A Model for Two-Phase Fluid Flow in Porous Media With Desorption

Rachid Touzani
Université Blaise Pascal, Clermont-Ferrand, France
Laurent Alessio, Arthur Hubert, Papa Abdoulaye Faye, Hamza El Yachioui
Errazi Ben Ahmed, Hefdhi Abdennader
LEAP Energy, Kuala Lumpur, Malaisie

Aim:

Numerical simulation of natural gas recovery of type CBM (Coal Bed Methane) with the following features:

- Modelling of immiscible two-phase fluid flow in porous media (water + gas)
- Gas is recovered by desorption from coalbed matrices
- Model for 2-D configurations
- Capillary pressure is neglected
- Numerical approximation by finite elements

Modelling for immiscible two-phase flows in porous media is (more or less) classical in reservoir

 engineeringModelling of desorption

Aim:

Numerical simulation of natural gas recovery of type CBM (Coal Bed Methane) with the following features:

- Modelling of immiscible two-phase fluid flow in porous media (water + gas)
- Gas is recovered by desorption from coalbed matrices
- Model for 2-D configurations
- Capillary pressure is neglected
- Numerical approximation by finite elements

Modelling for immiscible two-phase flows in porous media is (more or less) classical in reservoir engineering.
New: Modelling of desorption

The model

We consider a flow in porous medium of an immiscible mixture of water and gas. Let S_{w} and S_{g} stand for the respective saturations of water and gas:

$$
S_{w}+S_{g}=1
$$

where:

densities (water and gas)
Porosity $\left(0<\phi_{0} \leq \phi(x) \leq 1\right)$
Rate of desorbed gas

In the following $S=S_{w}\left(S_{g}=1-S\right)$

We consider a flow in porous medium of an immiscible mixture of water and gas. Let S_{w} and S_{g} stand for the respective saturations of water and gas:

$$
S_{w}+S_{g}=1
$$

Mass conservation for each phase:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\phi \varrho_{w} S_{w}\right)+\nabla \cdot\left(\varrho_{w} v_{w}\right)=0 \\
& \frac{\partial}{\partial t}\left(\phi \varrho_{g} S_{g}\right)+\nabla \cdot\left(\varrho_{g} v_{g}\right)=f_{D}
\end{aligned}
$$

where:

```
\varrhow, \varrhog densities (water and gas)
\phi Porosity (0< }\mp@subsup{\phi}{0}{}\leq\phi(x)\leq1
```

$f_{D} \quad$ Rate of desorbed gas

In the following $S=S_{w}\left(S_{g}=1-S\right)$.

Darcy equation:

$$
\mathbf{v}_{w}=-\frac{k_{w}}{\mu_{w}} \mathbf{K} \nabla p_{w}, \quad \mathbf{v}_{g}=-\frac{k_{g}}{\mu_{g}} \mathbf{K} \nabla p_{g}
$$

where
$\mathbf{v}_{w}, \mathbf{v}_{g} \quad$ Velocity of water and gas
$p_{w}, p_{g} \quad$ Pressures
$k_{w}, k_{g} \quad$ Relative permeabilities
$\mu_{w}, \mu_{g} \quad$ Viscosities
$\mathrm{K} \quad$ Absolute permeability tensor (assumed diagonal)

In general, we assume:

$$
k_{w}=k_{w}(S), k_{g}=k_{g}(S)
$$

We define the capillary pressure :
The function $p_{c}(S)$ is assumed positive and non increasing.
We next define the mobilities:

Darcy equation:

$$
\mathbf{v}_{w}=-\frac{k_{w}}{\mu_{w}} \mathbf{K} \nabla p_{w}, \quad \mathbf{v}_{g}=-\frac{k_{g}}{\mu_{g}} \mathbf{K} \nabla p_{g}
$$

where
$\mathbf{v}_{w}, \mathbf{v}_{g} \quad$ Velocity of water and gas
$p_{w}, p_{g} \quad$ Pressures
$k_{w}, k_{g} \quad$ Relative permeabilities
$\mu_{w}, \mu_{g} \quad$ Viscosities
K Absolute permeability tensor (assumed diagonal)
In general, we assume:

$$
k_{w}=k_{w}(S), \quad k_{g}=k_{g}(S)
$$

We define the capillary pressure :
The function $p_{c}(S)$ is assumed positive and non increasing.
We next define the mobilities:

Darcy equation:

$$
\mathbf{v}_{w}=-\frac{k_{w}}{\mu_{w}} \mathbf{K} \nabla p_{w}, \quad \mathbf{v}_{g}=-\frac{k_{g}}{\mu_{g}} \mathbf{K} \nabla p_{g}
$$

where
$\mathbf{v}_{w}, \mathbf{v}_{g} \quad$ Velocity of water and gas
$p_{w}, p_{g} \quad$ Pressures
$k_{w}, k_{g} \quad$ Relative permeabilities
$\mu_{w}, \mu_{g} \quad$ Viscosities
$\mathrm{K} \quad$ Absolute permeability tensor (assumed diagonal)

In general, we assume:

$$
k_{w}=k_{w}(S), k_{g}=k_{g}(S)
$$

We define the capillary pressure : $p_{c}(S)=p_{g}-p_{w}$. The function $p_{c}(S)$ is assumed positive and non increasing.

