Un schéma Volumes finis MUSCL pour les équations d'Euler compressibles en axisymétrique

Rachid Touzani, David Rochette

Université Blaise Pascal, Clermont-Ferrand, France

Stéphane Clain Université de Toulouse, France

8 avril 2009

(E)

Objectif :

- Simulation numérique de torches à plasma inductives (ICP : *Inductively Coupled Plasma Torch*)
- L'étude fait partie d'un TRP (Technology Research Program) de l'ESA (European Space Agency)

Principe :

- La torche à plasma est une méthode d'analyse chimique permettant de doser les éléments d'un échantillon.
- Elle consiste à ioniser l'échantillon en l'injectant dans un plasma (en général d'Argon) : Les atomes sont ionisés par une flamme chaude (6000 à 8000 K).
- L'échantillon subit ainsi une fusion (solide), une vaporisation, puis une ionisation.
- La température est entretenue par induction magnétique (à l'aide d'un générateur HF).
- Les ions sont détectés soit par spectrométrie de masse soit par spectrométrie d'émission.

Objectif :

- Simulation numérique de torches à plasma inductives (ICP : *Inductively Coupled Plasma Torch*)
- L'étude fait partie d'un TRP (Technology Research Program) de l'ESA (European Space Agency)

Principe :

- La torche à plasma est une méthode d'analyse chimique permettant de doser les éléments d'un échantillon.
- Elle consiste à ioniser l'échantillon en l'injectant dans un plasma (en général d'Argon) : Les atomes sont ionisés par une flamme chaude (6000 à 8000 K).
- L'échantillon subit ainsi une fusion (solide), une vaporisation, puis une ionisation.
- La température est entretenue par induction magnétique (à l'aide d'un générateur HF).
- Les ions sont détectés soit par spectrométrie de masse soit par spectrométrie d'émission.

- 4 回 ト - 4 回 ト

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

Sommaire

- Un modèle pour les ICP
- Équations d'Euler axisymétriques
- Une méthode de volumes finis
- Les schémas MUSCL
- Application aux équations d'Euler
- Solutions stationnaires radiales
- Essais numériques

伺 と く ヨ と く ヨ と

Un modèle pour les ICP

La modélisation mathématique de ce procédé tient en compte des différents effets entrant en jeu :

- Induction électromagnétique : On utilise un modèle de courants de Foucault (on néglige les courants de déplacement) quasi-statiques. La difficulté réside dans le fait qu'une partie (inconnue) du gaz se transforme en plasma et devient donc conductrice.
- Dynamique des gaz : Il s'agit d'un écoulement compressible que l'on suppose stationnaire.
- On utilise une description axisymétrique à cause de la géométrie du dispositif.

Un modèle pour les ICP

La modélisation mathématique de ce procédé tient en compte des différents effets entrant en jeu :

- Induction électromagnétique : On utilise un modèle de courants de Foucault (on néglige les courants de déplacement) quasi-statiques. La difficulté réside dans le fait qu'une partie (inconnue) du gaz se transforme en plasma et devient donc conductrice.
- Dynamique des gaz : Il s'agit d'un écoulement compressible que l'on suppose stationnaire.
- On utilise une description axisymétrique à cause de la géométrie du dispositif.

Un modèle pour les ICP

La modélisation mathématique de ce procédé tient en compte des différents effets entrant en jeu :

- Induction électromagnétique : On utilise un modèle de courants de Foucault (on néglige les courants de déplacement) quasi-statiques. La difficulté réside dans le fait qu'une partie (inconnue) du gaz se transforme en plasma et devient donc conductrice.
- Dynamique des gaz : Il s'agit d'un écoulement compressible que l'on suppose stationnaire.
- On utilise une description axisymétrique à cause de la géométrie du dispositif.

1. L'électromagnétisme

Les équations des courants de Foucault s'écrivent en régime quasi-statique (harmonique en temps) :

 $\begin{cases} \mathbf{rot} \mathbf{H} = \mathbf{J} \\ i\omega\mu_0\mathbf{H} + \mathbf{rot} \mathbf{E} = 0 \\ \mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_0 \end{cases}$

- J : Densité de courant
- J₀ : Courant source
- E : Champ électrique
- H : Champ magnétique
- ω : Pulsation du courant
- σ : Conductivité électrique
- μ_0 : Perméabilité magnétique du vide

1. L'électromagnétisme

Les équations des courants de Foucault s'écrivent en régime quasi-statique (harmonique en temps) :

 $\begin{cases} \mathbf{rot} \mathbf{H} = \mathbf{J} \\ i\omega\mu_0\mathbf{H} + \mathbf{rot} \mathbf{E} = 0 \\ \mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_0 \end{cases}$

- J : Densité de courant
- J₀ : Courant source
- E : Champ électrique
- H : Champ magnétique
- ω : Pulsation du courant
- σ : Conductivité électrique
- μ_0 : Perméabilité magnétique du vide

Ici on a négligé le transport du courant par le fluide (En fait, on a $J = \sigma (E + u \times B) + J_0$).

Dans ce modèle, on choisit de formuler le problème en champ électrique. On a

où $\sigma = \sigma(e)$ avec

$$\sigma(e) = egin{cases} 0 & ext{si} \ e \leq e_0, \ > 0 & ext{sinon} \end{cases}$$

où e est l'énergie interne et e_0 est l'énergie nécessaire pour l'ionisation.

lci on a négligé le transport du courant par le fluide (En fait, on a $J = \sigma (E + u \times B) + J_0$). Dans ce modèle, on choisit de formuler le problème en champ électrique. On a

$$\begin{cases} \operatorname{\mathsf{rot}}\operatorname{\mathsf{rot}}\mathsf{E} + i\omega\mu_0\sigma\mathsf{E} = -i\omega\mu_0\mathsf{J}_0 & \operatorname{dans} \mathbb{R}^3\\ |\mathsf{E}(\mathsf{x})| = \mathcal{O}(|\mathsf{x}|^{-1}) & |\mathsf{x}| \to \infty \end{cases}$$

où $\sigma = \sigma(e)$ avec

$$\sigma(e) = \begin{cases} 0 & \text{si } e \leq e_0, \\ > 0 & \text{sinon} \end{cases}$$

où e est l'énergie interne et e0 est l'énergie nécessaire pour l'ionisation.

