An optimal order finite element method for elliptic interface problems

Gunther Peichl University of Graz, Austria

Rachid Touzani Université Blaise Pascal (Clermont-Ferrand, France)

э

通 と く ヨ と く ヨ と

Consider the elliptic problem

$$\begin{aligned} &-\nabla\cdot(a\,\nabla u)=f & \text{ in } \Omega\subset\mathbb{R}^2\\ &u=0 & \text{ on } \Gamma:=\partial\Omega \end{aligned}$$

where $f \in L^2(\Omega)$ and

 $\Omega = \Omega^- \cup \gamma \cup \Omega^+.$

Here γ is a closed curve:

 $a \in W^{1,\infty}(\Omega^+) \cap W^{1,\infty}(\Omega^-)$ and a is discontinuous across γ .

(ロ) (部) (E) (E) (E)

 $u \in H^2(\Omega^-) \cap H^2(\Omega^+)$, but $u \notin H^2(\Omega)$.

Remark

Even if γ is polygonal, then $u \notin H^2(\Omega^-) \cap H^2(\Omega^+)$. We have in general $u \in H^{\frac{3}{2}-\theta}$ for $\theta > 0$.

This model problem exhibits the same type of singularity as interface problems involved in:

- Free boundary problems
- Transmission problems
- Fictitious domain methods
- . . .

Aim

To construct an accurate finite element method that does not fit the mesh.

-

イロト イポト イヨト イヨト

 $u \in H^2(\Omega^-) \cap H^2(\Omega^+)$, but $u \notin H^2(\Omega)$.

Remark

Even if γ is polygonal, then $u \notin H^2(\Omega^-) \cap H^2(\Omega^+)$. We have in general $u \in H^{\frac{3}{2}-\theta}$ for $\theta > 0$.

This model problem exhibits the same type of singularity as interface problems involved in:

- Free boundary problems
- Transmission problems
- Fictitious domain methods
- . . .

Aim

To construct an accurate finite element method that does not fit the mesh.

-

 $u \in H^2(\Omega^-) \cap H^2(\Omega^+)$, but $u \notin H^2(\Omega)$.

Remark

Even if γ is polygonal, then $u \notin H^2(\Omega^-) \cap H^2(\Omega^+)$. We have in general $u \in H^{\frac{3}{2}-\theta}$ for $\theta > 0$.

This model problem exhibits the same type of singularity as interface problems involved in:

- Free boundary problems
- Transmission problems
- Fictitious domain methods
- . . .

Aim

To construct an accurate finite element method that does not fit the mesh.

 $u \in H^2(\Omega^-) \cap H^2(\Omega^+)$, but $u \notin H^2(\Omega)$.

Remark

Even if γ is polygonal, then $u \notin H^2(\Omega^-) \cap H^2(\Omega^+)$. We have in general $u \in H^{\frac{3}{2}-\theta}$ for $\theta > 0$.

This model problem exhibits the same type of singularity as interface problems involved in:

- Free boundary problems
- Transmission problems
- Fictitious domain methods
- . . .

Aim

To construct an accurate finite element method that does not fit the mesh.

・ロン ・回 と ・ ヨン ・ ヨン - ヨー

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method ...
- Z. Li: Immersed boundary techniques for interface problems
- . . .

< 回 > < 三 > < 三 >

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method ...
- Z. Li: Immersed boundary techniques for interface problems
- . . .

< 回 > < 三 > < 三 >

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method ...
- Z. Li: Immersed boundary techniques for interface problems
- . . .

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method
- Z. Li: Immersed boundary techniques for interface problems
- . . .

-

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method
- Z. Li: Immersed boundary techniques for interface problems
- . . .

-

Assume that Ω is polygonal and consider a finite element mesh \mathscr{T}_h of $\overline{\Omega}$. The simplest finite element method is given by the space

$$V_h = \{ v \in C^0(\overline{\Omega}); \ v_{|T} \in P_1(T) \ \forall \ T \in \mathscr{T}_h, \ v = 0 \text{ on } \Gamma \}.$$

The discrete problem is given by

$$\int_{\Omega} a \, \nabla u_h \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \qquad \forall \, v \in V_h.$$

Classic error estimates

 $\|u-u_h\|_{1,\Omega} \leq Ch$

do not hold any more.

