An optimal order finite element method for elliptic interface problems

Gunther Peichl
University of Graz, Austria
Rachid Touzani
Université Blaise Pascal (Clermont-Ferrand, France)

Consider the elliptic problem

$$
\begin{array}{ll}
-\nabla \cdot(a \nabla u)=f & \text { in } \Omega \subset \mathbb{R}^{2} \\
u=0 & \text { on } \Gamma:=\partial \Omega
\end{array}
$$

where $f \in L^{2}(\Omega)$ and

$$
\Omega=\Omega^{-} \cup \gamma \cup \Omega^{+}
$$

Here γ is a closed curve:

$a \in W^{1, \infty}\left(\Omega^{+}\right) \cap W^{1, \infty}\left(\Omega^{-}\right)$and a is discontinuous across γ.

It is well known that, if the curves 「 and γ are "regular", then we have

$$
u \in H^{2}\left(\Omega^{-}\right) \cap H^{2}\left(\Omega^{+}\right), \text {but } u \notin H^{2}(\Omega) .
$$

Remark

 Even if σ is polygonal, then $u \notin H^{2}\left(\Omega^{-}\right) \cap H^{2}\left(\Omega^{+}\right)$. We have in general $u \in H^{2-\theta}$ for $\theta>0$This model problem exhibits the same type of singularity as interface problems involved in:

- Free boundary problems
- Transmission problems
- Fictitious domain methods
\qquad

To construct an accurate finite element method that does not fit the mesh.

It is well known that, if the curves Γ and γ are "regular", then we have

$$
u \in H^{2}\left(\Omega^{-}\right) \cap H^{2}\left(\Omega^{+}\right), \text {but } u \notin H^{2}(\Omega) .
$$

Remark

Even if γ is polygonal, then $u \notin H^{2}\left(\Omega^{-}\right) \cap H^{2}\left(\Omega^{+}\right)$. We have in general $u \in H^{\frac{3}{2}-\theta}$ for $\theta>0$.

This model problem exhibits the same type of singularity as interface problems involved in:

- Free boundary problems
- Transmission problems
- Fictitious domain methods
-

To construct an accurate finite element method that does not fit the mesh.

It is well known that, if the curves Γ and γ are "regular", then we have

$$
u \in H^{2}\left(\Omega^{-}\right) \cap H^{2}\left(\Omega^{+}\right), \text {but } u \notin H^{2}(\Omega) .
$$

Remark

Even if γ is polygonal, then $u \notin H^{2}\left(\Omega^{-}\right) \cap H^{2}\left(\Omega^{+}\right)$. We have in general $u \in H^{\frac{3}{2}-\theta}$ for $\theta>0$.

This model problem exhibits the same type of singularity as interface problems involved in:

- Free boundary problems
- Transmission problems
- Fictitious domain methods
- ...

It is well known that, if the curves Γ and γ are "regular", then we have

$$
u \in H^{2}\left(\Omega^{-}\right) \cap H^{2}\left(\Omega^{+}\right), \text {but } u \notin H^{2}(\Omega) .
$$

Remark

Even if γ is polygonal, then $u \notin H^{2}\left(\Omega^{-}\right) \cap H^{2}\left(\Omega^{+}\right)$. We have in general $u \in H^{\frac{3}{2}-\theta}$ for $\theta>0$.

This model problem exhibits the same type of singularity as interface problems involved in:

- Free boundary problems
- Transmission problems
- Fictitious domain methods
- ...

Aim

To construct an accurate finite element method that does not fit the mesh.

Some works related to this topic:

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method
- Z. Li: Immersed boundary techniques for interface problems

Some works related to this topic:

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method
- 7 li. Immersed boundary techniques for interface n oblems

Some works related to this topic:

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method
- Z. Li: Immersed boundary techniques for interface problems
- ...