・ロン ・四 と ・ ヨ と ・ ヨ と …

2. L'écoulement du gaz-plasma

On utilise les équations d'Euler compressibles (on néglige les effets de la viscosité et de la diffusion thermique) avec les caractéristiques suivantes :

- Le mouvement du gaz est généré par la force de Lorentz (que l'on moyenne sur une période).
- La source d'énergie est donnée par l'effet de Joule (moyennée également).

$$\nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla \rho = \rho \mathbf{g} + \frac{\mu_0}{2} \operatorname{Re} (\mathbf{J} \times \overline{\mathbf{H}})$$
$$\nabla \cdot (\rho \mathbf{u}) = 0$$
$$\nabla \cdot ((E + \rho) \mathbf{u}) = \frac{1}{2} \operatorname{Re} (\mathbf{J} \cdot \overline{\mathbf{E}}) - R$$
$$\rho = \rho(\rho, e)$$

où u est la vitesse, ρ est la pression, ρ est la densité, g est le vecteur gravité, e est l'énergie interne spécifique et E est l'énergie totale définie par $E = \rho e + \frac{1}{2}\rho |\mathbf{u}|^2$, R est une source de rayonnement.

Dans ce qui suit, on restreint au cas d'un gaz idéal

 $p = (\gamma - 1)
ho e$ γ : rapport des chaleurs spécifiques

2. L'écoulement du gaz-plasma

On utilise les équations d'Euler compressibles (on néglige les effets de la viscosité et de la diffusion thermique) avec les caractéristiques suivantes :

- Le mouvement du gaz est généré par la force de Lorentz (que l'on moyenne sur une période).
- La source d'énergie est donnée par l'effet de Joule (moyennée également).

$$\nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p = \rho \mathbf{g} + \frac{\mu_0}{2} \operatorname{Re} (\mathbf{J} \times \overline{\mathbf{H}})$$
$$\nabla \cdot (\rho \mathbf{u}) = 0$$
$$\nabla \cdot ((E + p) \mathbf{u}) = \frac{1}{2} \operatorname{Re} (\mathbf{J} \cdot \overline{\mathbf{E}}) - R$$
$$p = p(\rho, e)$$

où u est la vitesse, p est la pression, ρ est la densité, g est le vecteur gravité, e est l'énergie interne spécifique et E est l'énergie totale définie par $E = \rho e + \frac{1}{2}\rho |\mathbf{u}|^2$, R est une source de rayonnement.

Dans ce qui suit, on restreint au cas d'un gaz idéal

 $p = (\gamma - 1)
ho e$ γ : rapport des chaleurs spécifiques

2. L'écoulement du gaz-plasma

On utilise les équations d'Euler compressibles (on néglige les effets de la viscosité et de la diffusion thermique) avec les caractéristiques suivantes :

- Le mouvement du gaz est généré par la force de Lorentz (que l'on moyenne sur une période).
- La source d'énergie est donnée par l'effet de Joule (moyennée également).

$$\nabla \cdot (\rho \,\mathbf{u} \otimes \mathbf{u}) + \nabla \rho = \rho \,\mathbf{g} + \frac{\mu_0}{2} \operatorname{Re} \left(\mathbf{J} \times \overline{\mathbf{H}}\right)$$
$$\nabla \cdot (\rho \,\mathbf{u}) = 0$$
$$\nabla \cdot \left((E + \rho) \,\mathbf{u}\right) = \frac{1}{2} \operatorname{Re} \left(\mathbf{J} \cdot \overline{\mathbf{E}}\right) - R$$
$$\rho = \rho(\rho, e)$$

où **u** est la vitesse, p est la pression, ρ est la densité, **g** est le vecteur gravité, e est l'énergie interne spécifique et E est l'énergie totale définie par $E = \rho e + \frac{1}{2}\rho |\mathbf{u}|^2$, R est une source de rayonnement.

Dans ce qui suit, on restreint au cas d'un gaz idéal

 $p = (\gamma - 1) \rho e$ γ : rapport des chaleurs spécifiques

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Équations d'Euler axisymétriques

- On considère les équations d'Euler compressibles évolutives.
- La géométrie du domaine suggère l'utilisation d'un modèle axisymétrique.
- On ne tient pas compte des sources (Joule et Lorentz)

En notant par (r, θ, z) les coordonnées cylindriques et par (u_r, u_θ, u_z) les composantes d'un vecteur dans ce système, on obtient le système d'équations (tenant compte de l'invariance en θ) :

$$\begin{aligned} \frac{\partial}{\partial t}(r\rho) &+ \frac{\partial}{\partial r}(r\rho u_r) + \frac{\partial}{\partial z}(r\rho u_z) = 0\\ \frac{\partial}{\partial t}(r\rho u_r) &+ \frac{\partial}{\partial r}(r\rho u_r^2 + r\rho) + \frac{\partial}{\partial z}(r\rho u_r u_z) = \rho u_{\theta}^2 + \rho\\ \frac{\partial}{\partial t}(r\rho u_z) &+ \frac{\partial}{\partial r}(r\rho u_r u_z) + \frac{\partial}{\partial z}(r\rho u_z^2 + r\rho) = 0\\ \frac{\partial}{\partial t}(r\rho u_{\theta}) &+ \frac{\partial}{\partial r}(r\rho u_{\theta} u_r) + \frac{\partial}{\partial z}(r\rho u_{\theta} u_z) = -\rho u_{\theta} u_r\\ \frac{\partial}{\partial t}(rE) &+ \frac{\partial}{\partial r}(ru_r(E + \rho)) + \frac{\partial}{\partial z}(ru_z(E + \rho)) = 0\\ \rho &= (\gamma - 1)\rho e\end{aligned}$$

- 4 同 2 4 日 2 4 日 2

Équations d'Euler axisymétriques

- On considère les équations d'Euler compressibles évolutives.
- La géométrie du domaine suggère l'utilisation d'un modèle axisymétrique.
- On ne tient pas compte des sources (Joule et Lorentz)