Darcy equation:

$$
\mathbf{v}_{w}=-\frac{k_{w}}{\mu_{w}} \mathbf{K} \nabla p_{w}, \quad \mathbf{v}_{g}=-\frac{k_{g}}{\mu_{g}} \mathbf{K} \nabla p_{g}
$$

where
$\mathbf{v}_{w}, \mathbf{v}_{g} \quad$ Velocity of water and gas
$p_{w}, p_{g} \quad$ Pressures
$k_{w}, k_{g} \quad$ Relative permeabilities
$\mu_{w}, \mu_{g} \quad$ Viscosities
K Absolute permeability tensor (assumed diagonal)
In general, we assume:

$$
k_{w}=k_{w}(S), k_{g}=k_{g}(S)
$$

We define the capillary pressure : $p_{c}(S)=p_{g}-p_{w}$. The function $p_{c}(S)$ is assumed positive and non increasing. We next define the mobilities:

$$
m_{w}(S)=\frac{k_{w}(S)}{\mu_{w}}, m_{g}(S)=\frac{k_{g}(S)}{\mu_{g}}, m(S)=m_{w}(S)+m_{g}(S)
$$

The total velocity is defined by

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}_{w}+\mathbf{v}_{g} \\
& =-m(S) \mathbf{K}\left(\nabla p_{g}-\frac{m_{w}(S)}{m(S)} \nabla p_{c}(S)\right)
\end{aligned}
$$

We now want to define a global pressure: Let $\tilde{p}(S)$ be defined by

$$
\tilde{p}^{\prime}(S)=\frac{m_{w}(S)}{m(S)} p_{c}^{\prime}(S)
$$

The function $p=p_{g}-\tilde{p}$ satisfies then:

The total velocity is defined by

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}_{w}+\mathbf{v}_{g} \\
& =-m(S) \mathbf{K}\left(\nabla p_{g}-\frac{m_{w}(S)}{m(S)} \nabla p_{c}(S)\right)
\end{aligned}
$$

We now want to define a global pressure: Let $\tilde{p}(S)$ be defined by

$$
\tilde{p}^{\prime}(S)=\frac{m_{w}(S)}{m(S)} p_{c}^{\prime}(S)
$$

The function $p=p_{g}-\tilde{p}$ satisfies then:

The total velocity is defined by

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}_{w}+\mathbf{v}_{g} \\
& =-m(S) \mathbf{K}\left(\nabla p_{g}-\frac{m_{w}(S)}{m(S)} \nabla p_{c}(S)\right)
\end{aligned}
$$

We now want to define a global pressure: Let $\tilde{p}(S)$ be defined by

$$
\tilde{p}^{\prime}(S)=\frac{m_{w}(S)}{m(S)} p_{c}^{\prime}(S)
$$

The function $p=p_{g}-\tilde{p}$ satisfies then:

$$
\begin{aligned}
\nabla p & =\nabla p_{g}-\nabla \tilde{p} \\
& =\nabla p_{g}-\frac{m_{w}(S)}{m(S)} p_{c}^{\prime}(S) \nabla S \\
& =\nabla p_{g}-\frac{m_{w}(S)}{m(S)} \nabla p_{c}(S)
\end{aligned}
$$

Thus

$$
\mathbf{v}=-m(S) \mathbf{K} \nabla p
$$

and

$$
\begin{aligned}
\mathbf{v}_{w} & =-m_{w}(S) \mathbf{K} \nabla p-\alpha(S) \mathbf{K} \nabla S, \\
\mathbf{v}_{g} & =-m_{g}(S) \mathbf{K} \nabla p+\alpha(S) \mathbf{K} \nabla S,
\end{aligned}
$$

where

$$
\alpha(S)=-\frac{m_{w}(S) m_{g}(S)}{m(S)} p_{c}^{\prime}(S) \geq 0
$$

Modelling of desorption

Let V denote the adsorbed gas volume. We have, at equilibrium, the Langmuir isotherm:

$$
V=\frac{V_{L} p}{p_{L}+p}
$$

where:

- p_{L} : Langmuir adsorption constant
- V_{L} : Available gas volume

In a thermodynamical nonequilibrium situation, we have

$$
\frac{\partial V}{\partial t}=-\frac{1}{\tau}\left(V-\frac{V_{L} p}{p_{L}+p}\right)
$$

where $\tau>0$ if a diffusion time.
Note that if we want to exclude adsorption, we must replace by

In a thermodynamical nonequilibrium situation, we have

$$
\frac{\partial V}{\partial t}=-\frac{1}{\tau}\left(V-\frac{V_{L} p}{p_{L}+p}\right)
$$

where $\tau>0$ if a diffusion time.
Note that if we want to exclude adsorption, we must replace by

$$
\frac{\partial V}{\partial t}=-\frac{1}{\tau}\left(V-\frac{V_{L} p}{p_{L}+p}\right)^{+}
$$

