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Aim:

Numerical simulation of natural gas recovery of type CBM (Coal Bed Methane) with the
following features:

Modelling of immiscible two-phase fluid flow in porous media (water + gas)
@ Gas is recovered by desorption from coalbed matrices

@ Model for 2-D configurations

Capillary pressure is neglected

Numerical approximation by finite elements
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Aim:

Numerical simulation of natural gas recovery of type CBM (Coal Bed Methane) with the
following features:

Modelling of immiscible two-phase fluid flow in porous media (water + gas)

@ Gas is recovered by desorption from coalbed matrices

@ Model for 2-D configurations

Capillary pressure is neglected

Numerical approximation by finite elements

Modelling for immiscible two-phase flows in porous media is (more or less) classical in reservoir
engineering.
New: Modelling of desorption
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Principle of the CBM process

PRODUCTION OF COALBED METHANE
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The model

We consider a flow in porous medium of an immiscible mixture of water and gas.
Let Sy, and Sg stand for the respective saturations of water and gas:

Sw+ Sz =1.
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The model

We consider a flow in porous medium of an immiscible mixture of water and gas.
Let Sy, and Sg stand for the respective saturations of water and gas:

Sw+ Sz =1.

Mass conservation for each phase:

0
&(QSQWSW) + V. (QWVW) = 07

0
&(W’gsg) + V- (0gvg) = fp;

where:
ow, 0g  densities (water and gas)
é Porosity (0 < ¢o < ¢(x) < 1)
5] Rate of desorbed gas

In the following S =S, (S; =1-15).
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Darcy equation:

where
Vu, Vg
Pw. Pg
kw, kg
Hw, Hg

k, k,
Vi = —— KV py, Vg = ——gKVpg
Hw Hg

Velocity of water and gas
Pressures
Relative permeabilities

Viscosities

Absolute permeability tensor (assumed diagonal)
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Darcy equation:

where
Vw, Vg
Pw, Pg
kw, kg

Hw, Hg
K

k, k,
Vi = —— KV py, vg:——gKVpg
Hw Hg

Velocity of water and gas
Pressures

Relative permeabilities
Viscosities

Absolute permeability tensor (assumed diagonal)

In general, we assume:

kw = kw(S), kg = kg(S).
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Darcy equation:
kw kg

vy = _EKVPW, Vg = —EKVpg
where
Vu, Vg Velocity of water and gas
Pw. Pg Pressures
kw, kg Relative permeabilities
fw, ftg  Viscosities
K Absolute permeability tensor (assumed diagonal)

In general, we assume:
kw = kw(S), kg = kg(S).

We define the capillary pressure : pc(S) = pg — pw.
The function pc(S) is assumed positive and non increasing.
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Darcy equation:
kw kg

vw = ——KVpy, vg=—-——KVp,

Hw Hg
where
Vu, Vg Velocity of water and gas
Pw. Pg Pressures
kw, kg Relative permeabilities
fw, ftg  Viscosities

K Absolute permeability tensor (assumed diagonal)

In general, we assume:
kw = kw(S), kg = kg(S).

We define the capillary pressure : pc(S) = pg — pw.
The function pc(S) is assumed positive and non increasing.
We next define the mobilities:

ke(S)

l®) (5 = B (s =
Hw Hg

mw(S) =

Conférence JANO 2013 R. Touzani et al.



The total velocity is defined by

V=V + Vg

= —m(S)K(Vpg -
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mw(S)

m(S)

Vpe(9))



The total velocity is defined by

V=vy +vg
mw(S)
m(S)

= —m(S)K(Vpg — Vpe(S))

We now want to define a global pressure: Let 5(S) be defined by

":nw((ss)) pL(S)

B(S) =
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The total velocity is defined by
V=vy +vg

mw(S)
= —m(S)K(Vpg — S Vpe(S))

We now want to define a global pressure: Let 5(S) be defined by

m(5) i (s)

ORE= =

The function p = pgy — j satisfies then:

Vp=Vps —Vp

_ my(S)
- Vpg - m(s) pc(s)vs
—v mw(S)

pg — m(s) Vpe(S)
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Thus
m(S)KVp,
and

Vw

—my(S)KVp — a(S)KVS
where

vg = —mg(S)KVp + a(S)KVS

a(s) — mW(S)mg(S) /

m(S) Pe(S) =
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Modelling of desorption

where:

Vf

Let V denote the adsorbed gas volume. We have, at equilibrium, the Langmuir isotherm:
Vip

T ptp’

@ p;: Langmuir adsorption constant
o V): Available gas volume
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Increasing Gas Storage Capacity

b Gas Production

Begins: : . : -
--------- W - Water Production- - - -
T T .........(............ . N
w
Initial

Pressure

Increasing Pressure
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In a thermodynamical nonequilibrium situation, we have

oV 1 V
ov _ _=2 (v _ ;P)
ot T pL+p
where 7 > 0 if a diffusion time.
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In a thermodynamical nonequilibrium situation, we have

- e

T pL+p

where 7 > 0 if a diffusion time.