En notant par (r, θ, z) les coordonnées cylindriques et par (u_r, u_θ, u_z) les composantes d'un vecteur dans ce système, on obtient le système d'équations (tenant compte de l'invariance en θ) :

$$\begin{aligned} \frac{\partial}{\partial t}(r\rho) &+ \frac{\partial}{\partial r}(r\rho u_r) + \frac{\partial}{\partial z}(r\rho u_z) = 0\\ \frac{\partial}{\partial t}(r\rho u_r) &+ \frac{\partial}{\partial r}(r\rho u_r^2 + rp) + \frac{\partial}{\partial z}(r\rho u_r u_z) = \rho u_{\theta}^2 + p\\ \frac{\partial}{\partial t}(r\rho u_z) &+ \frac{\partial}{\partial r}(r\rho u_r u_z) + \frac{\partial}{\partial z}(r\rho u_z^2 + rp) = 0\\ \frac{\partial}{\partial t}(r\rho u_{\theta}) &+ \frac{\partial}{\partial r}(r\rho u_{\theta} u_r) + \frac{\partial}{\partial z}(r\rho u_{\theta} u_z) = -\rho u_{\theta} u_r\\ \frac{\partial}{\partial t}(rE) &+ \frac{\partial}{\partial r}(ru_r(E + \rho)) + \frac{\partial}{\partial z}(ru_z(E + p)) = 0\\ p &= (\gamma - 1)\rho e\end{aligned}$$

On peut écrire ce système sous la forme conservative :

$$\frac{\partial}{\partial t}(rU) + \frac{\partial}{\partial r}(rF_r(U)) + \frac{\partial}{\partial z}(rF_z(U)) = G(U)$$

où :
$$U = \begin{pmatrix} \rho \\ \rho u_r \\ \rho u_z \\ \rho u_\theta \\ E \end{pmatrix}, \ F_r(U) = \begin{pmatrix} \rho u_r \\ \rho u_r^2 + \rho \\ \rho u_z u_r \\ \rho u_\theta u_r \\ u_r(E + \rho) \end{pmatrix}, \ F_z(U) = \begin{pmatrix} \rho u_z \\ \rho u_r u_z \\ \rho u_r^2 + \rho \\ \rho u_\theta u_z \\ u_z(E + \rho) \end{pmatrix}, \ G(U) = \begin{pmatrix} 0 \\ \rho u_\theta^2 + \rho \\ 0 \\ -\rho u_\theta u_r \\ 0 \end{pmatrix}$$

Cette formulation fait intervenir une forme divergentielle pouvant être traitée par volumes finis, le reste étant traité comme terme source.

Une méthode de volumes finis

Considérons une triangulation du domaine Ω des paramètres (r, z). On note :

- T_i : Triangle, $1 \le i \le n_T$
- e_{ii} : Arête commune aux triangles T_i et T_i
- $-\mathbf{n}_{ii} = (n_{ii,r}, n_{ii,z})$: Normale unité au triangle T_i dirigée vers T_i
- $-\nu(i)$: Ensemble des indices des (3) triangles voisins de T_i

$$\frac{d}{dt}\int_{T_i} U(r,z,t) \, r \, dr \, dz + \int_{\partial T_i} (F_r(U)n_{ij,r} + F_z(U)n_{ij,z}) \, r \, d\sigma = \int_{T_i} G(U) \, dr \, dz$$

$$\int_{T_i} U(r, z, t^{n+1}) r \, dr \, dz = \int_{T_i} U(r, z, t^n) r \, dr \, dz$$
$$- \int_{t^n}^{t^{n+1}} \int_{\partial T_i} (F_r(U) n_{ij,r} + F_z(U) n_{ij,z}) r \, d\sigma \, dt$$
$$+ \int_{t^n}^{t^{n+1}} \int_{T_i} G(U) \, dr \, dz \, dt$$

Considérons une triangulation du domaine Ω des paramètres (r, z). On note :

- $-T_i$: Triangle, $1 \le i \le n_T$
- e_{ij} : Arête commune aux triangles T_i et T_j
- $-\mathbf{n}_{ij} = (n_{ij,r}, n_{ij,z})$: Normale unité au triangle T_i dirigée vers T_j
- $-\nu(i)$: Ensemble des indices des (3) triangles voisins de T_i

En intégrant le système d'équations sur un triangle T_i et en utilisant le théorème de la divergence, on obtient

$$\frac{d}{dt}\int_{T_i} U(r,z,t) r \, dr \, dz + \int_{\partial T_i} (F_r(U)n_{ij,r} + F_z(U)n_{ij,z}) r \, d\sigma = \int_{T_i} G(U) \, dr \, dz$$

Soit $(t^n = n \, \delta t)_{n \in \mathbb{N}}$ une subdivision uniforme de l'intervalle $[0, \infty)$. On a

$$\int_{T_i} U(r, z, t^{n+1}) r \, dr \, dz = \int_{T_i} U(r, z, t^n) r \, dr \, dz$$
$$- \int_{t^n}^{t^{n+1}} \int_{\partial T_i} (F_r(U) n_{ij,r} + F_z(U) n_{ij,z}) r \, d\sigma \, dt$$
$$+ \int_{t^n}^{t^{n+1}} \int_{T_i} G(U) \, dr \, dz \, dt$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Considérons une triangulation du domaine Ω des paramètres (r, z). On note :

- $-T_i$: Triangle, $1 \le i \le n_T$
- e_{ij} : Arête commune aux triangles T_i et T_j
- $-\mathbf{n}_{ij} = (n_{ij,r}, n_{ij,z})$: Normale unité au triangle T_i dirigée vers T_j
- $-\nu(i)$: Ensemble des indices des (3) triangles voisins de T_i

En intégrant le système d'équations sur un triangle T_i et en utilisant le théorème de la divergence, on obtient

$$\frac{d}{dt}\int_{T_i} U(r,z,t) r \, dr \, dz + \int_{\partial T_i} (F_r(U)n_{ij,r} + F_z(U)n_{ij,z}) r \, d\sigma = \int_{T_i} G(U) \, dr \, dz$$