We have the system of equations:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\phi \varrho_{w} S\right)-\nabla \cdot\left(\varrho_{w} m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot\left(\varrho_{w} \alpha \mathbf{K} \nabla S\right)=0 \\
& \frac{\partial}{\partial t}\left(\phi \varrho_{g}(1-S)\right)-\nabla \cdot\left(\varrho_{g} m_{g} \mathbf{K} \nabla p\right)+\nabla \cdot\left(\varrho_{g} \alpha \mathbf{K} \nabla S\right)=-\varrho_{m} \varrho_{b} \frac{\partial V}{\partial t} \\
& \frac{\partial V}{\partial t}+\frac{1}{\tau}\left(V-\frac{V_{L} p}{p_{L}+p}\right)=0
\end{aligned}
$$

It remains to define an equation of state for each phase.
We assume that the water is slightly compressible, i.e.

In the same way, we define the gas and rock compressibility coefficients by

We have the system of equations:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\phi \varrho_{w} S\right)-\nabla \cdot\left(\varrho_{w} m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot\left(\varrho_{w} \alpha \mathbf{K} \nabla S\right)=0 \\
& \frac{\partial}{\partial t}\left(\phi \varrho_{g}(1-S)\right)-\nabla \cdot\left(\varrho_{g} m_{g} \mathbf{K} \nabla p\right)+\nabla \cdot\left(\varrho_{g} \alpha \mathbf{K} \nabla S\right)=-\varrho_{m} \varrho_{b} \frac{\partial V}{\partial t} \\
& \frac{\partial V}{\partial t}+\frac{1}{\tau}\left(V-\frac{V_{L} p}{p_{L}+p}\right)=0
\end{aligned}
$$

It remains to define an equation of state for each phase.
We assume that the water is slightly compressible, i.e.

In the same way, we define the gas and rock compressibility coefficients by

We have the system of equations:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\phi \varrho_{w} S\right)-\nabla \cdot\left(\varrho_{w} m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot\left(\varrho_{w} \alpha \mathbf{K} \nabla S\right)=0 \\
& \frac{\partial}{\partial t}\left(\phi \varrho_{g}(1-S)\right)-\nabla \cdot\left(\varrho_{g} m_{g} \mathbf{K} \nabla p\right)+\nabla \cdot\left(\varrho_{g} \alpha \mathbf{K} \nabla S\right)=-\varrho_{m} \varrho_{b} \frac{\partial V}{\partial t} \\
& \frac{\partial V}{\partial t}+\frac{1}{\tau}\left(V-\frac{V_{L} p}{p_{L}+p}\right)=0
\end{aligned}
$$

It remains to define an equation of state for each phase.
We assume that the water is slightly compressible, i.e.

$$
c_{w}=\frac{1}{\varrho_{w}} \frac{d \varrho_{w}}{d p}=\text { Const. }>0
$$

In the same way, we define the gas and rock compressibility coefficients by

We have the system of equations:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\phi \varrho_{w} S\right)-\nabla \cdot\left(\varrho_{w} m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot\left(\varrho_{w} \alpha \mathbf{K} \nabla S\right)=0 \\
& \frac{\partial}{\partial t}\left(\phi \varrho_{g}(1-S)\right)-\nabla \cdot\left(\varrho_{g} m_{g} \mathbf{K} \nabla p\right)+\nabla \cdot\left(\varrho_{g} \alpha \mathbf{K} \nabla S\right)=-\varrho_{m} \varrho_{b} \frac{\partial V}{\partial t} \\
& \frac{\partial V}{\partial t}+\frac{1}{\tau}\left(V-\frac{V_{L} p}{p_{L}+p}\right)=0
\end{aligned}
$$

It remains to define an equation of state for each phase.
We assume that the water is slightly compressible, i.e.

$$
c_{w}=\frac{1}{\varrho_{w}} \frac{d \varrho_{w}}{d p}=\text { Const. }>0
$$

In the same way, we define the gas and rock compressibility coefficients by

$$
c_{g}=c_{g}(p)=\frac{1}{\varrho_{g}} \frac{d \varrho_{g}}{d p}, \quad c_{f}=c_{f}(p)=\frac{1}{\phi} \frac{d \phi}{d p}
$$

We have the system of equations:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\phi \varrho_{w} S\right)-\nabla \cdot\left(\varrho_{w} m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot\left(\varrho_{w} \alpha \mathbf{K} \nabla S\right)=0 \\
& \frac{\partial}{\partial t}\left(\phi \varrho_{g}(1-S)\right)-\nabla \cdot\left(\varrho_{g} m_{g} \mathbf{K} \nabla p\right)+\nabla \cdot\left(\varrho_{g} \alpha \mathbf{K} \nabla S\right)=-\varrho_{m} \varrho_{b} \frac{\partial V}{\partial t} \\
& \frac{\partial V}{\partial t}+\frac{1}{\tau}\left(V-\frac{V_{L} p}{p_{L}+p}\right)=0
\end{aligned}
$$