Note that if we want to exclude adsorption, we must replace by

ov. 1 (V Vip >+

8t T\ p+p
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The complete model

We have the system of equations:

%)
a((ﬁgws) -V (ewmwKVp) — V- (0waKVS) =0

1o} ov
&(du_)g(l —S)-V- (nggKVp) + V- (ggaKVS) = —gmgbﬁ
oV 1 VLp o

otV ae)
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The complete model

We have the system of equations:

%)
a(d)ng) -V (ewmwKVp) — V- (0waKVS) =0

0
a(‘f’@g(l —5)) — V- (0gmgKVp) + V - (0gaKVS) = —QmeE
ov 1 Vv
WV Ly- Yy g
ot 7 pL+p
It remains to define an equation of state for each phase.
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The complete model

We have the system of equations:

0
a(d)QWS) i v (gwmwKVp) v (gwaKVS) =0

F) 3%
5:(96(1=5)) = V- (esmgKVp) +V - (020KVS) = —omes -
v 1 V,

s (v-Me) o

ot T\ ptp

It remains to define an equation of state for each phase.

We assume that the water is slightly compressible, i.e.
1d
w = = dow = Const. >0
ow dp
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The complete model

We have the system of equations:

%(d’@ws) -V (gwmwKVp) -V (QWaKVS) =10

1o} oV
a(¢£’g(1 =S))= V. (@gmgKVP) +V. (ggaKVS) = *QmeE

AR (L

ot T\ ptp

It remains to define an equation of state for each phase.

We assume that the water is slightly compressible, i.e.
1d
w = = dow = Const. >0
ow dp
In the same way, we define the gas and rock compressibility coefficients by
1 dog _1dg

— ) ¢ =¢fpP)= -
0g dp (e) ¢ dp

cg = cg(p) =
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The complete model

We have the system of equations:

0

5;(#0wS) = V- (owmuKVp) = V - (0aKVS) =0

0 oV
a(¢£’g(1 =S))= V. (@gmgKVP) +V- (ggaKVS) = *QmeE
ov 1 (V _ Vip > -0

ot T\ ptp

It remains to define an equation of state for each phase.

We assume that the water is slightly compressible, i.e.
1d
w = = dow = Const. >0
ow dp

In the same way, we define the gas and rock compressibility coefficients by

1 dog 1d¢
G=clp)=—2%  goc(p) =222
£ 0¢ dp ¢ dp
We thus obtain o o
% = CWQW£7 Vow = cwowVp
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0

Neglecting nonlinear quadratic terms and dividing by o, we get:
S

—; T (ew +¢
¢3t ( w f

)6S % ~ V- (myKVp) — V- (aKVS) = 0
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Neglecting nonlinear quadratic terms and dividing by o, we get:

aS 0,
62> + (cw + cr)pS 22—V - (myKVp) — V - (aKVS) =0
ot ot
For the gas, we consider a real gas model:

p=0gRTZ(p), ol 0< Z(p) <L
Therefore

1 Z(p) = Z'(p)p

w(P)= &7 pZ2(p)
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Neglecting nonlinear quadratic terms and dividing by o, we get:

aS 0,
62> + (cw + cr)pS 22—V - (myKVp) — V - (aKVS) =0
ot ot
For the gas, we consider a real gas model:

p=0gRTZ(p), ot 0<Z(p)<1
Therefore

1 Z(p)—Z'(p)p

«P)= 27— p22(p)

The equation of gas becomes:

0 0 0 oS
a(as(l—smg):¢(1—5)ﬁ+¢gg(1— )22~ bos

ot
ap 85
0s(1 =) (cg +er) 65 — dog 5
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Neglecting nonlinear quadratic terms and dividing by o, we get:

as P
0 + (cw+ cr)S ?i — V- (muKVp) — V- (aKVS) =0

For the gas, we consider a real gas model:
p=0gRTZ(p), ot 0<Z(p)<1
Therefore

1 Z(p)—Z'(p)p

«P)= 27— p22(p)

The equation of gas becomes:
8(1) oS
~ 00,

op 85
0s(1 = 5)(c5 + cr)o) —dos 5.