Soit $(t^n = n \, \delta t)_{n \in \mathbb{N}}$ une subdivision uniforme de l'intervalle $[0, \infty)$. On a

$$\int_{T_i} U(r, z, t^{n+1}) r \, dr \, dz = \int_{T_i} U(r, z, t^n) r \, dr \, dz$$
$$- \int_{t^n}^{t^{n+1}} \int_{\partial T_i} (F_r(U) n_{ij,r} + F_z(U) n_{ij,z}) r \, d\sigma \, dt$$
$$+ \int_{t^n}^{t^{n+1}} \int_{T_i} G(U) \, dr \, dz \, dt$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

On note

$$|T_i| = \int_{T_i} dr \, dz, \ |T_i|_r = \int_{T_i} r \, dr \, dz, \ |e_{ij}| = \int_{e_{ij}} d\sigma, \ |e_{ij}|_r = \int_{e_{ij}} r \, d\sigma,$$

et on définit l'approximation

$$U_i^n \approx \frac{1}{|T_i|_r} \int_{T_i} U(r,z,t^n) r \, dr \, dz.$$

Soit le flux approché :

$$F_{ij}^{n} \approx \frac{1}{\delta t |e_{ij}|_{r}} \int_{t^{n}}^{t^{n+1}} \int_{e_{ij}}^{t^{n+1}} (F_{r}(U)n_{ij,r} + F_{z}(U)n_{ij,z}) r \, d\sigma \, dt$$

et le terme source

$$G_i^n pprox rac{1}{\delta t |\mathcal{T}_i|} \int_{t^n}^{t^{n+1}} \int_{\mathcal{T}_i} G(U) \, dr \, dz \, dt.$$

On définit alors le schéma

$$|T_i|_r U_i^{n+1} = |T_i|_r U_i^n - \delta t \sum_{j \in \nu(i)} |e_{ij}|_r F_{ij}^n + \delta t |T_i| G(U_i^n) \qquad 1 \le i \le n_T.$$

On note

$$|T_i| = \int_{T_i} dr dz, |T_i|_r = \int_{T_i} r dr dz, |e_{ij}| = \int_{e_{ij}} d\sigma, |e_{ij}|_r = \int_{e_{ij}} r d\sigma,$$

et on définit l'approximation

$$U_i^n \approx \frac{1}{|T_i|_r} \int_{T_i} U(r,z,t^n) r \, dr \, dz.$$

Soit le flux approché :

$$F_{ij}^n \approx \frac{1}{\delta t |e_{ij}|_r} \int_{t^n}^{t^{n+1}} \int_{e_{ij}}^{t^{n+1}} (F_r(U)n_{ij,r} + F_z(U)n_{ij,z}) r \, d\sigma \, dt$$

et le terme source

$$G_i^n \approx rac{1}{\delta t |T_i|} \int_{t^n}^{t^{n+1}} \int_{T_i} G(U) \, dr \, dz \, dt.$$

On définit alors le schéma

$$|T_i|_r U_i^{n+1} = |T_i|_r U_i^n - \delta t \sum_{j \in \nu(i)} |e_{ij}|_r F_{ij}^n + \delta t |T_i| G(U_i^n) \qquad 1 \le i \le n_T.$$

On note

$$|T_i| = \int_{T_i} dr dz, |T_i|_r = \int_{T_i} r dr dz, |e_{ij}| = \int_{e_{ij}} d\sigma, |e_{ij}|_r = \int_{e_{ij}} r d\sigma,$$

et on définit l'approximation

$$U_i^n \approx \frac{1}{|T_i|_r} \int_{T_i} U(r,z,t^n) r \, dr \, dz.$$

Soit le flux approché :

$$F_{ij}^n \approx \frac{1}{\delta t |\mathbf{e}_{ij}|_r} \int_{t^n}^{t^{n+1}} \int_{\mathbf{e}_{ij}}^{t^{n+1}} (F_r(U)n_{ij,r} + F_z(U)n_{ij,z}) r \, d\sigma \, dt$$

et le terme source

$$G_i^n \approx rac{1}{\delta t |T_i|} \int_{t^n}^{t^{n+1}} \int_{T_i} G(U) \, dr \, dz \, dt.$$

On définit alors le schéma

$$|T_i|_r U_i^{n+1} = |T_i|_r U_i^n - \delta t \sum_{j \in \nu(i)} |e_{ij}|_r F_{ij}^n + \delta t |T_i| G(U_i^n) \qquad 1 \le i \le n_T.$$

Le schéma volumes finis est donc entièrement déterminé par le choix de F_{ij}^n et G_i^n . Par exemple, le schéma de Rusanov contient à définir les flux :

$$F_{ij}^{n} = \frac{1}{2} (F_{r}(U_{i}) + F_{r}(U_{j}))n_{ij,r} + \frac{1}{2} (F_{z}(U_{i}) + F_{z}(U_{j}))n_{ij,z} - \lambda_{ij}(U_{j} - U_{i})$$

où λ_{ij} est assez grand pour garantir la stabilité.

Autres schémas possibles :

- Godunov : Il consiste à résoudre exactement les problèmes de Riemann ainsi posés.
- HLL (Harten, Lax, Van Leer) : Résolution approchée des problèmes de Riemann
- HLLC (+ Contact) : Adaptation du schéma HCC aux discontinuités de contact.

(人間) システン イラン

Le schéma volumes finis est donc entièrement déterminé par le choix de F_{ij}^n et G_i^n . Par exemple, le schéma de Rusanov contient à définir les flux :

$$F_{ij}^{n} = \frac{1}{2} (F_{r}(U_{i}) + F_{r}(U_{j}))n_{ij,r} + \frac{1}{2} (F_{z}(U_{i}) + F_{z}(U_{j}))n_{ij,z} - \lambda_{ij}(U_{j} - U_{i})$$

où λ_{ij} est assez grand pour garantir la stabilité.