It remains to define an equation of state for each phase.
We assume that the water is slightly compressible, i.e.

$$
c_{w}=\frac{1}{\varrho_{w}} \frac{d \varrho_{w}}{d p}=\text { Const. }>0
$$

In the same way, we define the gas and rock compressibility coefficients by

$$
c_{g}=c_{g}(p)=\frac{1}{\varrho_{g}} \frac{d \varrho_{g}}{d p}, \quad c_{f}=c_{f}(p)=\frac{1}{\phi} \frac{d \phi}{d p}
$$

We thus obtain

$$
\frac{\partial \varrho_{w}}{\partial t}=c_{w} \varrho_{w} \frac{\partial p}{\partial t}, \quad \nabla \varrho_{w}=c_{w} \varrho_{w} \nabla p
$$

Neglecting nonlinear quadratic terms and dividing by ϱ_{w} we get:

$$
\phi \frac{\partial S}{\partial t}+\left(c_{w}+c_{f}\right) \phi S \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot(\alpha \mathbf{K} \nabla S)=0
$$

For the gas, we consider a real gas model:

$$
p=Q_{g} R T Z(p), \quad \text { où } \quad 0<Z(p) \leq 1 .
$$

Therefore

$$
c_{g}(p)=\frac{1}{R T} \frac{Z(p)-Z^{\prime}(p) p}{p Z^{2}(p)}
$$

The equation of gas becomes:

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\phi(1-S) \varrho_{g}\right) & =\phi(1-S) \frac{\partial \varrho_{g}}{\partial t}+\phi \varrho_{g}(1-S) \frac{\partial \phi}{\partial t}-\phi \varrho_{g} \frac{\partial S}{\partial t} \\
& =\varrho_{g}(1-S)\left(c_{g}+c_{f}\right) \phi \frac{\partial p}{\partial t}-\phi \varrho_{g} \frac{\partial S}{\partial t}
\end{aligned}
$$

Neglecting nonlinear quadratic terms and dividing by ϱ_{g} we get:

Neglecting nonlinear quadratic terms and dividing by ϱ_{w} we get:

$$
\phi \frac{\partial S}{\partial t}+\left(c_{w}+c_{f}\right) \phi S \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot(\alpha \mathbf{K} \nabla S)=0
$$

For the gas, we consider a real gas model:

$$
p=\varrho_{g} R T Z(p), \quad \text { où } \quad 0<Z(p) \leq 1 .
$$

Therefore

$$
c_{g}(p)=\frac{1}{R T} \frac{Z(p)-Z^{\prime}(p) p}{p Z^{2}(p)}
$$

The equation of gas becomes:

$$
=\varrho_{g}(1-S)\left(c_{g}+c_{f}\right) \phi \frac{\partial p}{\partial t}-\phi \varrho_{g} \frac{\partial S}{\partial t}
$$

Neglecting nonlinear quadratic terms and dividing by ϱ_{w} we get:

$$
\phi \frac{\partial S}{\partial t}+\left(c_{w}+c_{f}\right) \phi S \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot(\alpha \mathbf{K} \nabla S)=0
$$

For the gas, we consider a real gas model:

$$
p=\varrho_{g} R T Z(p), \quad \text { où } \quad 0<Z(p) \leq 1 .
$$

Therefore

$$
c_{g}(p)=\frac{1}{R T} \frac{Z(p)-Z^{\prime}(p) p}{p Z^{2}(p)}
$$

The equation of gas becomes:

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\phi(1-S) \varrho_{g}\right) & =\phi(1-S) \frac{\partial \varrho_{g}}{\partial t}+\phi \varrho_{g}(1-S) \frac{\partial \phi}{\partial t}-\phi \varrho_{g} \frac{\partial S}{\partial t} \\
& =\varrho_{g}(1-S)\left(c_{g}+c_{f}\right) \phi \frac{\partial p}{\partial t}-\phi \varrho_{g} \frac{\partial S}{\partial t}
\end{aligned}
$$

Neglecting nonlinear quadratic terms and dividing by ϱ_{g} we get:

Neglecting nonlinear quadratic terms and dividing by ϱ_{w} we get:

$$
\phi \frac{\partial S}{\partial t}+\left(c_{w}+c_{f}\right) \phi S \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot(\alpha \mathbf{K} \nabla S)=0
$$

For the gas, we consider a real gas model:

$$
p=\varrho_{g} R T Z(p), \quad \text { où } \quad 0<Z(p) \leq 1 .
$$

Therefore

$$
c_{g}(p)=\frac{1}{R T} \frac{Z(p)-Z^{\prime}(p) p}{p Z^{2}(p)}
$$

The equation of gas becomes:

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\phi(1-S) \varrho_{g}\right) & =\phi(1-S) \frac{\partial \varrho_{g}}{\partial t}+\phi \varrho_{g}(1-S) \frac{\partial \phi}{\partial t}-\phi \varrho_{g} \frac{\partial S}{\partial t} \\
& =\varrho_{g}(1-S)\left(c_{g}+c_{f}\right) \phi \frac{\partial p}{\partial t}-\phi \varrho_{g} \frac{\partial S}{\partial t}
\end{aligned}
$$

Neglecting nonlinear quadratic terms and dividing by ϱ_{g} we get:

$$
-\phi \frac{\partial S}{\partial t}+(1-S)\left(c_{g}+c_{f}\right) \phi \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{g} \mathbf{K} \nabla p\right)+\nabla \cdot(\alpha \mathbf{K} \nabla S)=\frac{\varrho_{m} \varrho_{b}}{\tau \varrho_{g}}\left(V-\frac{V_{L} p}{p_{L}+p}\right)
$$

We have the system:

$$
\begin{aligned}
& \phi \frac{\partial S}{\partial t}+\left(c_{w} \phi+c_{f}\right) S \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot(\alpha \mathbf{K} \nabla S)=0 \\
& -\phi \frac{\partial S}{\partial t}+(1-S)\left(c_{g}+c_{f}\right) \phi \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{g} \mathbf{K} \nabla p\right)+\nabla \cdot(\alpha \mathbf{K} \nabla S)=\frac{\varrho_{m} \varrho_{b}}{\tau \varrho_{g}}\left(V-\frac{V_{L} p}{p_{L}+p}\right)
\end{aligned}
$$

Adding these two equations we obtain:

We have the system:

$$
\begin{aligned}
& \quad \phi \frac{\partial S}{\partial t}+\left(c_{w} \phi+c_{f}\right) S \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot(\alpha \mathbf{K} \nabla S)=0 \\
& -\phi \frac{\partial S}{\partial t}+(1-S)\left(c_{g}+c_{f}\right) \phi \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{g} \mathbf{K} \nabla p\right)+\nabla \cdot(\alpha \mathbf{K} \nabla S)=\frac{\varrho_{m} \varrho_{b}}{\tau \varrho_{g}}\left(V-\frac{V_{L} p}{p_{L}+p}\right)
\end{aligned}
$$

Adding these two equations we obtain:

$$
\begin{aligned}
& \phi \frac{\partial S}{\partial t}+\left(c_{w} \phi+c_{f}\right) S \frac{\partial p}{\partial t}-\nabla \cdot\left(m_{w} \mathbf{K} \nabla p\right)-\nabla \cdot(\alpha \mathbf{K} \nabla S)=0 \\
& c_{t} \phi \frac{\partial p}{\partial t}-\nabla \cdot(m \mathbf{K} \nabla p)=\frac{\varrho_{m} \varrho_{b}}{\tau \varrho_{g}}\left(V-\frac{V_{L} p}{p_{L}+p}\right) \\
& \frac{\partial V}{\partial t}+\frac{1}{\tau}\left(V-\frac{V_{L} p}{p_{L}+p}\right)=0
\end{aligned}
$$

where

$$
c_{t}=c_{w} S+c_{g}(1-S)+c_{f} \quad \text { Total compressibility }
$$

Remarks

(1) The main advantage of this formulation is that

$$
m \geq m_{0}>0 \quad \text { although } m_{g} \geq 0, \quad m_{w} \geq 0 .
$$

i.e. the equation is not degenerate.
(3) We have

$$
\begin{aligned}
& \qquad \nabla \cdot\left(m_{w} \mathrm{~K} \nabla p\right)=m_{w} \nabla \cdot(\mathrm{~K} \nabla p)+\mathrm{K} \nabla p \cdot \nabla m_{w}=m_{w} \nabla \cdot(\mathrm{~K} \nabla p)+m_{w}^{\prime}(S) \mathrm{K} \nabla p \cdot \nabla S \\
& \text { which is a diffusion-convection problem. This implies the necessity of using an upwind } \\
& \text { scheme, if the capillary pressure is null (or small enough). }
\end{aligned}
$$

Remarks

(1) The main advantage of this formulation is that

$$
m \geq m_{0}>0 \quad \text { although } m_{g} \geq 0, \quad m_{w} \geq 0
$$

i.e. the equation is not degenerate.
(2) We have

$$
\nabla \cdot\left(m_{w} \mathbf{K} \nabla p\right)=m_{w} \nabla \cdot(\mathbf{K} \nabla p)+\mathbf{K} \nabla p \cdot \nabla m_{w}=m_{w} \nabla \cdot(\mathbf{K} \nabla p)+m_{w}^{\prime}(S) \mathbf{K} \nabla p \cdot \nabla S
$$

which is a diffusion-convection problem. This implies the necessity of using an upwind scheme, if the capillary pressure is null (or small enough).

Boundary conditions

In the following, we assume $p_{c}=0$.

We prescribe the conditions:

Boundary conditions
In the following, we assume $p_{c}=0$.