To construct a fitted FEM, we consider:

If A piecewise linear approximation γ_h of the curve γ that implies a subdivision

 $\Omega = \Omega_h^- \cup \gamma_h \cup \Omega_h^+.$

A subdivision of any "interface triangle" into 3 (or 2 in some cases) triangles

3

ヘロト ヘヨト ヘヨト ヘヨト

Assume that Ω is polygonal and consider a finite element mesh \mathscr{T}_h of $\overline{\Omega}$. The simplest finite element method is given by the space

$$V_h = \{ v \in C^0(\overline{\Omega}); \ v_{|T} \in P_1(T) \ \forall \ T \in \mathscr{T}_h, \ v = 0 \text{ on } \Gamma \}.$$

The discrete problem is given by

$$\int_{\Omega} a \, \nabla u_h \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \qquad \forall \ v \in V_h.$$

Classic error estimates

$$\|u - u_h\|_{1,\Omega} \le Ch$$

do not hold any more.

To construct a fitted FEM, we consider:

If A piecewise linear approximation γ_h of the curve γ that implies a subdivision

 $\Omega = \Omega_h^- \cup \gamma_h \cup \Omega_h^+.$

A subdivision of any "interface triangle" into 3 (or 2 in some cases) triangles

-

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Assume that Ω is polygonal and consider a finite element mesh \mathscr{T}_h of $\overline{\Omega}$. The simplest finite element method is given by the space

$$V_h = \{ v \in C^0(\overline{\Omega}); \ v_{|T} \in P_1(T) \ \forall \ T \in \mathscr{T}_h, \ v = 0 \text{ on } \Gamma \}.$$

The discrete problem is given by

$$\int_{\Omega} a \, \nabla u_h \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \qquad \forall \, v \in V_h.$$

Classic error estimates

$$\|u-u_h\|_{1,\Omega} \leq Ch$$

do not hold any more.

To construct a fitted FEM, we consider:

() A piecewise linear approximation γ_h of the curve γ that implies a subdivision

 $\Omega = \Omega_h^- \cup \gamma_h \cup \Omega_h^+.$

A subdivision of any "interface triangle" into 3 (or 2 in some cases) triangles

-

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Assume that Ω is polygonal and consider a finite element mesh \mathscr{T}_h of $\overline{\Omega}$. The simplest finite element method is given by the space

$$V_h = \{ v \in C^0(\overline{\Omega}); \ v_{|T} \in P_1(T) \ \forall \ T \in \mathscr{T}_h, \ v = 0 \text{ on } \Gamma \}.$$

The discrete problem is given by

$$\int_{\Omega} a \, \nabla u_h \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \qquad \forall \, v \in V_h.$$

Classic error estimates

$$\|u-u_h\|_{1,\Omega} \leq Ch$$

do not hold any more.

To construct a fitted FEM, we consider:

() A piecewise linear approximation γ_h of the curve γ that implies a subdivision

$$\Omega = \Omega_h^- \cup \gamma_h \cup \Omega_h^+.$$

A subdivision of any "interface triangle" into 3 (or 2 in some cases) triangles

-

ヘロマ 人間マ ヘヨマ ヘヨマ

A fitted finite element method (Cont'd)

Subdivision of an interface triangle

Notations:

$$\begin{split} \mathscr{T}_{h}^{\gamma} &:= \{T \in \mathscr{T}_{h}; \ \gamma \cap T^{\circ} \neq \emptyset\} \\ \mathscr{E}_{h}^{\gamma} &:= \{e \text{ edge}; \ \gamma \cap e^{\circ} \neq \emptyset\} \\ \mathscr{T}_{T}^{\gamma} &:= \cup \{\text{subtriangles of } T\} \\ \mathscr{T}_{h}^{F} &:= \mathscr{T}_{h} \cup \bigcup_{T \in \mathscr{T}_{h}^{\gamma}} \left(\cup_{K \in \mathscr{T}_{T}^{\gamma}} K \right) \\ \mathscr{S}_{h}^{\gamma} &:= \bigcup \{T; \ T \in \mathscr{T}_{h}^{\gamma}\} \end{split}$$