Autres schémas possibles :

- Godunov : Il consiste à résoudre exactement les problèmes de Riemann ainsi posés.
- HLL (Harten, Lax, Van Leer) : Résolution approchée des problèmes de Riemann
- HLLC (+ Contact) : Adaptation du schéma HCC aux discontinuités de contact.

▲□ → ▲ □ → ▲ □ →

Un schéma de deuxième ordre (MUSCL)

- Le premier schéma MUSCL (*Monotonic Upwind Scheme for Conservation Laws*) est dû à Van Leer ('79) pour le cas 1-D.
- Il existe dans la littérature plusieurs extensions au cas multidimensionnel.
- T. Buffard, S. Clain et V. Clauzon ont proposé une nouvelle extension basée sur le calcul de dérivées directionnelles.

Nous présentons cette extension pour le cas axisymétrique.

イロト イポト イヨト イヨト

Un schéma de deuxième ordre (MUSCL)

- Le premier schéma MUSCL (*Monotonic Upwind Scheme for Conservation Laws*) est dû à Van Leer ('79) pour le cas 1-D.
- Il existe dans la littérature plusieurs extensions au cas multidimensionnel.
- T. Buffard, S. Clain et V. Clauzon ont proposé une nouvelle extension basée sur le calcul de dérivées directionnelles.

Nous présentons cette extension pour le cas axisymétrique.

イロト イポト イヨト イヨト

Un schéma de deuxième ordre (MUSCL)

- Le premier schéma MUSCL (*Monotonic Upwind Scheme for Conservation Laws*) est dû à Van Leer ('79) pour le cas 1-D.
- Il existe dans la littérature plusieurs extensions au cas multidimensionnel.
- T. Buffard, S. Clain et V. Clauzon ont proposé une nouvelle extension basée sur le calcul de dérivées directionnelles.

Nous présentons cette extension pour le cas axisymétrique.

Les schémas MUSCL

Considérons la loi de conservation :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}f(u) = 0 \qquad x \in \mathbb{R}, \ t > 0$$

$$\frac{du_i}{dt} + \frac{f(u_i) - f(u_{i-1})}{\delta \times} = 0$$

$$\frac{du_i}{dt} + \frac{f(u_{i+\frac{1}{2}}) - f(u_{i-\frac{1}{2}})}{\delta x} = 0$$

$$u_{i+\frac{1}{2}} := \frac{1}{2}(u_i + u_{i+1}), \quad u_{i-\frac{1}{2}} := \frac{1}{2}(u_{i-1} + u_i).$$

Les schémas MUSCL

Considérons la loi de conservation :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}f(u) = 0 \qquad x \in \mathbb{R}, \ t > 0$$

Le schéma de base de volumes finis utilise une approximation constante par morceaux. Soit, par exemple, un schéma décentré du 1^{er} ordre :

$$\frac{du_i}{dt} + \frac{f(u_i) - f(u_{i-1})}{\delta x} = 0$$

Ce schéma est connu pour être diffusif i.e. il lisse les chocs et discontinuités.

Pour obtenir moins de diffusion numérique, on peut considérer une approximation linéaire par morceaux du type :

$$\frac{du_i}{dt} + \frac{f(u_{i+\frac{1}{2}}) - f(u_{i-\frac{1}{2}})}{\delta x} = 0$$

où

$$u_{i+\frac{1}{2}} := \frac{1}{2}(u_i + u_{i+1}), \quad u_{i-\frac{1}{2}} := \frac{1}{2}(u_{i-1} + u_i).$$

Ce schéma est plus précis mais est oscillant (*i.e.* non TVD).

Les schémas MUSCL

Considérons la loi de conservation :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}f(u) = 0 \qquad x \in \mathbb{R}, \ t > 0$$

Le schéma de base de volumes finis utilise une approximation constante par morceaux. Soit, par exemple, un schéma décentré du 1^{er} ordre :

$$\frac{du_i}{dt} + \frac{f(u_i) - f(u_{i-1})}{\delta x} = 0$$

Ce schéma est connu pour être diffusif i.e. il lisse les chocs et discontinuités.

Pour obtenir moins de diffusion numérique, on peut considérer une approximation linéaire par morceaux du type :

$$\frac{du_i}{dt} + \frac{f(u_{i+\frac{1}{2}}) - f(u_{i-\frac{1}{2}})}{\delta x} = 0$$

où

$$u_{i+\frac{1}{2}} := \frac{1}{2}(u_i + u_{i+1}), \quad u_{i-\frac{1}{2}} := \frac{1}{2}(u_{i-1} + u_i).$$

Ce schéma est plus précis mais est oscillant (*i.e.* non TVD).

La variation totale discrète est définie par :

$$TV(u) = \sum_i |u_{i+1} - u_i|.$$

Un schéma est dit TVD (Total Variation Diminishing) si

$$\frac{d}{dt}TV(u)\leq 0$$

ou, après discrétisation en temps :

 $TV(u^{n+1}) \leq TV(u^n).$

On peut alors utiliser un schéma de type MUSCL :

$$\frac{du_i}{dt} + \frac{f_{i+\frac{1}{2}}^* - f_{i-\frac{1}{2}}^*}{\delta x} = 0$$

Les flux numériques $f_{i\pm\frac{1}{2}}^*$ correspondent à une combinaison non-linéaire d'approximations du 1^{er} et du 2^{ème} ordre de f(u).