(00— S)es) = 91— )5 + g1 - )5

Neglecting nonlinear quadratic terms and dividing by o, we get:

oS op
—-¢p—+(1-S5 — V- KV V. (aKVS) =
9o T (L= o, =V (meKVp) + V- (aKVS) = Z0-
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We have the system:

as
07 + (cwd + cr)S 8—’: — V- (myKVp) — V- (aKVS) =0

—¢§ +(1—-5)(cg + Cf)(z)% — V- (mgKVp) + V- (aKVS) =

omob (V_ Vip )
T Qg pLt+p
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We have the system:
oS 0
07 + (cwd + cr)S FI: — V- (myKVp) — V- (aKVS) =0

95 q_ % . . _omev(,  Vip
—by + (1= S)(cg + )by — V- (mgKVp) + V- (aKVS) = o (v pL—i-p)

Adding these two equations we obtain:

as 8
05 + (cwd +€r)S 8—’; — V- (mwKVp) — V - (aKVS) = 0

op 0mOb Vip
P _ . (mK _@m& (,, _VLP
ct¢8t V- (mKVp) T0g ( PL+P)
ov 1 Vip \
et ) =

where
cc=cwS+cg(1—5)+cf Total compressibility
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Remarks

@ The main advantage of this formulation is that

m > mg >0 although mg >0,
i.e. the equation is not degenerate.

my, > 0.

Conférence JANO 2013

R. Touzani et al.




Remarks

@ The main advantage of this formulation is that
m > mg >0 although mg >0, m, >0.

i.e. the equation is not degenerate.
@ We have

V- (mwKVp) = my,V - (KVp)+KVp-Vm, = m,V - (KVp) + ml,(S)KVp- VS

which is a diffusion-convection problem. This implies the necessity of using an upwind
scheme, if the capillary pressure is null (or small enough).
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Bounda
In the following, we assume p. = 0.

We prescribe the conditions:

P = Pw

on r\/|/1
KVp-n=0

on FR,
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Boundary conditions

In the following, we assume p. = 0.

We prescribe the conditions:

In

Lw

T

P = Pw on rW7
KVp-n=0 on g,
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Well modelling

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to
the reservoir's diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity

of the well. We also assume that the flow is incompressible in this neighborhood and has constant
properties.
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Well modelling

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to
the reservoir's diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity
of the well. We also assume that the flow is incompressible in this neighborhood and has constant
properties.

The flow is then modelled in this neighborhood, for the water phase by
-V - (owmwKVp) = qud

where ¢ is the Dirac distribution at the center of the well and gy, is the well’s production rate for
the water.
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Well modelling

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to
the reservoir's diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity
of the well. We also assume that the flow is incompressible in this neighborhood and has constant
properties.

The flow is then modelled in this neighborhood, for the water phase by
-V - (owmwKVp) = qud

where ¢ is the Dirac distribution at the center of the well and gy, is the well’s production rate for
the water.

We obtain the analytical solution

r 1
P =p(r) = 5 (=), r=(d )
2mowmywkH rw

where r,, is the well's radius, kK = K11 and H is the reservoir's height.
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Let ©o denote the P; basis function at node xg (well node), we have

owmyH Z /Kvp-gﬂo dx = qw
eCQg €

where € is the support de ¢y.

We assume that the analytical solution is a good approximation of the pressure at neighboring
nodes.
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Let ©o denote the P; basis function at node xg (well node), we have
owmyH Z /KVp -0 dX = quw
eCQg €

where € is the support de ¢y.

We assume that the analytical solution is a good approximation of the pressure at neighboring
nodes.

Using the expansion

p= Z Pipi in Qo
i

we get

owmwH Z Z (/KSOi - Vo dX)Pi = qw-

eCQo i €
Then

2
owmwH Y Ti(pi — po) = qu where T; = Z/ KV; - @o dx
i#0 (=1"¢
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Using the analytical solution, we obtain

qw =

iz Ti

1
==

27K

2 izo Tiln(ri/rw)

owmwH(pw — po)
vicinity of a well.

