(\mathbf{w}, q)) & =(\mathbf{v}, \mathbf{w})+(\nabla p, \mathbf{w})-(\mathbf{v}, \nabla q)+(\nabla p, \nabla q) \\
\mathscr{L}((\mathbf{w}, q)) & =(\mathbf{u}, \mathbf{w})+(\mathbf{u}, \nabla q)
\end{aligned}
$$

We have

$$
\mathscr{B}((\mathbf{w}, q) ;(\mathbf{w}, q))=\|\mathbf{w}\|_{0}^{2}+\|\nabla q\|_{0}^{2}
$$

We obtain the variational formulation

$$
\left\{\begin{array}{l}
\text { Find }(\mathbf{v}, p) \in V^{S} \times Q^{S} \quad \text { such that } \\
\mathscr{B}((\mathbf{v}, p) ;(\mathbf{w}, q))=\mathscr{L}((\mathbf{w}, q)) \quad \forall(\mathbf{w}, q) \in V^{S} \times Q^{S}
\end{array}\right.
$$

The Lax-Milgram lemma ensures existence and uniqueness of a solution of the continuous and the discrete problems if we chose finite element spaces $V_{h} \subset H_{0}^{1}(\Omega)^{d}$ and $Q_{h} \subset L_{0}^{2}(\Omega)$.

We define the forms

$$
\begin{aligned}
\mathscr{B}((\mathbf{v}, p) ;(\mathbf{w}, q)) & =(\mathbf{v}, \mathbf{w})+(\nabla p, \mathbf{w})-(\mathbf{v}, \nabla q)+(\nabla p, \nabla q) \\
\mathscr{L}((\mathbf{w}, q)) & =(\mathbf{u}, \mathbf{w})+(\mathbf{u}, \nabla q)
\end{aligned}
$$

We have

$$
\mathscr{B}((\mathbf{w}, q) ;(\mathbf{w}, q))=\|\mathbf{w}\|_{0}^{2}+\|\nabla q\|_{0}^{2}
$$

We obtain the variational formulation

$$
\left\{\begin{array}{l}
\text { Find }(\mathbf{v}, p) \in V^{S} \times Q^{S} \quad \text { such that } \\
\mathscr{B}((\mathbf{v}, p) ;(\mathbf{w}, q))=\mathscr{L}((\mathbf{w}, q)) \quad \forall(\mathbf{w}, q) \in V^{S} \times Q^{S}
\end{array}\right.
$$

The Lax-Milgram lemma ensures existence and uniqueness of a solution of the continuous and the discrete problems if we chose finite element spaces $V_{h} \subset H_{0}^{1}(\Omega)^{d}$ and $Q_{h} \subset L_{0}^{2}(\Omega)$.

The Stokes equations

Stabilization of the projection equation A stabilization of the Darcy equation Implementation
A stabilization of the Stokes equations

Discretization.

$$
\begin{aligned}
& V_{h}^{S}=\left\{\mathbf{w} \in \mathcal{C}^{0}(\bar{\Omega})^{d} ; \mathbf{w}_{\mid T} \in\left(P_{1}\right)^{d}, T \in \mathcal{T}_{h}\right\}, \\
& Q_{h}^{S}=\left\{q \in \mathcal{C}^{0}(\bar{\Omega}) ; q_{\mid T} \in P_{1}, T \in \mathcal{T}_{h}, \int_{\Omega} q_{h}=0\right\}
\end{aligned}
$$

Convergence Analysis.

We have (Masud-Hughes)

The Stokes equations
A Projection Scheme Stabilized Methods

Discretization.

$$
\begin{aligned}
& V_{h}^{S}=\left\{\mathbf{w} \in \mathcal{C}^{0}(\bar{\Omega})^{d} ; \mathbf{w}_{\mid T} \in\left(P_{1}\right)^{d}, T \in \mathcal{T}_{h}\right\}, \\
& Q_{h}^{S}=\left\{q \in \mathcal{C}^{0}(\bar{\Omega}) ; q_{\mid T} \in P_{1}, T \in \mathcal{T}_{h}, \int_{\Omega} q_{h}=0\right\}
\end{aligned}
$$

Convergence Analysis.

We have (Masud-Hughes) :

$$
\left\|\mathbf{v}-\mathbf{v}_{h}\right\|_{0}+\left\|\nabla\left(p-p_{h}\right)\right\|_{0} \leq C\left(h^{2}|\mathbf{v}|_{2}+h|p|_{2}\right)
$$

The Stokes equations

Stabilization of the projection equation A stabilization of the Darcy equation Implementation
A stabilization of the Stokes equations

Implementation.