Interface triangles Edges intersected by γ (or γ_h)

New fitted mesh

Layer containing the interface

・ロト ・回ト ・ヨト ・ヨト

3

We next define an extension \tilde{a}_h of a and a piecewise linear interpolant a_h of \tilde{a}_h , with

$$\begin{aligned} & a_{h|\Omega_h^-} \in W^{1,\infty}(\Omega_h^-), \ a_{h|\Omega_h^+} \in W^{1,\infty}(\Omega_h^+), \\ & a_h \text{ is discontinuous across } \gamma_h, \\ & \|a_h\|_{0,\infty,\Omega} \leq C \, \|a\|_{0,\infty,\Omega}. \end{aligned}$$

The fitted finite element space is given by

$$\begin{split} W_h &:= V_h + X_h \; (\subset H_0^1(\Omega)) \\ X_h &:= \{ \mathsf{v} \in C^0(\overline{\Omega}); \; \mathsf{v}_{|\Omega \setminus S_h^{\gamma}} = 0, \; \mathsf{v}_{|K} \in P_1(K) \; \forall \; K \in \mathscr{T}_T^{\gamma}, \; \forall \; T \in \mathcal{T}_h^{\gamma} \} \end{split}$$

Whence the Fitted Finite Element Method:

Find
$$u_h^F \in W_h$$
 such that $\int_{\Omega} a_h \nabla u_h^F \cdot \nabla v \, dx = \int_{\Omega} fv \, dx \quad \forall v \in W_h.$

We assume (a weaker mesh regularity) that for some $heta \in [0,1)$,

$$\frac{h}{\varrho_{K}} \leq C h^{-\theta} \qquad \forall \ K \in \mathscr{T}_{T}^{\gamma}, \ T \in \mathscr{T}_{h}^{\gamma}.$$

where ρ_K is the diameter of the inscribed circle in K

EFEF'4 Zürich

э

We next define an extension \tilde{a}_h of a and a piecewise linear interpolant a_h of \tilde{a}_h , with

$$\begin{aligned} a_{h|\Omega_{h}^{-}} &\in W^{1,\infty}(\Omega_{h}^{-}), \ a_{h|\Omega_{h}^{+}} \in W^{1,\infty}(\Omega_{h}^{+}), \\ a_{h} \text{ is discontinuous across } \gamma_{h}, \\ \|a_{h}\|_{0,\infty,\Omega} &\leq C \|a\|_{0,\infty,\Omega}. \end{aligned}$$

The fitted finite element space is given by

$$\begin{split} & \mathcal{W}_h := V_h + X_h \; (\subset H^1_0(\Omega)) \\ & X_h := \{ \mathsf{v} \in C^0(\overline{\Omega}); \; \mathsf{v}_{|\Omega \setminus S_h^{\gamma}} = 0, \; \mathsf{v}_{|K} \in P_1(K) \; \forall \; K \in \mathscr{T}_T^{\gamma}, \; \forall \; T \in \mathcal{T}_h^{\gamma} \} \end{split}$$

Whence the Fitted Finite Element Method:

Find
$$u_h^F \in W_h$$
 such that $\int_{\Omega} a_h \nabla u_h^F \cdot \nabla v \, dx = \int_{\Omega} fv \, dx \quad \forall v \in W_h.$

We assume (a weaker mesh regularity) that for some $heta \in [0,1),$

$$\frac{h}{\varrho_{K}} \leq C h^{-\theta} \qquad \forall \ K \in \mathscr{T}_{T}^{\gamma}, \ T \in \mathscr{T}_{h}^{\gamma}.$$

where ρ_K is the diameter of the inscribed circle in K

EFEF'4 Zürich

イロト 不得 とくほと くほとう

э

We next define an extension \tilde{a}_h of a and a piecewise linear interpolant a_h of \tilde{a}_h , with

$$\begin{aligned} \mathbf{a}_{h|\Omega_{h}^{-}} &\in W^{1,\infty}(\Omega_{h}^{-}), \ \mathbf{a}_{h|\Omega_{h}^{+}} \in W^{1,\infty}(\Omega_{h}^{+}), \\ \mathbf{a}_{h} \text{ is discontinuous across } \gamma_{h}, \\ \|\mathbf{a}_{h}\|_{0,\infty,\Omega} &\leq C \|\mathbf{a}\|_{0,\infty,\Omega}. \end{aligned}$$