We use the Kirchhoff transformation by defining

For the gas phase, the situation is more delicate: One cannot assume that

Then, we have

is constant in the

We deduce then
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Using the analytical solution, we obtain

Well model for the water phase
S T
qw = . owmwH(pw — PO)

1
1+ e >izo TiIn(ri/rw)

For the gas phase, the situation is more delicate: One cannot assume that g, is constant in the

vicinity of a well.
We use the Kirchhoff transformation by defining

p= [ ests)as

Po

Then, we have
—mgkAp = qgd
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Using the analytical solution, we obtain

Well model for the water phase
iz Ti
Gw = = owmwH(pw — po)

1
1+ e >izo TiIn(ri/rw)

For the gas phase, the situation is more delicate: One cannot assume that g, is constant in the
vicinity of a well.
We use the Kirchhoff transformation by defining

P
p= [ os(s)as
PO

Then, we have
—mgkAp = qgd

We deduce then
dg | L)

p(r) - p(rw) - 2rmgrH " rw
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Numerical approximation

We use a IP; finite element method with a Streamline Upwind stabilization term:
Let .7 (2) denote a triangulation of Q and let us define the finite dimensional space:

S={1heC’Q); Yk €P1V K€ T(Q},

P={qeC’(Q); qx €PLV K e 7(Q)},
V ={W; W = Const. V K € 7(Q)}.
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Streamline Upwind stabilization

Consider the diffusion-convection equation
—ecAu—+a-Vu=f in Q

It is well known that if the local Péclet number

|ah
Pe=-—>1
€ 2¢e

then a standard (centered) discretization leads to a nonmonotone matrix and then to instabilities.
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Streamline Upwind stabilization

Consider the diffusion-convection equation
—ecAu—+a-Vu=f in Q

It is well known that if the local Péclet number

|ah
Pe=-—>1
€ 2¢e

then a standard (centered) discretization leads to a nonmonotone matrix and then to instabilities.

To remedy to this, a Petrov-Galerkin formulation has been proposed in the 80's by T.J.R. Hughes
et al. and analyzed by C. Johnson. It consists in the following variational formulation:

/EVuh~Vvdx+/(aAVuh)vdx—i—Zh—K/‘(a~Vuh)(a~Vv)dx:/fvdx Vve,
Q Q < 2lal Jk Q
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We define the variational formulation (We keep the same notation for the unknowns and their

approximations):
We seek S(-,t) € S, p(-,t) € P and V(t) € V such that forl all ¢ € S et o) € P:

/(b%g@dx—&—/(cW(ﬁ—&—q)S%(de—i—/ myKVp - Vo dx
q Ot Q ot Q

qlzlw W(Xwi)

+ Z EK/K(KVP'VS)(KV[J-V@)dx:_ZWl

Ke T (Q)

/Cui)%wder/mKVp-dex
Q Ot Q

Nw
Qm@b/ 1 Vip gi
=— [ —(V- P dx — == o(Xwi)
T QQg( pL+p) ;H .
ov i( Vip ,V) -0
ot  Tog \pL+p
with b
K
6 = s M (S)
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Numerical approximation: Time discretization

We choose the implicit Euler scheme:

1 1
E/Q(]ﬁnJrl(SnJrl _ Sn)(pdx+ E /Q(Cw¢n+1 + Cngl)(PnJrl _ p")apdx

+ / mPHKV P Vi dx

Nw n+1
n q
+ > e / (KVp" - VS (KVp" - Vi) dx = =3 =40 p(xui)
Ke T (Q) i=1
1
= / Mt (pn L pMYe dx + / m"KVp" . Vi dx
ot Q Q
n+1
Om@b 1 VL Pn+1 e gl
- Vn - . 11 - wi
T+6t/ng§“( pL+p"“) Z At
V, pn+1
vl — Vst
ot (T a pL +pn+1)

for all ¢ € S and ¥ € Po.

Note that the variable V is decoupled from S and p.
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Adaptive time stepping

In order to optimize the computational time, an adaptive time stepping procedure is used. We
use the following procedure:
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Adaptive time stepping

In order to optimize the computational time, an adaptive time stepping procedure is used. We
use the following procedure:

For all n, we compute

L (||P"+1 —p"ll st - 5"H)
€ Pl 1571l

On choisit R
@
in(0, —)8t" if a" > 5t"
min ( 5tn) if

Ft = Stn
if " < 6t

n

min (9, :;é?)

where ¢ is a given tolerance and 0 is the maximal (given) value of §t"+1/§t" or 6" /5t"+1.

v
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Numerical experiments: A radial case

We look for a radial solution where the well is disk of radius R,, = 0.15 m located at the center of
a reservoir of radius Re = 800 m, i.e. Ry < Re.
We choose

pc=0, So=1, po=1400 psi, pw = 100 psi, 7 =1 jour
Tmax = 10000 days (more than 27 years)
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2-D Examples

o A vertical well
@ A horizontal well
@ A heterogeneous reservoir
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