Some works related to this topic:

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method...
- Z. Li: Immersed boundary techniques for interface problems

Some works related to this topic:

- Belytschko, Moës et al.: XFEM (eXtended Finite Element Method)
- Lamichhane and Wohlmuth: Mortar finite elements for interface problems
- Hansbo et al.: An unfitted finite element method...
- Z. Li: Immersed boundary techniques for interface problems

A fitted finite element method

Assume that Ω is polygonal and consider a finite element mesh \mathscr{T}_{h} of $\bar{\Omega}$. The simplest finite element method is given by the space

$$
V_{h}=\left\{v \in C^{0}(\bar{\Omega}) ; v_{\mid T} \in P_{1}(T) \forall T \in \mathscr{T}_{h}, v=0 \text { on } \Gamma\right\} .
$$

The discrete problem is given by

Classic error estimates

To construct a fitted FEM, we consider:
Q A niecemise linear annroximation v_{h} of the curve γ that implies a subdivision
(2) A subdivision of any "interface triangle" into 3 (or 2 in some cases) triangles

A fitted finite element method

Assume that Ω is polygonal and consider a finite element mesh \mathscr{T}_{h} of $\bar{\Omega}$. The simplest finite element method is given by the space

$$
V_{h}=\left\{v \in C^{0}(\bar{\Omega}) ; v_{\mid T} \in P_{1}(T) \forall T \in \mathscr{T}_{h}, v=0 \text { on } \Gamma\right\} .
$$

The discrete problem is given by

$$
\int_{\Omega} a \nabla u_{h} \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in V_{h} .
$$

Classic error estimates

To construct a fitted FEM, we consider:

- A piecewise linear approximation - of the curve o that implies a subdivision
(2) A subdivision of any "interface triangle" into 3 (or 2 in some cases) triangles

A fitted finite element method

Assume that Ω is polygonal and consider a finite element mesh \mathscr{T}_{h} of $\bar{\Omega}$. The simplest finite element method is given by the space

$$
V_{h}=\left\{v \in C^{0}(\bar{\Omega}) ; v_{\mid T} \in P_{1}(T) \forall T \in \mathscr{T}_{h}, v=0 \text { on } \Gamma\right\} .
$$

The discrete problem is given by

$$
\int_{\Omega} a \nabla u_{h} \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in V_{h} .
$$

Classic error estimates

$$
\left\|u-u_{h}\right\|_{1, \Omega} \leq C h
$$

do not hold any more.

To construct a fitted FEM, we consider
Q A niecemise linear annroximation v_{h} of the curve γ that implies a subdivision
(2) A subdivision of any "interface triangle" into 3 (or 2 in some cases) triangles

A fitted finite element method

Assume that Ω is polygonal and consider a finite element mesh \mathscr{T}_{h} of $\bar{\Omega}$. The simplest finite element method is given by the space

$$
V_{h}=\left\{v \in C^{0}(\bar{\Omega}) ; v_{\mid T} \in P_{1}(T) \forall T \in \mathscr{T}_{h}, v=0 \text { on } \Gamma\right\} .
$$

The discrete problem is given by

$$
\int_{\Omega} a \nabla u_{h} \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in V_{h} .
$$

Classic error estimates

$$
\left\|u-u_{h}\right\|_{1, \Omega} \leq C h
$$

do not hold any more.

To construct a fitted FEM, we consider:
(1) A piecewise linear approximation γ_{h} of the curve γ that implies a subdivision

$$
\Omega=\Omega_{h}^{-} \cup \gamma_{h} \cup \Omega_{h}^{+} .
$$

(2) A subdivision of any "interface triangle" into 3 (or 2 in some cases) triangles

Subdivision of an interface triangle

Notations:

$$
\begin{array}{ll}
\mathscr{T}_{h}^{\gamma}:=\left\{T \in \mathscr{T}_{h} ; \gamma \cap T^{\circ} \neq \emptyset\right\} & \text { Interface triangles } \\
\mathscr{E}_{h}^{\gamma}:=\left\{e \text { edge; } \gamma \cap e^{\circ} \neq \emptyset\right\} & \text { Edges intersected by } \gamma\left(\text { or } \gamma_{h}\right) \\
\mathscr{T}_{T}^{\gamma}:=\cup\{\text { subtriangles of } T\} & \\
\mathscr{T}_{h}^{F}:=\mathscr{T}_{h} \cup \bigcup_{T \in \mathscr{T}_{h}^{\gamma}}\left(\cup_{\left.K \in \mathscr{T}_{T}^{\gamma} K\right)}\right. & \text { New fitted mesh } \\
S_{h}^{\gamma}:=\bigcup\left\{T ; T \in \mathscr{T}_{h}^{\gamma}\right\} & \text { Layer containing the interface }
\end{array}
$$

We next define an extension \widetilde{a}_{h} of a and a piecewise linear interpolant a_{h} of \widetilde{a}_{h}, with

$$
a_{h \mid \Omega_{h}^{-}} \in W^{1, \infty}\left(\Omega_{h}^{-}\right), a_{h \mid \Omega_{h}^{+}} \in W^{1, \infty}\left(\Omega_{h}^{+}\right),
$$

a_{h} is discontinuous across γ_{h},
$\left\|a_{h}\right\|_{0, \infty, \Omega} \leq C\|a\|_{0, \infty, \Omega}$.