The matrix formulation reads :

$$
\left(\begin{array}{cc}
\mathbf{M} & \mathbf{B} \\
-\mathbf{B}^{T} & \mathbf{A}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{p}}=\binom{\mathbf{M} \mathbf{u}}{\mathbf{B}^{T} \mathbf{u}}
$$

This is analogous to

 lumping).
T. Dubois, R. Touzani

The Stokes equations

Implementation.

The matrix formulation reads :

$$
\left(\begin{array}{cc}
\mathbf{M} & \mathbf{B} \\
-\mathbf{B}^{T} & \mathbf{A}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{p}}=\binom{\mathbf{M} \mathbf{u}}{\mathbf{B}^{T} \mathbf{u}}
$$

Then

$$
\begin{aligned}
& \left(\mathbf{A}+\mathbf{B}^{T} \mathbf{M}^{-1} \mathbf{B}\right) \mathbf{p}=2 \mathbf{B}^{T} \mathbf{u} \\
& \mathbf{v}=\mathbf{u}-\mathbf{B} \mathbf{p}
\end{aligned}
$$

This is analogous to

Remark. The matrix $B^{T} M^{-1} B$ is sparse if M is diagonal (mass lumping).

The Stokes equations

Implementation.

The matrix formulation reads :

$$
\left(\begin{array}{cc}
\mathbf{M} & \mathbf{B} \\
-\mathbf{B}^{T} & \mathbf{A}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{p}}=\binom{\mathbf{M} \mathbf{u}}{\mathbf{B}^{T} \mathbf{u}}
$$

Then

$$
\begin{aligned}
& \left(\mathbf{A}+\mathbf{B}^{T} \mathbf{M}^{-1} \mathbf{B}\right) \mathbf{p}=2 \mathbf{B}^{T} \mathbf{u} \\
& \mathbf{v}=\mathbf{u}-\mathbf{B} \mathbf{p}
\end{aligned}
$$

This is analogous to

$$
-\left(\Delta_{h}+\operatorname{div}_{h} \nabla_{h}\right) p_{h}=-2 \operatorname{div} \mathbf{u}_{h}
$$

Remark. The matrix $B^{T} M^{-1} B$ is sparse if M is diagonal (mass lumping).

Implementation.

The matrix formulation reads :

$$
\left(\begin{array}{cc}
\mathbf{M} & \mathbf{B} \\
-\mathbf{B}^{T} & \mathbf{A}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{p}}=\binom{\mathbf{M} \mathbf{u}}{\mathbf{B}^{T} \mathbf{u}}
$$

Then

$$
\begin{aligned}
& \left(\mathbf{A}+\mathbf{B}^{T} \mathbf{M}^{-1} \mathbf{B}\right) \mathbf{p}=2 \mathbf{B}^{T} \mathbf{u} \\
& \mathbf{v}=\mathbf{u}-\mathbf{B} \mathbf{p}
\end{aligned}
$$

This is analogous to

$$
-\left(\Delta_{h}+\operatorname{div}_{h} \nabla_{h}\right) p_{h}=-2 \operatorname{div} \mathbf{u}_{h}
$$

Remark. The matrix $B^{T} M^{-1} B$ is sparse if M is diagonal (mass lumping).

The Stokes equations

A stabilization of the Stokes equations

Define the spaces :

$$
\begin{aligned}
& V_{h}=\left\{\mathbf{v} \in \mathcal{C}^{0}(\bar{\Omega})^{d} ; \mathbf{v}_{\mid T} \in P_{k}^{d}, T \in \mathcal{T}_{h}, \mathbf{v}_{\mid \Gamma}=0\right\} \\
& Q_{h}=\left\{q \in \mathcal{C}^{0}(\bar{\Omega}) ; q_{\mid T} \in P_{\ell}, T \in \mathcal{T}_{h}, \int_{\Omega} q=0\right\}
\end{aligned}
$$

We define a stabilized projection scheme by

A stabilization of the Stokes equations

Define the spaces :

$$
\begin{aligned}
& V_{h}=\left\{\mathbf{v} \in \mathcal{C}^{0}(\bar{\Omega})^{d} ; \mathbf{v}_{\mid T} \in P_{k}^{d}, T \in \mathcal{T}_{h}, \mathbf{v}_{\mid \Gamma}=0\right\} \\
& Q_{h}=\left\{q \in \mathcal{C}^{0}(\bar{\Omega}) ; q_{\mid T} \in P_{\ell}, T \in \mathcal{T}_{h}, \int_{\Omega} q=0\right\}
\end{aligned}
$$