The fitted finite element space is given by

$$\begin{split} & \mathcal{W}_h := V_h + X_h \; (\subset H^1_0(\Omega)) \\ & X_h := \{ \mathsf{v} \in C^0(\overline{\Omega}); \; \mathsf{v}_{|\Omega \setminus S_h^{\gamma}} = 0, \; \mathsf{v}_{|K} \in P_1(K) \; \forall \; K \in \mathscr{T}_T^{\gamma}, \; \forall \; T \in \mathcal{T}_h^{\gamma} \} \end{split}$$

Whence the Fitted Finite Element Method:

Find
$$u_h^F \in W_h$$
 such that $\int_{\Omega} a_h \nabla u_h^F \cdot \nabla v \, dx = \int_{\Omega} fv \, dx \quad \forall v \in W_h.$

We assume (a weaker mesh regularity) that for some $\theta \in [0, 1)$,

$$\frac{h}{\varrho_{\mathsf{K}}} \leq C h^{-\theta} \qquad \forall \; \mathsf{K} \in \mathscr{T}^{\gamma}_{\mathsf{T}}, \; \mathsf{T} \in \mathscr{T}^{\gamma}_{\mathsf{h}}.$$

where ρ_K is the diameter of the inscribed circle in K.

EFEF'4 Zürich

We have the error estimate

$$|u-u_h^F|_{1,\Omega} \le \begin{cases} C h^{1-\theta} \|u\|_{2,\Omega^+\cup\Omega^-} & \text{if } u \in H^2(\Omega^+\cup\Omega^-) \\ C h \|u\|_{2,\Omega^+\cup\Omega^-} & \text{if } u \in W^{2,\infty}(\Omega^+\cup\Omega^-). \end{cases}$$

This method is rather simple but, in view of a time (or iteration) dependent interface, it implies a variable matrix structure.

To avoid this drawback, we resort to a hybrid technique.

э

イロト イポト イヨト イヨト

We have the error estimate

$$|u-u_h^F|_{1,\Omega} \leq \begin{cases} C h^{1-\theta} \|u\|_{2,\Omega^+\cup\Omega^-} & \text{if } u \in H^2(\Omega^+\cup\Omega^-) \\ C h \|u\|_{2,\Omega^+\cup\Omega^-} & \text{if } u \in W^{2,\infty}(\Omega^+\cup\Omega^-). \end{cases}$$

This method is rather simple but, in view of a time (or iteration) dependent interface, it implies a variable matrix structure.

To avoid this drawback, we resort to a hybrid technique.

э

イロン イロン イヨン イヨン

We have the error estimate

$$|u-u_{h}^{F}|_{1,\Omega} \leq \begin{cases} C h^{1-\theta} \|u\|_{2,\Omega^{+}\cup\Omega^{-}} & \text{if } u \in H^{2}(\Omega^{+}\cup\Omega^{-}) \\ C h \|u\|_{2,\Omega^{+}\cup\Omega^{-}} & \text{if } u \in W^{2,\infty}(\Omega^{+}\cup\Omega^{-}). \end{cases}$$

This method is rather simple but, in view of a time (or iteration) dependent interface, it implies a variable matrix structure.

To avoid this drawback, we resort to a hybrid technique.

э

イロト 不得 とくほと くほとう

We have the error estimate

$$|u-u_{h}^{F}|_{1,\Omega} \leq \begin{cases} C h^{1-\theta} \|u\|_{2,\Omega^{+}\cup\Omega^{-}} & \text{if } u \in H^{2}(\Omega^{+}\cup\Omega^{-}) \\ C h \|u\|_{2,\Omega^{+}\cup\Omega^{-}} & \text{if } u \in W^{2,\infty}(\Omega^{+}\cup\Omega^{-}). \end{cases}$$

This method is rather simple but, in view of a time (or iteration) dependent interface, it implies a variable matrix structure.