We prescribe the conditions:

$$
\begin{array}{ll}
p=p_{w} & \text { on } \Gamma_{W}, \\
\mathrm{~K} \nabla p \cdot n=0 & \text { on } \Gamma_{R},
\end{array}
$$

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to the reservoir's diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity of the well. We also assume that the flow is incompressible in this neighborhood and has constant properties.

The flow is then modelled in this neighborhood, for the water phase by
where δ is the Dirac distribution at the center of the well and q_{w} is the well's production rate for the water.

We obtain the analytical solution

where r_{w} is the well's radius, $\kappa=K_{11}$ and H is the reservoir's height.

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to the reservoir's diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity of the well. We also assume that the flow is incompressible in this neighborhood and has constant properties.

The flow is then modelled in this neighborhood, for the water phase by

$$
-\nabla \cdot\left(\varrho_{w} m_{w} \mathbf{K} \nabla p\right)=q_{w} \delta
$$

where δ is the Dirac distribution at the center of the well and q_{w} is the well's production rate for the water.

We obtain the analytical solution
where r_{w} is the well's radius, $\kappa=K_{11}$ and H is the reservoir's height.

In realistic situations, the domain (reservoir) contains wells with a small diameter (with respect to the reservoir's diameter). This is generally at the origin of serious numerical difficulties.

Consider, for instance, the case of a vertical well. We assume that the flow is radial in the vicinity of the well. We also assume that the flow is incompressible in this neighborhood and has constant properties.

The flow is then modelled in this neighborhood, for the water phase by

$$
-\nabla \cdot\left(\varrho_{w} m_{w} \mathbf{K} \nabla p\right)=q_{w} \delta
$$

where δ is the Dirac distribution at the center of the well and q_{w} is the well's production rate for the water.

We obtain the analytical solution

$$
p(r)=p\left(r_{w}\right)-\frac{q_{w}}{2 \pi \varrho_{w} m_{w} \kappa H} \ln \left(\frac{r}{r_{w}}\right), \quad r=\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{1}{2}}
$$

where r_{w} is the well's radius, $\kappa=K_{11}$ and H is the reservoir's height.

Let φ_{0} denote the \mathbb{P}_{1} basis function at node x_{0} (well node), we have

$$
\varrho_{w} m_{w} H \sum_{e \subset \Omega_{0}} \int_{e} \mathbf{K} \nabla p \cdot \varphi_{0} d x=q_{w}
$$

where Ω_{0} is the support de φ_{0}.

We assume that the analytical solution is a good approximation of the pressure at neighboring nodes.

Using the expansion

we get

Let φ_{0} denote the \mathbb{P}_{1} basis function at node x_{0} (well node), we have

$$
\varrho_{w} m_{w} H \sum_{e \subset \Omega_{0}} \int_{e} \mathbf{K} \nabla p \cdot \varphi_{0} d x=q_{w}
$$

where Ω_{0} is the support de φ_{0}.

We assume that the analytical solution is a good approximation of the pressure at neighboring nodes.

Using the expansion

$$
p=\sum_{i} p_{i} \varphi_{i} \quad \text { in } \Omega_{0}
$$

we get

$$
\varrho_{w} m_{w} H \sum_{e \subset \Omega_{0}} \sum_{i}\left(\int_{e} \mathbf{K} \varphi_{i} \cdot \nabla \varphi_{0} d x\right) p_{i}=q_{w} .
$$

Then

$$
\varrho_{w} m_{w} H \sum_{i \neq 0} T_{i}\left(p_{i}-p_{0}\right)=q_{w} \quad \text { where } T_{i}=\sum_{\ell=1}^{2} \int_{e_{\ell}} \mathrm{K} \nabla \varphi_{i} \cdot \varphi_{0} d x
$$

Using the analytical solution, we obtain

Well model for the water phase

$$
q_{w}=\frac{\sum_{i \neq 0} T_{i}}{1+\frac{1}{2 \pi \kappa} \sum_{i \neq 0} T_{i} \ln \left(r_{i} / r_{w}\right)} \varrho_{w} m_{w} H\left(p_{w}-p_{0}\right)
$$

For the gas phase, the situation is more delicate: One cannot assume that ϱ_{g} is constant in the vicinity of a well.
We use the Kirchhoff transformation by defining

$$
\tilde{p}=\int_{p_{0}}^{p} \varrho_{g}(s) d s
$$

Then, we have

$$
-m_{g} \kappa \Delta p=q_{g} \delta
$$

We deduce then

$$
\tilde{p}(r)=\tilde{p}\left(r_{w}\right)-\frac{q_{g}}{2 \pi m_{g} \kappa H} \ln \left(\frac{r}{r_{w}}\right)
$$

Using the analytical solution, we obtain

Well model for the water phase

$$
q_{w}=\frac{\sum_{i \neq 0} T_{i}}{1+\frac{1}{2 \pi \kappa} \sum_{i \neq 0} T_{i} \ln \left(r_{i} / r_{w}\right)} \varrho_{w} m_{w} H\left(p_{w}-p_{0}\right)
$$