On définit :

$$u_{i\pm\frac{1}{2}}^{*} = u_{i\pm\frac{1}{2}}^{L} (u_{i\pm\frac{1}{2}}^{L}, u_{i\pm\frac{1}{2}}^{R})$$

$$u_{i+\frac{1}{2}}^{L} = u_{i} + \frac{1}{2}\phi(r_{i})(u_{i+1} - u_{i})$$

$$u_{i+\frac{1}{2}}^{R} = u_{i+1} - \frac{1}{2}\phi(r_{i+1})(u_{i+2} - u_{i+1})$$

$$r_{i} = \frac{u_{i} - u_{i-1}}{u_{i+1} - u_{i}}$$

Le fonction ϕ est un limiteur de pente permettant d'assurer que la solution obtenue est TVD, avec

$$\phi(r)=0 \text{ si } r \leq 0, \quad \phi(1)=1.$$

Il existe dans la littérature une multitude de limiteurs de pente. Par exemple le limiteur minmod est défini par

$$\phi(r)=\max(0,\min(1,r)),\quad \lim_{r o\infty}\phi(r)=1.$$

On définit :

$$u_{i\pm\frac{1}{2}}^{*} = u_{i\pm\frac{1}{2}}^{L} (u_{i\pm\frac{1}{2}}^{L}, u_{i\pm\frac{1}{2}}^{R})$$

$$u_{i+\frac{1}{2}}^{L} = u_{i} + \frac{1}{2}\phi(r_{i})(u_{i+1} - u_{i})$$

$$u_{i+\frac{1}{2}}^{R} = u_{i+1} - \frac{1}{2}\phi(r_{i+1})(u_{i+2} - u_{i+1})$$

$$r_{i} = \frac{u_{i} - u_{i-1}}{u_{i+1} - u_{i}}$$

Le fonction ϕ est un limiteur de pente permettant d'assurer que la solution obtenue est TVD, avec

$$\phi(r) = 0 \text{ si } r \leq 0, \quad \phi(1) = 1.$$

Il existe dans la littérature une multitude de limiteurs de pente. Par exemple le limiteur minmod est défini par

$$\phi(r) = \max(0,\min(1,r)), \quad \lim_{r \to \infty} \phi(r) = 1.$$

Limiteurs de pente

Les schémas MUSCL pour les équations d'Euler

Pour un triangle T_i on note par B_i son barycentre et par Q_{ij} l'intersection du segment $[B_i, B_j]$ avec l'arête e_{ij} pour tout $j \in \nu(i)$.

On introduit les coordonnées barycentriques $(
ho_{ij})_{j\in
u(i)}$ par

$$\sum_{j\in\nu(i)}\rho_{ij}B_j=B_i,\quad \sum_{j\in\nu(i)}\rho_{ij}=1.$$

On suppose que B_i est strictement à l'intérieur du triangle formé par les barycentres des triangles voisins. Ainsi $\rho_{ij} > 0$. On définit la direction

$$t_{ij} = \frac{B_i B_j}{|B_i B_j|}$$

イロト イポト イヨト イヨト

Les schémas MUSCL pour les équations d'Euler

Pour un triangle T_i on note par B_i son barycentre et par Q_{ij} l'intersection du segment $[B_i, B_j]$ avec l'arête e_{ij} pour tout $j \in \nu(i)$.

On introduit les coordonnées barycentriques $(\rho_{ij})_{j \in \nu(i)}$ par

$$\sum_{j\in\nu(i)}\rho_{ij}B_j=B_i,\quad \sum_{j\in\nu(i)}\rho_{ij}=1.$$

On suppose que B_i est strictement à l'intérieur du triangle formé par les barycentres des triangles voisins. Ainsi $\rho_{ij} > 0$. On définit la direction

$$t_{ij} = \frac{B_i B_j}{|B_i B_j|}$$

・ロン ・回と ・ヨン ・ ヨン

Les schémas MUSCL pour les équations d'Euler

Pour un triangle T_i on note par B_i son barycentre et par Q_{ij} l'intersection du segment $[B_i, B_j]$ avec l'arête e_{ij} pour tout $j \in \nu(i)$.

On introduit les coordonnées barycentriques $(\rho_{ij})_{j \in \nu(i)}$ par

$$\sum_{j\in\nu(i)}\rho_{ij}B_j=B_i,\quad \sum_{j\in\nu(i)}\rho_{ij}=1.$$

On suppose que B_i est strictement à l'intérieur du triangle formé par les barycentres des triangles voisins. Ainsi $\rho_{ij} > 0$. On définit la direction

$$t_{ij} = \frac{B_i B_j}{|B_i B_j|}$$

$$t_{ij} = \sum_{\substack{j \in
u(i) \ k
eq i}} eta_{ijk} t_{ik}, \qquad eta_{ijk} = -rac{
ho_{ik}}{
ho_{ij}} rac{|B_i B_k|}{|B_i B_j|}$$

On veut maintenant reconstruire les valeurs *U_{ij}* sur l'arête *e_{ij}*. Soit *v* une composante quelconque de *U* (constante par triangle). On définit un premier ensemble de pentes aval par :

$$p_{ij}^+ = rac{v_j - v_i}{|B_i B_j|} \quad \forall \ j \in
u(i), \ 1 \le i \le n_T.$$

Ainsi p_{ij}^+ est une approximation de la dérivée de v dans la direction t_{ij} . La pente amont est définie par :

$$p_{ij}^- = -\sum_{\substack{k \in
u(i) \ k \neq j}} eta_{ijk} p_{ik}^+ \quad orall \ j \in
u(i), \ 1 \leq i \leq n_T.$$

Les pentes p_{ii} sont alors obtenues par un limiteur. Par exemple

$$p_{ij} := \operatorname{minmod}(p_{ij}^+, p_{ij}^-)$$

$$t_{ij} = \sum_{\substack{j \in
u(i) \ k
eq i}} eta_{ijk} t_{ik}, \qquad eta_{ijk} = -rac{
ho_{ik}}{
ho_{ij}} rac{|B_iB_k|}{|B_iB_j|}$$

On veut maintenant reconstruire les valeurs U_{ij} sur l'arête e_{ij} . Soit v une composante quelconque de U (constante par triangle). On définit un premier ensemble de pentes aval par :

$$p_{ij}^+ = rac{v_j - v_i}{|B_i B_j|} \quad \forall \ j \in
u(i), \ 1 \leq i \leq n_T.$$

Ainsi p_{ij}^+ est une approximation de la dérivée de v dans la direction t_{ij} . La pente amont est définie par :

$$\rho_{ij}^{-} = -\sum_{\substack{k \in \nu(i) \\ k \neq j}} \beta_{ijk} \rho_{ik}^{+} \quad \forall \ j \in \nu(i), \ 1 \le i \le n_T.$$