The fitted finite element space is given by

Whence the Fitted Finite Element Method:

Find $u_{h}^{F} \in W_{h}$ such that

We assume (a weaker mesh regularity) that for some $\theta \in[0,1$), where ϱ_{K} is the diameter of the inscribed circle in K

We next define an extension \widetilde{a}_{h} of a and a piecewise linear interpolant a_{h} of \widetilde{a}_{h}, with

$$
a_{h \mid \Omega_{h}^{-}} \in W^{1, \infty}\left(\Omega_{h}^{-}\right), a_{h \mid \Omega_{h}^{+}} \in W^{1, \infty}\left(\Omega_{h}^{+}\right),
$$

a_{h} is discontinuous across γ_{h},

$$
\left\|a_{h}\right\|_{0, \infty, \Omega} \leq C\|a\|_{0, \infty, \Omega} .
$$

The fitted finite element space is given by

$$
\begin{aligned}
& W_{h}:=V_{h}+X_{h}\left(\subset H_{0}^{1}(\Omega)\right) \\
& X_{h}:=\left\{v \in C^{0}(\bar{\Omega}) ; v_{\mid \Omega \backslash s_{h}^{\gamma}}=0, v_{\mid K} \in P_{1}(K) \forall K \in \mathscr{T}_{T}^{\gamma}, \forall T \in \mathcal{T}_{h}^{\gamma}\right\}
\end{aligned}
$$

Whence the Fitted Finite Element Method:

Find $u_{h}^{F} \in W_{h}$ such that

$$
\int_{\Omega} a_{h} \nabla u_{h}^{F} \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in W_{h} .
$$

We assume (a weaker mesh regularity) that for some $\theta \in[0,1$),

We next define an extension \widetilde{a}_{h} of a and a piecewise linear interpolant a_{h} of \widetilde{a}_{h}, with

$$
\begin{aligned}
& a_{h \mid \Omega_{h}^{-}} \in W^{1, \infty}\left(\Omega_{h}^{-}\right), a_{h \mid \Omega_{h}^{+}} \in W^{1, \infty}\left(\Omega_{h}^{+}\right), \\
& a_{h} \text { is discontinuous across } \gamma_{h}, \\
& \left\|a_{h}\right\|_{0, \infty, \Omega} \leq C\|a\|_{0, \infty, \Omega}
\end{aligned}
$$

The fitted finite element space is given by

$$
\begin{aligned}
& W_{h}:=V_{h}+X_{h}\left(\subset H_{0}^{1}(\Omega)\right) \\
& X_{h}:=\left\{v \in C^{0}(\bar{\Omega}) ; v_{\mid \Omega \backslash S_{h}^{\gamma}}=0, v_{\mid K} \in P_{1}(K) \forall K \in \mathscr{T}_{T}^{\gamma}, \forall T \in \mathcal{T}_{h}^{\gamma}\right\}
\end{aligned}
$$

Whence the Fitted Finite Element Method:

$$
\text { Find } u_{h}^{F} \in W_{h} \text { such that } \quad \int_{\Omega} a_{h} \nabla u_{h}^{F} \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in W_{h}
$$

We assume (a weaker mesh regularity) that for some $\theta \in[0,1$),

$$
\frac{h}{\varrho_{K}} \leq C h^{-\theta} \quad \forall K \in \mathscr{T}_{T}^{\gamma}, \quad T \in \mathscr{T}_{h}^{\gamma} .
$$

where ϱ_{K} is the diameter of the inscribed circle in K.

Theorem

We have the error estimate

This method is rather simple but, in view of a time (or iteration) dependent interface, it implies a variable matrix structure.

To avoid this drawback, we resort to a hybrid technique.

Theorem

We have the error estimate

$$
\left|u-u_{h}^{F}\right|_{1, \Omega} \leq \begin{cases}C h^{1-\theta}\|u\|_{2, \Omega^{+} \cup \Omega^{-}} & \text {if } u \in H^{2}\left(\Omega^{+} \cup \Omega^{-}\right) \\ C h\|u\|_{2, \Omega^{+} \cup \Omega^{-}} & \text {if } u \in W^{2, \infty}\left(\Omega^{+} \cup \Omega^{-}\right) .\end{cases}
$$

This method is rather simple but, in view of a time (or iteration) dependent interface, it implies a matrix structure.