For the gas phase, the situation is more delicate: One cannot assume that ϱ_{g} is constant in the vicinity of a well.
We use the Kirchhoff transformation by defining

$$
\tilde{p}=\int_{p_{0}}^{p} \varrho_{g}(s) d s
$$

Then, we have

$$
-m_{g} \kappa \Delta p=q_{g} \delta
$$

We deduce then

Using the analytical solution, we obtain

Well model for the water phase

$$
q_{w}=\frac{\sum_{i \neq 0} T_{i}}{1+\frac{1}{2 \pi \kappa} \sum_{i \neq 0} T_{i} \ln \left(r_{i} / r_{w}\right)} \varrho_{w} m_{w} H\left(p_{w}-p_{0}\right)
$$

For the gas phase, the situation is more delicate: One cannot assume that ϱ_{g} is constant in the vicinity of a well.
We use the Kirchhoff transformation by defining

$$
\tilde{p}=\int_{p_{0}}^{p} \varrho_{g}(s) d s
$$

Then, we have

$$
-m_{g} \kappa \Delta p=q_{g} \delta
$$

We deduce then

$$
\tilde{p}(r)=\tilde{p}\left(r_{w}\right)-\frac{q_{g}}{2 \pi m_{g} \kappa H} \ln \left(\frac{r}{r_{w}}\right)
$$

Numerical approximation

We use a \mathbb{P}_{1} finite element method with a Streamline Upwind stabilization term: Let $\mathscr{T}(\Omega)$ denote a triangulation of Ω and let us define the finite dimensional space:

$$
\begin{aligned}
& \mathcal{S}=\left\{\psi \in \mathcal{C}^{0}(\bar{\Omega}) ; \psi_{\mid K} \in \mathbb{P}_{1} \forall K \in \mathscr{T}(\Omega)\right\}, \\
& \mathcal{P}=\left\{q \in \mathcal{C}^{0}(\bar{\Omega}) ; q_{\mid K} \in \mathbb{P}_{1} \forall K \in \mathscr{T}(\Omega)\right\}, \\
& \mathcal{V}=\left\{W ; W_{\mid K}=\text { Const. } \forall K \in \mathscr{T}(\Omega)\right\} .
\end{aligned}
$$

Streamline Upwind stabilization

Consider the diffusion-convection equation

$$
-\varepsilon \Delta u+\mathbf{a} \cdot \nabla u=f \quad \text { in } \Omega
$$

It is well known that if the local Péclet number

$$
P e=\frac{|\mathbf{a}| h}{2 \varepsilon}>1
$$

then a standard (centered) discretization leads to a nonmonotone matrix and then to instabilities. et al. and analyzed by C. Johnson. It consists in the following variational formulation:

Streamline Upwind stabilization

Consider the diffusion-convection equation

$$
-\varepsilon \Delta u+\mathbf{a} \cdot \nabla u=f \quad \text { in } \Omega
$$

It is well known that if the local Péclet number

$$
P e=\frac{|\mathbf{a}| h}{2 \varepsilon}>1
$$

then a standard (centered) discretization leads to a nonmonotone matrix and then to instabilities.
To remedy to this, a Petrov-Galerkin formulation has been proposed in the 80 's by T.J.R. Hughes et al. and analyzed by C. Johnson. It consists in the following variational formulation:

$$
\int_{\Omega} \varepsilon \nabla u_{h} \cdot \nabla v d x+\int_{\Omega}\left(\mathbf{a} \cdot \nabla u_{h}\right) v d x+\sum_{K} \frac{h_{K}}{2|\mathbf{a}|} \int_{K}\left(\mathbf{a} \cdot \nabla u_{h}\right)(\mathbf{a} \cdot \nabla v) d x=\int_{\Omega} f v d x \quad \forall v \in \mathscr{V}_{h}
$$

We define the variational formulation (We keep the same notation for the unknowns and their approximations):
We seek $S(\cdot, t) \in \mathcal{S}, p(\cdot, t) \in \mathcal{P}$ and $V(t) \in \mathcal{V}$ such that forl all $\varphi \in \mathcal{S}$ et $\psi \in \mathcal{P}$:

$$
\begin{aligned}
& \int_{\Omega} \phi \frac{\partial S}{\partial t} \varphi d x+\int_{\Omega}\left(c_{w} \phi+c_{f}\right) S \frac{\partial p}{\partial t} \varphi d x+\int_{\Omega} m_{w} \mathbf{K} \nabla p \cdot \nabla \varphi d x \\
&+\sum_{K \in \mathscr{T}(\Omega)} \xi_{K} \int_{K}(\mathbf{K} \nabla p \cdot \nabla S)(\mathbf{K} \nabla p \cdot \nabla \varphi) d x=-\sum_{i=1}^{n_{w}} \frac{q_{w i}}{H} \varphi\left(x_{w i}\right) \\
& \int_{\Omega} c_{t} \phi \frac{\partial p}{\partial t} \psi d x+\int_{\Omega} m \mathbf{K} \nabla p \cdot \nabla \psi d x \\
&=\frac{\varrho_{m} \varrho_{b}}{\tau} \int_{\Omega} \frac{1}{\varrho_{g}}\left(V-\frac{V_{L} p}{p_{L}+p}\right) \psi d x-\sum_{i=1}^{n_{w}} \frac{q_{g i}}{H} \varphi\left(x_{w i}\right) \\
& \frac{\partial V}{\partial t}+\frac{1}{\tau \varrho_{g}}\left(\frac{V_{L} p}{p_{L}+p}-V\right)=0
\end{aligned}
$$