To avoid this drawback, we resort to a hybrid technique.

3

イロン 不同 とくほう イロン

A hybrid formulation

As usual, we start by defining a pseudo-continuous hybrid method. Let

$$\begin{split} \widehat{Z}_h &:= H_0^1(\Omega) + \widehat{X}_h, \\ \widehat{X}_h &:= \{ v \in L^2(\Omega); \ v_{|\Omega \setminus S_h^{\gamma}} = 0, \ v_{|T} \in H^1(T) \ \forall \ T \in \mathscr{T}_h^{\gamma} \}, \\ \widehat{Q}_h &:= \prod_{e \in \mathscr{E}_h^{\gamma}} (H_{00}^{\frac{1}{2}}(e))', \end{split}$$

where

$$H_{00}^{\frac{1}{2}}(e):=\{v_{|e};\ v\in H^1(T),\ e\in \mathscr{E}_T, v=0\ \text{on}\ d\ \forall\ d\in \mathscr{E}_T, d\neq e\}.$$

We define the problem

Find
$$(\hat{u}_{h}^{H}, \hat{\lambda}_{h}) \in \widehat{Z}_{h} \times \widehat{Q}_{h}$$
 such that:

$$\sum_{T \in \mathscr{T}_{h}} \int_{T} a_{h} \nabla \hat{u}_{h}^{H} \cdot \nabla v \, dx - \sum_{e \in \mathscr{E}_{h}^{\gamma}} \int_{e} \hat{\lambda}_{h} [v] \, ds = \int_{\Omega} fv \, dx \qquad \forall v \in \widehat{Z}_{h},$$

$$\sum_{e \in \mathscr{E}_{h}^{\gamma}} \int_{e} \mu [\hat{u}_{h}^{H}] \, ds = 0 \qquad \forall \mu \in \widehat{Q}_{h}.$$

A hybrid formulation (Cont'd)

Theorem

The previous problem has a unique solution. Moreover

$$\hat{u}_{h}^{H} \in H_{0}^{1}(\Omega), \quad \widehat{\lambda}_{h} = \mathsf{a}_{h} \, \frac{\partial \widehat{u}_{h}^{H}}{\partial n}$$

э

A hybrid finite element method

We define the spaces:

$$\begin{split} Z_h &:= V_h + Y_h, \\ V_h &:= \{ v \in C^0(\overline{\Omega}); \ v_{|T} \in P_1(T) \ \forall \ T \in \mathscr{T}_h \}, \\ Y_h &:= \{ v \in L^2(\Omega); \ v_{|\Omega \setminus S_h^{\gamma}} = 0, \ v_{|K} \in P_1(K) \ \forall \ K \in \mathscr{T}_T^{\gamma}, \ \forall \ T \in \mathscr{T}_h^{\gamma} \}, \\ Q_h &:= \{ \mu \in L^2(\prod_{e \in \mathscr{E}_h^{\gamma}}); \ \mu_{|e} = \text{const.} \ \forall \ e \in \mathscr{E}_h^{\gamma} \}. \end{split}$$

The discrete problem is:

Find
$$(u_h^H, \lambda_h) \in Z_h \times Q_h$$
 such that

$$\sum_{T \in \mathscr{T}_h} \int_T a_h \nabla u_h^H \cdot \nabla v \, dx - \sum_{e \in \mathscr{C}_h^\gamma} \int_e \lambda_h [v] \, ds = \int_\Omega f v \, dx \qquad \forall v \in Z_h,$$

$$\sum_{e \in \mathscr{C}_h^\gamma} \int_e \mu [u_h^H] \, ds = 0 \qquad \forall \mu \in Q_h.$$