To avoid this drawback, we resort to a hybrid technique.

Theorem

We have the error estimate

$$
\left|u-u_{h}^{F}\right|_{1, \Omega} \leq \begin{cases}C h^{1-\theta}\|u\|_{2, \Omega^{+} \cup \Omega^{-}} & \text {if } u \in H^{2}\left(\Omega^{+} \cup \Omega^{-}\right) \\ C h\|u\|_{2, \Omega^{+} \cup \Omega^{-}} & \text {if } u \in W^{2, \infty}\left(\Omega^{+} \cup \Omega^{-}\right) .\end{cases}
$$

This method is rather simple but, in view of a time (or iteration) dependent interface, it implies a variable matrix structure.

> To avoid this drawback, we resort to a hybrid technique.

Theorem

We have the error estimate

$$
\left|u-u_{h}^{F}\right|_{1, \Omega} \leq \begin{cases}C h^{1-\theta}\|u\|_{2, \Omega^{+} \cup \Omega^{-}} & \text {if } u \in H^{2}\left(\Omega^{+} \cup \Omega^{-}\right) \\ C h\|u\|_{2, \Omega^{+} \cup \Omega^{-}} & \text {if } u \in W^{2, \infty}\left(\Omega^{+} \cup \Omega^{-}\right) .\end{cases}
$$

This method is rather simple but, in view of a time (or iteration) dependent interface, it implies a variable matrix structure.

To avoid this drawback, we resort to a hybrid technique.

A hybrid formulation

As usual, we start by defining a pseudo-continuous hybrid method. Let

$$
\begin{aligned}
& \widehat{Z}_{h}:=H_{0}^{1}(\Omega)+\widehat{X}_{h}, \\
& \widehat{X}_{h}:=\left\{v \in L^{2}(\Omega) ; v_{\mid \Omega \backslash S_{h}^{\gamma}}=0, v_{\mid T} \in H^{1}(T) \forall T \in \mathscr{T}_{h}^{\gamma}\right\}, \\
& \widehat{Q}_{h}:=\prod_{e \in \mathscr{E}_{h}^{\gamma}}\left(H_{00}^{\frac{1}{2}}(e)\right)^{\prime},
\end{aligned}
$$

where

$$
H_{00}^{\frac{1}{2}}(e):=\left\{v_{l e} ; v \in H^{1}(T), e \in \mathscr{E}_{T}, v=0 \text { on } d \forall d \in \mathscr{E}_{T}, d \neq e\right\} .
$$

We define the problem

Find $\left(\widehat{u}_{h}^{H}, \widehat{\lambda}_{h}\right) \in \widehat{Z}_{h} \times \widehat{Q}_{h}$ such that:

$$
\begin{array}{ll}
\sum_{T \in \mathscr{T}_{h}} \int_{T} a_{h} \nabla \widehat{u}_{h}^{H} \cdot \nabla v d x-\sum_{e \in \mathscr{E}_{h}^{\gamma}} \int_{e} \hat{\lambda}_{h}[v] d s=\int_{\Omega} f v d x & \forall v \in \widehat{Z}_{h}, \\
\sum_{e \in \mathscr{E}_{h}^{\gamma}} \int_{e} \mu\left[\hat{u}_{h}^{H}\right] d s=0 & \forall \mu \in \widehat{Q}_{h} .
\end{array}
$$

A hybrid formulation (Cont'd)

Theorem

The previous problem has a unique solution. Moreover

$$
\widehat{u}_{h}^{H} \in H_{0}^{1}(\Omega), \quad \widehat{\lambda}_{h}=a_{h} \frac{\partial \widehat{u}_{h}^{H}}{\partial n} .
$$

A hybrid finite element method

We define the spaces:

$$
\begin{aligned}
& Z_{h}:=V_{h}+Y_{h}, \\
& V_{h}:=\left\{v \in C^{0}(\bar{\Omega}) ; v_{\mid T} \in P_{1}(T) \forall T \in \mathscr{T}_{h}\right\}, \\
& Y_{h}:=\left\{v \in L^{2}(\Omega) ; v_{\mid \Omega \backslash s_{h}^{\gamma}}=0, v_{\mid K} \in P_{1}(K) \forall K \in \mathscr{T}_{T}^{\gamma}, \forall T \in \mathscr{T}_{h}^{\gamma}\right\}, \\
& Q_{h}:=\left\{\mu \in L^{2}\left(\prod_{e \in \mathscr{E}_{h}^{\gamma}}\right) ; \mu_{\mid e}=\text { const. } \forall e \in \mathscr{E}_{h}^{\gamma}\right\} .
\end{aligned}
$$