with

$$
\xi_{K}=\frac{h_{K}}{2|\mathbf{K} \nabla p|}\left|m_{w}^{\prime}(S)\right|
$$

We choose the implicit Euler scheme:

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{\delta t} \int_{\Omega} \phi^{n+1}\left(S^{n+1}-S^{n}\right) \varphi d x+\frac{1}{\delta t} \int_{\Omega}\left(c_{w} \phi^{n+1}+c_{f}^{n+1}\right)\left(p^{n+1}-p^{n}\right) \varphi d x \\
\quad+\int_{\Omega} m_{w}^{n+1} \mathbf{K} \nabla p^{n+1} \cdot \nabla \varphi d x \\
\quad+\sum_{K \in \mathscr{T}(\Omega)} \xi_{K}^{n} \int_{K}\left(\mathbf{K} \nabla p^{n} \cdot \nabla S^{n+1}\right)\left(\mathbf{K} \nabla p^{n} \cdot \nabla \varphi\right) d x=-\sum_{i=1}^{n_{w}} \frac{q_{w i}^{n+1}}{H} \varphi\left(x_{w i}\right) \\
\frac{1}{\delta t} \int_{\Omega} c_{t}^{n+1} \phi^{n+1}\left(p^{n+1}-p^{n}\right) \psi d x+\int_{\Omega} m^{n+1} \mathbf{K} \nabla p^{n+1} \cdot \nabla \psi d x \\
\quad=\frac{\varrho_{m} \varrho_{b}}{\tau+\delta t} \int_{\Omega} \frac{1}{\varrho_{g}^{n+1}}\left(V^{n}-\frac{V_{L} p^{n+1}}{p_{L}+p^{n+1}}\right) \psi d x-\sum_{i=1}^{n_{w}} \frac{q_{g i}^{n+1}}{H} \varphi\left(x_{w i}\right) \\
V^{n+1}=\frac{1}{\tau+\delta t}\left(\tau V^{n}+\delta t \frac{V_{L} p^{n+1}}{p_{L}+p^{n+1}}\right)
\end{array}
\end{aligned}
$$

for all $\varphi \in \mathcal{S}$ and $\psi \in \mathcal{P}_{0}$.

Note that the variable V is decoupled from S and p.

Adaptive time stepping

In order to optimize the computational time, an adaptive time stepping procedure is used. We use the following procedure:

For all n, we compute

On choisit

where ε is a given tolerance and θ is the maximal (given) value of $\delta t^{n+1} / \delta t^{n}$ or $\delta t^{n} / \delta t^{n+1}$

Adaptive time stepping

In order to optimize the computational time, an adaptive time stepping procedure is used. We use the following procedure:

For all n, we compute

$$
\alpha^{n}=\frac{\delta t^{n}}{\varepsilon}\left(\frac{\left\|p^{n+1}-p^{n}\right\|}{\left\|p^{n}\right\|}+\frac{\left\|S^{n+1}-S^{n}\right\|}{\left\|S^{n}\right\|}\right)
$$

On choisit

$$
\delta t^{n+1}= \begin{cases}\min \left(\theta, \frac{\alpha^{n}}{\delta t_{n}}\right) \delta t^{n} & \text { if } \alpha^{n}>\delta t^{n} \\ \frac{\delta t^{n}}{\min \left(\theta, \frac{\alpha^{n}}{\delta t^{n}}\right)} & \text { if } \alpha^{n} \leq \delta t^{n}\end{cases}
$$

where ε is a given tolerance and θ is the maximal (given) value of $\delta t^{n+1} / \delta t^{n}$ or $\delta t^{n} / \delta t^{n+1}$.

Numerical experiments: A radial case
We look for a radial solution where the well is disk of radius $R_{w}=0.15 \mathrm{~m}$ located at the center of a reservoir of radius $R_{e}=800 \mathrm{~m}$, i.e. $R_{w} \ll R_{e}$.
We choose

$$
\begin{aligned}
& p_{c}=0, \quad S_{0}=1, \quad p_{0}=1400 \mathrm{psi}, \quad p_{w}=100 \mathrm{psi}, \quad \tau=1 \text { jour } \\
& T_{\max }=10000 \text { days (more than } 27 \text { years) }
\end{aligned}
$$

2-D Examples

Numerical simulations

- A vertical well
- A horizontal well
- A heterogeneous reservoir