We define a stabilized projection scheme by :

$$
\begin{cases}\mathbf{u}_{h}^{n+1} \in V_{h}, \widetilde{\mathbf{u}}_{h}^{n+1} \in V_{h}, p_{h}^{n+1} \in Q_{h} & \\ \frac{1}{\delta t}\left(\widetilde{\mathbf{u}}_{h}^{n+1}-\mathbf{u}_{h}^{n}, \mathbf{v}\right)+\left(\nabla \widetilde{\mathbf{u}}_{h}^{n+1}, \nabla \mathbf{v}\right)=\left(\mathbf{f}^{n+1}, \mathbf{v}\right)-\left(\nabla p_{h}^{n}, \mathbf{v}\right) & \mathbf{v} \in V_{h} \\ \frac{1}{\delta t}\left(\mathbf{u}_{h}^{n+1}-\widetilde{\mathbf{u}}_{h}^{n+1}, \mathbf{v}\right)+\left(\nabla\left(p_{h}^{n+1}-p_{h}^{n}\right), \mathbf{v}\right)=0 & \mathbf{v} \in V_{h} \\ -\left(\mathbf{u}_{h}^{n+1}, \nabla q\right)+\delta t\left(\nabla\left(p_{h}^{n+1}-p_{h}^{n}\right), \nabla q\right)=\left(\widetilde{\mathbf{u}}_{h}^{n+1}, \nabla q\right) & q \in Q_{h}\end{cases}
$$

Convergence
(Dubois, Touzani)
We take $d=2, k=\ell=1$. Then, under the regularity assumptions :

$$
\begin{aligned}
& u, u_{t} \in L^{\infty}\left(H^{2}(\Omega)^{2}\right), u_{t t} \in L^{\infty}\left(H^{1}(\Omega)^{2}\right), \\
& p, p_{t} \in L^{\infty}\left(H^{1}(\Omega)\right), p_{t t} \in L^{\infty}\left(L^{2}(\Omega)\right),
\end{aligned}
$$

we have the error bounds :

$$
\begin{aligned}
& \left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{\ell \infty\left(H^{1}(\Omega)^{2}\right)}+\left\|p-p_{h}\right\|_{\ell \infty\left(L^{2}(\Omega)\right)} \leq C(h+\delta t) \\
& \left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{\ell^{\infty}\left(L^{2}(\Omega)^{2}\right)} \leq C\left(h^{2}+\delta t\right)
\end{aligned}
$$

This result is generalizable to the 3-D case.

Extensions

A 2nd-order scheme for Navier-Stokes equations:

- Cranck-Nicholson for the viscosity term
- Adams-Bashforth for the explicit convective term

$$
\begin{aligned}
& (\mathbf{M v}, \mathbf{w}):=(\mathbf{v}, \mathbf{w}) \\
& (\mathbf{K v}, \mathbf{w}):=\nu(\nabla \mathbf{v}, \nabla \mathbf{w}) \\
& (\mathbf{C}(\mathbf{v}), \mathbf{w}):=(\mathbf{v} \cdot \nabla \mathbf{v}, \mathbf{w}) \\
& (\mathbf{B q}, \mathbf{w}):=(\nabla q, \mathbf{w}) \\
& (\mathbf{A p}, \mathbf{q}):=(\nabla p, \nabla q) \\
& (\mathbf{b}, \mathbf{w}):=(\mathbf{f}, \mathbf{w})
\end{aligned}
$$

Mass
Viscosity
Convection
Pressure gradient
Pressure Poisson equation
External forces

\Rightarrow 2nd-order projection scheme

$$
\begin{aligned}
\frac{1}{\delta t} \mathbf{M}\left(\widetilde{\mathbf{u}}^{n+1}-\mathbf{u}^{n}\right)+\frac{1}{2} \mathbf{K} \widetilde{\mathbf{u}}^{n+1}= & \mathbf{b}^{n+\frac{1}{2}}-\mathbf{B} \mathbf{p}^{n}-\frac{1}{2} \mathbf{K} \mathbf{u}^{n} \\
& -\frac{3}{2} \mathbf{C}\left(\mathbf{u}^{n}\right)+\frac{1}{2} \mathbf{C}\left(\mathbf{u}^{n-1}\right) \\
\left(\mathbf{A}+\mathbf{B} \mathbf{M}^{-1} \mathbf{B}\right) \mathbf{q}^{n+1}= & 2 \mathbf{B}^{T} \mathbf{u}^{n+1} \\
\mathbf{M} \mathbf{u}^{n+1}= & \mathbf{M} \widetilde{\mathbf{u}}^{n+1}-\mathbf{B} \mathbf{q}^{n+1} \\
\mathbf{p}^{n+1}= & \mathbf{p}^{n}+2 \delta t \mathbf{q}^{n+1}
\end{aligned}
$$

The Stokes equations
A Projection Scheme Stabilized Methods Extensions

Numerical Test

Rate ≈ 1.9

Example : Driven cavity Flow

Velocity $(\mathrm{Re}=500)$

The Stokes equations
A Projection Scheme Stabilized Methods

Streamlines $(\mathrm{Re}=500)$