The discrete problem is

$$
\text { Find }\left(u_{h}^{H}, \lambda_{h}\right) \in Z_{h} \times Q_{h} \text { such that }
$$

A hybrid finite element method

We define the spaces:

$$
\begin{aligned}
& Z_{h}:=V_{h}+Y_{h}, \\
& V_{h}:=\left\{v \in C^{0}(\bar{\Omega}) ; v_{\mid T} \in P_{1}(T) \forall T \in \mathscr{T}_{h}\right\}, \\
& Y_{h}:=\left\{v \in L^{2}(\Omega) ; v_{\mid \Omega \backslash S_{h}^{\gamma}}=0, v_{\mid K} \in P_{1}(K) \forall K \in \mathscr{T}_{T}^{\gamma}, \forall T \in \mathscr{T}_{h}^{\gamma}\right\}, \\
& Q_{h}:=\left\{\mu \in L^{2}\left(\prod_{e \in \mathscr{E}_{h}^{\gamma}}\right) ; \mu_{\mid e}=\text { const. } \forall e \in \mathscr{E}_{h}^{\gamma}\right\} .
\end{aligned}
$$

The discrete problem is:

Find $\left(u_{h}^{H}, \lambda_{h}\right) \in Z_{h} \times Q_{h}$ such that

$$
\begin{array}{ll}
\sum_{T \in \mathscr{T}_{h}} \int_{T} a_{h} \nabla u_{h}^{H} \cdot \nabla v d x-\sum_{e \in \mathscr{E}_{h}^{\gamma}} \int_{e} \lambda_{h}[v] d s=\int_{\Omega} f v d x & \forall v \in Z_{h}, \\
\sum_{e \in \mathscr{E}_{h}^{\gamma}} \int_{e} \mu\left[u_{h}^{H}\right] d s=0 & \forall \mu \in Q_{h} .
\end{array}
$$

A hybrid finite element method (Cont'd)

Remark

The advantage of the hybrid approximation is that the added degrees of freedom can be locally eliminated (at element level).

A hybrid finite element method (Cont'd)

Remark

The advantage of the hybrid approximation is that the added degrees of freedom can be locally eliminated (at element level).

Lemma

The hybrid approximation problem has a unique solution. In addition, we have

$$
\left\|u_{h}^{H}\right\|_{\widehat{z}_{h}}+\left\|\lambda_{h}\right\|_{Q_{h}} \leq C\|f\|_{0, \Omega}
$$

and

$$
\left[u_{h}^{H}\right]=0 \quad \text { on } e, \forall e \in \mathscr{T}_{h}^{\gamma} .
$$

A hybrid finite element method (Cont'd)

Finally, we have the convergence result:

Theorem

We have the error bound

$$
\left\|u-u_{h}^{H}\right\|_{\widehat{z}_{h}} \leq \begin{cases}C h^{1-\theta}|f|_{0, \Omega} & \text { if } u \in H^{2}\left(\Omega^{-} \cup \Omega^{+}\right) \\ C h\|f\|_{0, \Omega} & \text { if } u \in W^{2, \infty}\left(\Omega^{-} \cup \Omega^{+}\right) .\end{cases}
$$

A numerical test

We consider the case of a radial solution in the square $\Omega=(-1,1)^{2}$, with

$$
\Omega^{-}=\{x \in \Omega ;|x|<R\}, \Omega^{+}=\Omega \backslash \Omega^{-} .
$$

and

$$
a=a^{-} \text {in } \Omega^{-}, \quad a=a^{+} \text {in } \Omega^{+}, \quad \beta=\frac{a^{+}}{a^{-}} .
$$

For $f=1$, we have the solution

$$
u(x)= \begin{cases}\frac{2-|x|^{2}}{4 a^{-}} & \text {if }|x|<R \\ \frac{R^{2}-|x|^{2}}{4 a^{+}}+\frac{2-R^{2}}{4 a^{-}} & \text {if }|x|>=R\end{cases}
$$

A numerical test (Cont'd)