Les pentes p_{ii} sont alors obtenues par un limiteur. Par exemple

$$p_{ij} := \operatorname{minmod}(p_{ij}^+, p_{ij}^-)$$

(ロ) (部) (E) (E) (E)

$$t_{ij} = \sum_{\substack{j \in
u(i) \ k
eq i}} eta_{ijk} t_{ik}, \qquad eta_{ijk} = -rac{
ho_{ik}}{
ho_{ij}} rac{|B_iB_k|}{|B_iB_j|}$$

On veut maintenant reconstruire les valeurs U_{ij} sur l'arête e_{ij} . Soit v une composante quelconque de U (constante par triangle). On définit un premier ensemble de pentes aval par :

$$p_{ij}^+ = rac{v_j - v_i}{|B_i B_j|} \quad \forall \ j \in
u(i), \ 1 \le i \le n_T.$$

Ainsi p_{ij}^+ est une approximation de la dérivée de v dans la direction t_{ij} . La pente amont est définie par :

$$p_{ij}^{-} = -\sum_{\substack{k \in \nu(i) \\ k \neq j}} \beta_{ijk} p_{ik}^{+} \quad \forall \ j \in \nu(i), \ 1 \le i \le n_T.$$

Les pentes p_{ii} sont alors obtenues par un limiteur. Par exemple

$$p_{ij} := \operatorname{minmod}(p_{ij}^+, p_{ij}^-)$$

(ロ) (部) (E) (E) (E)

$$t_{ij} = \sum_{\substack{j \in
u(i) \ k
eq i}} eta_{ijk} t_{ik}, \qquad eta_{ijk} = -rac{
ho_{ik}}{
ho_{ij}} rac{|B_iB_k|}{|B_iB_j|}$$

On veut maintenant reconstruire les valeurs U_{ij} sur l'arête e_{ij} . Soit v une composante quelconque de U (constante par triangle). On définit un premier ensemble de pentes aval par :

$$p_{ij}^+ = rac{v_j - v_i}{|B_i B_j|} \quad \forall \quad j \in
u(i), \ 1 \leq i \leq n_T.$$

Ainsi p_{ij}^+ est une approximation de la dérivée de v dans la direction t_{ij} . La pente amont est définie par :

$$p_{ij}^- = -\sum_{\substack{k \in
u(i) \ k
eq j}} eta_{ijk} p_{ik}^+ \quad \forall \ j \in
u(i), \ 1 \le i \le n_T.$$

Les pentes p_{ii} sont alors obtenues par un limiteur. Par exemple

$$p_{ij} := \operatorname{minmod}(p_{ij}^+, p_{ij}^-)$$

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

$$v_{ij} := v_i + p_{ij} |B_i Q_{ij}|$$

Remarques

- Cette reconstruction est exacte pour les fonctions affines : v(Q_{ij}) = v_{ij} si v est linéaire par morceaux
- Le principal intérêt est que la reconstruction est 1-D. Ceci permet d'utiliser les limiteurs de pente 1-D les plus populaires.
- La propriété ρ_{ij} > 0 implique β_{ijk} < 0. Donc si v_i est un extrémum local on a p⁺_{ij} ρ⁻_{ij} ≤ 0. Donc p_{ij} = 0. Ainsi, les extréma ne croissent pas.
- Pour des raisons de positivité, la reconstruction doit se faire sur les variables physiques et non conservatives.

$$v_{ij} := v_i + p_{ij} |B_i Q_{ij}|$$

Remarques

- Cette reconstruction est exacte pour les fonctions affines : v(Q_{ij}) = v_{ij} si v est linéaire par morceaux
- Le principal intérêt est que la reconstruction est 1-D. Ceci permet d'utiliser les limiteurs de pente 1-D les plus populaires.
- La propriété ρ_{ij} > 0 implique β_{ijk} < 0. Donc si v_i est un extrémum local on a p⁺_{ij} ρ⁻_{ij} ≤ 0. Donc p_{ij} = 0. Ainsi, les extréma ne croissent pas.
- Pour des raisons de positivité, la reconstruction doit se faire sur les variables physiques et non conservatives.

$$v_{ij} := v_i + p_{ij} |B_i Q_{ij}|$$

Remarques

- Cette reconstruction est exacte pour les fonctions affines : v(Q_{ij}) = v_{ij} si v est linéaire par morceaux
- Le principal intérêt est que la reconstruction est 1-D. Ceci permet d'utiliser les limiteurs de pente 1-D les plus populaires.
- La propriété ρ_{ij} > 0 implique β_{ijk} < 0. Donc si v_i est un extrémum local on a p⁺_{ij} ρ⁻_{ij} ≤ 0. Donc p_{ii} = 0. Ainsi, les extréma ne croissent pas.
- Pour des raisons de positivité, la reconstruction doit se faire sur les variables physiques et non conservatives.

$$v_{ij} := v_i + p_{ij} |B_i Q_{ij}|$$

Remarques

- Cette reconstruction est exacte pour les fonctions affines : v(Q_{ij}) = v_{ij} si v est linéaire par morceaux
- Le principal intérêt est que la reconstruction est 1-D. Ceci permet d'utiliser les limiteurs de pente 1-D les plus populaires.
- La propriété ρ_{ij} > 0 implique β_{ijk} < 0. Donc si v_i est un extrémum local on a p⁺_{ij} p⁻_{ij} ≤ 0. Donc p_{ii} = 0. Ainsi, les extréma ne croissent pas.
- Pour des raisons de positivité, la reconstruction doit se faire sur les variables physiques et non conservatives.

$$v_{ij} := v_i + p_{ij} |B_i Q_{ij}|$$

Remarques

- Cette reconstruction est exacte pour les fonctions affines : v(Q_{ij}) = v_{ij} si v est linéaire par morceaux
- Le principal intérêt est que la reconstruction est 1-D. Ceci permet d'utiliser les limiteurs de pente 1-D les plus populaires.
- La propriété ρ_{ij} > 0 implique β_{ijk} < 0. Donc si v_i est un extrémum local on a p⁺_{ij} p⁻_{ij} ≤ 0. Donc p_{ii} = 0. Ainsi, les extréma ne croissent pas.
- Pour des raisons de positivité, la reconstruction doit se faire sur les variables physiques et non conservatives.