æ

・ロン ・四 と ・ ヨ と ・ ヨ と

A hybrid finite element method

We define the spaces:

$$\begin{split} &Z_h := V_h + Y_h, \\ &V_h := \{ v \in C^0(\overline{\Omega}); \ v_{|T} \in P_1(T) \ \forall \ T \in \mathcal{T}_h \}, \\ &Y_h := \{ v \in L^2(\Omega); \ v_{|\Omega \setminus S_h^{\gamma}} = 0, \ v_{|K} \in P_1(K) \ \forall \ K \in \mathcal{T}_T^{\gamma}, \ \forall \ T \in \mathcal{T}_h^{\gamma} \}, \\ &Q_h := \{ \mu \in L^2(\prod_{e \in \mathscr{E}_h^{\gamma}}); \ \mu_{|e} = \text{const.} \ \forall \ e \in \mathscr{E}_h^{\gamma} \}. \end{split}$$

The discrete problem is:

Find
$$(u_h^H, \lambda_h) \in Z_h \times Q_h$$
 such that

$$\sum_{T \in \mathscr{T}_h} \int_T a_h \nabla u_h^H \cdot \nabla v \, dx - \sum_{e \in \mathscr{E}_h^\gamma} \int_e \lambda_h [v] \, ds = \int_\Omega f v \, dx \qquad \forall v \in Z_h,$$

$$\sum_{e \in \mathscr{E}_h^\gamma} \int_e \mu [u_h^H] \, ds = 0 \qquad \forall \mu \in Q_h.$$

<ロ> <四> <四> <日> <日> <日</p>

A hybrid finite element method (Cont'd)

Remark

The advantage of the hybrid approximation is that the added degrees of freedom can be locally eliminated (at element level).

Lemma

The hybrid approximation problem has a unique solution. In addition, we have

 $\|u_h^H\|_{\widehat{Z}_h} + \|\lambda_h\|_{Q_h} \le C \|f\|_{0,\Omega}.$

and

$$[u_h^H]=0 \qquad ext{on } e, \ orall \ e\in \mathscr{T}_h^\gamma.$$

3

A hybrid finite element method (Cont'd)

Remark

The advantage of the hybrid approximation is that the added degrees of freedom can be locally eliminated (at element level).

Lemma

The hybrid approximation problem has a unique solution. In addition, we have

 $\|u_h^H\|_{\widehat{Z}_h} + \|\lambda_h\|_{Q_h} \le C \|f\|_{0,\Omega}.$

and

$$[u_h^H] = 0$$
 on $e, \ \forall \ e \in \mathscr{T}_h^{\gamma}.$

イロト 不得 トイヨト イヨト 二日

A hybrid finite element method (Cont'd)

Finally, we have the convergence result:

Theorem

We have the error bound

$$\|u-u_h^H\|_{\widehat{Z}_h} \leq \begin{cases} C h^{1-\theta} |f|_{0,\Omega} & \text{if } u \in H^2(\Omega^- \cup \Omega^+), \\ C h \|f\|_{0,\Omega} & \text{if } u \in W^{2,\infty}(\Omega^- \cup \Omega^+). \end{cases}$$

э

A numerical test

We consider the case of a radial solution in the square $\Omega = (-1,1)^2$, with

$$\Omega^- = \left\{ x \in \Omega; \ |x| < R \right\}, \ \Omega^+ = \Omega \setminus \Omega^-.$$

and

$$a=a^-$$
 in $\Omega^-,\quad a=a^+$ in $\Omega^+,\quad eta=rac{a^+}{a^-}$

For f = 1, we have the solution

$$u(x) = \begin{cases} \frac{2-|x|^2}{4a^-} & \text{if } |x| < R\\ \frac{R^2 - |x|^2}{4a^+} + \frac{2-R^2}{4a^-} & \text{if } |x| > = R \end{cases}$$

イロン イロン イヨン イヨン 三日

 $\beta = 0.01$, Discrete L^2 -norm

2

・ロン ・四 と ・ ヨ と ・ ヨ と …

 $\beta = 0.01$, Discrete H^1 -norm

э

イロン イロン イヨン イヨン

 $\beta = 1\,000$, Discrete L^2 -norm

2

・ロン ・四 と ・ ヨ と ・ ヨ と

 $\beta = 1\,000$, Discrete H^1 -norm

2

・ロン ・回 と ・ ヨ と ・ ヨ と …