Solutions stationnaires radiales

Afin de tester le schéma numérique, on construit une solution stationnaire radiale des équations : On cherche une solution $(u_r, u_{\theta}, u_z, p, e)$ ne dépendant que de r et telle que $u_z = u_{\theta} = 0$. On obtient le système

$$\frac{d}{dr}(r\rho u_r) = 0$$
$$\frac{d}{dr}(r(\rho u_r^2 + \rho)) = 0$$
$$\frac{d}{dr}(ru_r(e + \rho)) = 0$$
$$\rho = (\gamma - 1)\rho e$$

On en déduit, pour $\alpha, \beta \in \mathbb{R}$:

$$\frac{d\rho}{dr} = \frac{\rho}{\left(\alpha\rho^2 r^2 - \frac{\gamma+1}{2(\gamma-1)}\right)(\gamma-1)r}, \qquad u_r = \frac{\beta}{\rho r}$$

- 4 回 5 - 4 三 5 - 4 三 5

Solutions stationnaires radiales

Afin de tester le schéma numérique, on construit une solution stationnaire radiale des équations : On cherche une solution $(u_r, u_{\theta}, u_z, p, e)$ ne dépendant que de r et telle que $u_z = u_{\theta} = 0$. On obtient le système

$$\frac{d}{dr}(r\rho u_r) = 0$$
$$\frac{d}{dr}(r(\rho u_r^2 + \rho)) = 0$$
$$\frac{d}{dr}(ru_r(e + \rho)) = 0$$
$$\rho = (\gamma - 1)\rho e$$

On en déduit, pour $\alpha, \beta \in \mathbb{R}$:

$$rac{d
ho}{dr}=rac{
ho}{\left(lpha
ho^2r^2-rac{\gamma+1}{2(\gamma-1)}
ight)(\gamma-1)r},\qquad u_r=rac{eta}{
ho r}$$

(日) (同) (三) (三)

Solutions stationnaires radiales

Afin de tester le schéma numérique, on construit une solution stationnaire radiale des équations : On cherche une solution $(u_r, u_{\theta}, u_z, p, e)$ ne dépendant que de r et telle que $u_z = u_{\theta} = 0$. On obtient le système

$$\frac{d}{dr}(r\rho u_r) = 0$$
$$\frac{d}{dr}(r(\rho u_r^2 + \rho)) = 0$$
$$\frac{d}{dr}(ru_r(e + \rho)) = 0$$
$$\rho = (\gamma - 1)\rho e$$

On en déduit, pour $\alpha, \beta \in \mathbb{R}$:

$$\frac{d\rho}{dr} = \frac{\rho}{\left(\alpha\rho^2 r^2 - \frac{\gamma+1}{2(\gamma-1)}\right)(\gamma-1)r}, \qquad u_r = \frac{\beta}{\rho r}$$

(日) (同) (三) (三)

Essais numériques

- Solution stationnaire radiale
- Tube à choc (SOD) : Plusieurs configurations
- 6 Écoulement supersonique dans un canal

イロト イポト イヨト イヨト

Solution radiale stationnaire

Solution

- 4 回 2 - 4 三 2 - 4 三 2

Tube à choc

Soit le domaine des paramètres

$$\Omega = \{ (r, z); r \in [0, 1), z \in (0, 1) \}.$$

On définit $\Omega_L = (0,1) \times (0,\frac{1}{2})$, $\Omega_R = (0,1) \times (\frac{1}{2},1)$ et les conditions initiales :

 $U(t=0) = egin{cases} U_L & ext{dans } \Omega_L \ U_R & ext{dans } \Omega_R \end{cases}$

◆□ → ◆□ → ◆ 三 → ◆ 三 → の へ ()・

Tube à choc : Test 1

On teste une configuration avec une onde de raréfaction à gauche, une discontinuité de contact et une onde de choc à droite. On prescrit pour cela :

$$\rho_L = 1, \ \rho_R = 0.125, \ u_L = u_R = 0, \ p_L = 1, \ p_R = 0.1$$

Ordre 1 : Schémas de Rusanov et HLLC. Maillage 1/100

(日) (同) (三) (三)

Ordre 1 : Schémas de Rusanov et HLLC. Maillage 1/200

・ロン ・四 と ・ ヨ と ・ ヨ と

Ordre 2 : Schémas de Rusanov et HLLC. Maillage 1/100

・ロン ・四 と ・ ヨ と ・ ヨ と …

Ordre 2 : Schémas de Rusanov et HLLC. Maillage 1/200

・ロン ・四 と ・ ヨ と ・ ヨ と

Tube à choc : Test 2

On teste maintenant une configuration avec un double choc et une détente. Ceci est obtenu avec les conditions :

$$\rho_L = \rho_R = 6$$
, $u_L = 19.6$, $u_R = -6.2$, $p_L = 460$, $p_R = 460$

Ordre 2 : Schémas de Rusanov et HLLC. Maillage 1/200

(日) (同) (三) (三)

Tube à choc : Test 3

On teste maintenant une configuration avec 2 raréfactions et une discontinuité de contact où la solution présente un état proche du vide. Ceci on obtenu avec les conditions :

$$\rho_L = \rho_R = 1, \quad u_L = -2, \quad u_R = 2, \quad p_L = 1, \quad p_R = 0.4$$

Ordre 2 : Schémas de Rusanov et HLLC. Maillage 1/200

(日) (同) (三) (三)

Écoulement supersonique dans un canal

On considère un écoulement dans un canal avec un obstacle oblique (10 degrés) formant un cône. Données du problème :

$$P_{\infty} = 10^5 Pa, \ \rho_{\infty} = 1.16 Kg/m^3, M_{\infty} = 2$$

Maillage : 5176 triangles.

Cône : Courbes iso-densité

ヘロン 人間 とくほと 人間 とう

Cône : Courbes iso-Mach

ヘロン 人間 とくほと 人間 とう